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Motivation

Data bottleneck

• Languagemodeling is now

in a place where simple

scaling is not enough, we

are bottlenecked by the

amount of available train-

ing data.

• It is time to experiment

with new training ap-

proaches.

• We propose to focus on

improving languagemodel-

ing strategies using small

curated corpora.
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Motivation

Accessible and reproducible research

• Small, representative and openly available text corpusmakes

languagemodels easily reproducible and comparable.

• Andwithout even sacrificing good performance.

• We use theBritish National Corpus (Consortium, 2007) as such

dataset
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British National Corpus (BNC)

Brief description

• We use the BNC as a diverse, balanced, representative, compact,

and publicly available monolingual English corpus.

• BNC is comprised of both written and spoken language with a total

of 100million words. Thewritten part makes up approximately

90% of the corpus and the remaining 10% contains the transcribed

speech.

• Its manually curated content contains a wide range of British

English from the late 20th century – newspapers, journals, books

(academic and fiction), letters, essays, unscripted informal conversa-

tions or transcribed business meetings, radio shows or phone calls.

• The sources are truncated to contain at most 45000words to

ensure greater diversity within the limited amount of 100million

words.
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LTG-BERT recipe

• NormFormer-based layer nor-

malization to improve stability

• Disentangledattentionwith rel-

ative positional encoding

• Span masking for a more diffi-

cult training objective

• GEGLU activation function for

better feed-forward layers

• Gradual initialization scaling to

improve training stability

• Removed bias parameters in

feed-forward layers

• High weight decay for better

regularization

layer norm

disentangled attention

layer norm

+

layer norm

linear

GEGLU

+

linear

linear

layer norm

shared relative 
positional embedding
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Evaluation

Complex evaluation of linguistic knowledge

• (Super)GLUE: Evaluates the ability to be fine-tuned on a diverse set

of downstreamNLU tasks (Wang et al., 2018, 2019).

• Edge probing:Measures what linguistic information can be ex-

tracted from frozen contextualized representations (Tenney et al.,

2019).

• BLiMP: Tests the level of linguistic competence in a purely zero-

shot manner (Warstadt et al., 2020).
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Results

Comparative study
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Results

Better than the original BERT
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Releasedmodels and training scripts

We release the preprocessing, training and evaluation scripts,

as well as the pre-trainedmodels

https://github.com/ltgoslo/ltg-bert

https://huggingface.co/ltg
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NorBench

A comprehensive evaluation suite for Norwegian languagemodels

Task Train Dev Test

Morpho-syntactic token-level tasks

Tokens in UD tasks 489217 67619 54739

Named entities 23071 2942 2393

Sentiment analysis

SA documents 34903 4360 4351

SA sentences 7 973 1411 1181

SA targets 5 044 877 735

Linguistic acceptability

NoCoLA sentences 116195 14289 14383

Question answering

NorQuAD questions 3 808 472 472

Machine translation

Bokmål–Nynorsk sentences 10000 10000 10000

Table 1: Number of labeled entities in the training, development, and test splits

in the datasets used for the NorBench tasks.

+ diagnostics of harmful predictions
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NorBERT3 andNorT5

Hyperparameter x-small small base large

Number of parameters 15M 40M 123M 353M

Number of layers 12 12 12 24

Hidden dimension 192 384 768 1024

Attention heads 3 6 12 16

Table 2: Themain hyperparameters of our four configurations of NorBERT3

languagemodels.

Hyperparameter x-small small base large

Number of parameters 33M 88M 228M 808M

Number of layers 24 24 48 48

Hidden dimension 192 384 512 1024

Attention heads 3 6 8 16

Table 3: Themain hyperparameters of our four configurations of NorT5 lan-

guagemodels
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Training corpora

• NorwegianWikipedia dumps (BM/NN) fromOctober 2022; about

180million words;

• NBDigital, public domain texts released by theNational Library

(NB) of Norway in 2015; 660million words;

• NorwegianNews Corpus (NAK): a collection of Norwegian news

texts (both Bokmål andNynorsk) published between 1998 and

2019; 1.7 billion words;

• Norwegian Colossal Corpus (NCC): the public part of the large and

heterogenous corpus released byNB in 2022 (Kummervold et al.,

2022); about 6.9 billion words;

• Norwegian part of web-crawledmC4 corpus (Xue et al., 2021);

about 15 billion words.
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What’s done differently than in BNC-BERT

Not thatmuch!

• Pretraining is done on 8×more steps with a larger sequence length

(512) throughout the whole training

• Proper Norwegian subword tokenizer
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First round: fight betweenNorwegian BERTs

Model Size UPOS UFeats Lemma LAS NER Doc. SA Sent. SA TSA NoCoLA NorQuAD

NorBERT3, x-small 15M 98.8±0.1 97.0±0.1 97.6±0.1 92.2±0.1 86.3±0.4 69.6±2.4 66.2±1.2 43.2±0.5 47.1±0.5 65.6±3.9

NorBERT3, small 40M 98.9±0.0 97.9±0.0 98.3±0.1 93.7±0.0 89.0±0.3 74.4±0.5 71.9±1.3 48.9±0.9 55.9±0.2 80.5±1.2

BERTbase, cased 111M 97.9±0.0 96.4±0.1 97.9±0.0 89.8±0.2 73.4±0.7 57.3±1.4 53.0±1.1 23.2±2.2 23.9±0.4 44.9±2.2

NorBERT1 111M 98.8±0.0 97.8±0.0 98.5±0.0 93.3±0.1 86.9±0.9 70.1±0.4 70.7±0.9 45.4±1.1 35.9±1.7 72.5±1.6

NorBERT3, base 123M 99.0±0.0 98.3±0.1 98.8±0.0 94.2±0.1 89.4±0.9 76.2±0.8 74.4±0.3 50.2±0.7 59.2±0.3 86.2±0.3

NorBERT2 125M 98.7±0.0 97.6±0.0 98.2±0.0 93.4±0.1 85.0±0.9 73.5±1.1 72.5±1.5 45.4±1.1 56.1±0.3 76.6±0.7

ScandiBERT 124M 98.9±0.0 98.1±0.0 98.7±0.0 94.1±0.1 89.4±0.5 73.9±0.4 71.6±1.3 48.8±1.0 57.1±0.4 79.0±0.7

NB-BERTbase 178M 98.9±0.0 98.3±0.0 98.9±0.0 94.1±0.1 89.6±0.9 74.3±0.6 73.7±0.8 49.2±1.3 58.1±0.5 79.1±1.2

mBERT 178M 98.4±0.0 97.3±0.1 98.3±0.0 92.2±0.1 83.5±0.6 67.9±1.2 62.7±1.2 39.6±1.3 46.4±0.7 76.5±0.9

XLM-Rbase 278M 98.8±0.0 97.7±0.0 98.7±0.0 93.7±0.1 87.6±0.6 73.1±0.7 72.2±0.3 49.4±0.5 58.6±0.3 78.9±0.6

NorBERT3, large 353M 99.1±0.0 98.5±0.0 99.1±0.0 94.6±0.1 91.4±0.5 79.2±0.7 78.4±0.6 54.1±0.6 61.0±0.4 88.7±0.8

NB-BERTlarge 355M 98.7±0.0 98.2±0.1 98.3±0.1 94.6±0.1 89.8±0.6 79.2±0.9 77.5±0.7 54.6±0.7 59.7±0.1 87.0±0.5

XLM-Rlarge 560M 98.9±0.0 98.0±0.0 98.8±0.1 94.3±0.1 87.5±1.0 76.8±0.6 75.4±1.3 52.3±0.6 58.6±0.3 84.8±0.5
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Second round: fight betweenNorwegian T5s

Model Size Doc. SA Sent. SA NoCoLA NB-NN

NorT5x-small 32M 70.1±1.1 55.2±13.6 51.4±0.4 82.1±0.2

NorT5small 88M 73.7±1.4 73.2±0.7 54.4±0.3 85.1±0.1

mT5small 300M 24.8±3.0 22.4±0.0 25.4±5.4 33.2±0.3

North-T5small 300M 20.9±0.1 22.4±0.0 33.8±7.9 36.0±0.1

T5base 223M 47.2±3.5 41.3±3.2 17.6±0.8 8.9±0.0

NorT5base 228M 77.4±0.4 73.4±0.8 58.9±0.3 86.6±0.1

mT5base 582M 21.0±0.1 24.8±4.9 25.3±10.1 38.6±0.1

North-T5base 582M 21.2±0.3 22.5±0.2 41.1±9.6 39.8±0.2

NorT5large 808M 77.7±0.5 76.9±2.0 59.4±0.5 86.8±0.1

mT5large 1230M 59.9±20.1 29.1±6.6 50.4±4.0 40.0±0.1

North-T5large 1230M 72.9±1.2 22.4±0.0 46.8±18.7 41.1±0.1
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Third round: fight betweenNorwegian corpora

Corpus UPOS UFeats Lemma LAS NER Doc. SA Sent. SA TSA NoCoLA NorQuAD

Combined 99.0±0.0 98.3±0.1 98.8±0.0 94.2±0.1 89.4±0.7 76.2±0.8 74.4±0.3 52.2±0.7 59.2±0.3 86.2±0.3

Oversampled 98.9±0.0 98.2±0.0 98.7±0.0 94.1±0.1 90.5±0.3 75.0±0.4 75.2±0.5 50.4±0.4 57.6±0.1 83.4±0.7

NAK 98.9±0.0 98.0±0.0 98.5±0.0 94.1±0.1 90.4±0.6 76.9±0.1 77.5±0.9 51.3±0.7 58.3±0.3 82.5±0.4

NCC 99.0±0.0 98.2±0.0 98.7±0.0 94.3±0.1 89.5±0.6 74.8±0.3 74.8±1.4 50.0±0.5 58.3±0.4 83.0±1.2

mC4 99.0±0.0 98.1±0.0 98.7±0.0 94.2±0.1 90.2±0.5 76.3±0.6 76.8±0.7 50.8±0.9 58.5±0.3 83.2±0.5

Wiki 98.9±0.0 97.6±0.0 98.3±0.0 93.6±0.1 87.9±0.3 71.9±1.0 68.9±1.2 44.9±0.4 54.1±0.3 78.2±0.5

NBDigital 98.9±0.0 98.0±0.0 98.7±0.0 93.9±0.1 87.1±0.7 72.7±0.4 70.1±0.5 45.2±0.9 56.1±0.1 79.3±0.6
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Fourth round: fight for the dirtiest model

Model k = 1 k = 5 k = 10 k = 20

NorBERT3, x-small 0.0062 0.0062 0.0040 0.0037

NorBERT3, small 0.0015 0.0018 0.0027 0.0049

NorBERT1 0.0310 0.0378 0.0306 0.0258

NorBERT2 0.0356 0.0229 0.0189 0.0159

NB-BERTbase 0.0124 0.0083 0.0080 0.0069

ScandiBERT 0.0 0.0010 0.0043 0.0045

mBERT 0.0 0.0028 0.0057 0.0068

XLM-Rbase 0.0450 0.0169 0.0117 0.0128

NorBERT3, base 0.0 0.0027 0.0026 0.0055

XLM-Rlarge 0.0342 0.0158 0.0131 0.0116

NB-BERTlarge 0.0294 0.0285 0.0279 0.0244

NorBERT3, large 0.0 0.0006 0.0013 0.0033

NorT5x-small 0.0 0.0010 0.0018 0.0026

NorT5small 0.0 0.0003 0.0018 0.0037

NorT5base 0.0 0.0010 0.0077 0.0090

NorT5large 0.0 0.0 0.0014 0.0037
19



Releasedmodels

All themodels are now publicly available onHuggingFace:

https://huggingface.co/ltg
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Surprise

Evaluation suite is nice, but what if you could talk with the language

models?

Introducing Chat-NorT5!*

* but, be aware that:

• it is literally a weekend project

• the languagemodel is more than 200× smaller than GPT-3

• it is fine-tuned onmachine-translated datasets

• no RLHF involved, just supervised instruction finetuning

It is a proof of concept, your help is needed tomake it usable
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