Deep Learning for Unsupervised Relation Extraction

Étienne Simon

5 july 2022

LTG

Education background:

- Algorithmic, Automata Theory, Lambda Calculus...
- Machine Learning, Statistics...

Research background:

- Machine-learning-oriented NLP
- Not used to work with POS, dependency trees...
- Machine Translation, Diachronic Topic Modeling, Multimodal Semantic Role Labeling, Relation Extraction

⇒ An "otter" entity exists.

Structuralism: interrelations are keys to our understanding of the world.

Structuralism: interrelations are keys to our understanding of the world.

Realism or Nominalism - Episteme

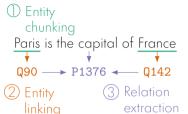
Techne

A way to abstract information for easier processing.

Knowledge Base Population

Maps between two symbolic representations (text and knowledge bases).

Knowledge bases are set of facts:
 (entity, relation, entity)



Knowledge Base Population

Maps between two symbolic representations (text and knowledge bases).

Knowledge bases are set of facts:

(entity, relation, entity)

① Entity
chunking
Paris is the capital of France
Q90 → P1376 ← Q142
② Entity
linking
Q90 ← Q142

Symbolic Representations

 $symbol \leftrightarrow concept$

e.g.: one-hot vector, text (Paris is the capital of France), knowledge base (Paris^{Q90}, capital^{P1376}, France^{Q142})

Distributed Representations

concept \rightarrow several units; unit \rightarrow part of several concepts e.g.: embeddings, neural network activations

 $\underline{\underline{\mathsf{Megrez}}}_{e_1}^{\mathsf{Q850779}}$ is a star in the northern circumpolar constellation of $\underline{\mathsf{Ursa}}\ \mathsf{Major}_{e_2}^{\mathsf{Q10460}}$.

 e_1 part of constellation e_2

 $\underline{\underline{Posidonius}_{e_1}^{\mathbf{Q185770}}}$ was a Greek philosopher, astronomer, historian, mathematician, and teacher native to $\underline{\underline{Apamea}}$, $\underline{\underline{Syria}_{e_2}^{\mathbf{Q617550}}}$.

 e_1 born in e_2

 $\frac{\text{Hipparchus}_{e_1}^{\mathbf{Q159905}}}{\text{Bithynia}_{e_2}^{\mathbf{Q739037}}}, \text{ and probably died on the island of Rhodes, Greece.}$

 e_1 born in e_2

In an unsupervised fashion.

Two kind of approaches: clustering and similarity function.

 $\underline{\underline{\mathsf{Megrez}}}_{e_1}^{\mathsf{Q850779}}$ is a star in the northern circumpolar constellation of $\underline{\mathsf{Ursa}}\ \mathsf{Major}_{e_2}^{\mathsf{Q10460}}$.

 e_1 part of constellation e_2

 $\underline{\underline{Posidonius}_{e_1}^{\mathbf{Q185770}}}$ was a Greek philosopher, astronomer, historian, mathematician, and teacher native to $\underline{\underline{Apamea}}$, $\underline{\underline{Syria}_{e_2}^{\mathbf{Q617550}}}$.

 e_1 born in e_2

 $\frac{\text{Hipparchus}_{e_1}^{\mathbf{Q159905}} \text{ was born in } \underline{\text{Nicaea,}}}{\underline{\text{Bithynia}_{e_2}^{\mathbf{Q739037}}}, \text{ and probably died on the island of Rhodes, Greece.}}$

 e_1 born in e_2

 $\underline{\underline{\mathsf{Megrez}}_{e_1}^{\mathsf{Q850779}}}$ is a star in the northern circumpolar constellation of $\underline{\mathsf{Ursa}}\ \underline{\mathsf{Major}}_{e_2}^{\mathsf{Q10460}}$.

 $\underline{\underline{Posidonius}_{e_1}^{\mathbf{Q185770}}}$ was a Greek philosopher, astronomer, historian, mathematician, and teacher native to $\underline{\underline{Apamea}}$, $\underline{\underline{Syria}_{e_2}^{\mathbf{Q617550}}}$.

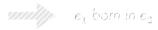
 $\frac{\text{Hipparchus}_{e_1}^{\mathbf{Q159905}} \text{ was born in } \underline{\text{Nicaea,}}}{\underline{\text{Bithynia}_{e_2}^{\mathbf{Q739037}}}, \text{ and probably died on the island of Rhodes, Greece.}}$

 ${{
m Megrez}_{e_1}^{{
m Q850779}}}$ is a star in the northern circumpolar constellation of Ursa Major $_{e_2}^{{
m Q10460}}$.

 $rac{Posidonius_{e_1}^{\mathbf{Q185770}}}{astronomer,}$ was a Greek philosopher, astronomer, historian, mathematician, and teacher native to Apamea, Syria $_{e_2}^{\mathbf{Q617550}}$.

Hipparchus $_{e_1}^{\mathbf{Q}159905}$ was born in Nicaea, Bithynia $_{e_2}^{\mathbf{Q}739037}$, and probably died on the island of Rhodes, Greece.

Same cluster ⇔ Same relation Induced clusters need **not** be labeled with a relation.



 $\frac{\text{Megrez}_{e_1}^{\text{Q850779}}}{\text{polar constellation of } \underline{\text{Ursa Major}_{e_2}^{\text{Q10460}}}.$

 $uully = e_1$ part of constellation e_2

 $rac{Posidonius_{e_1}^{\mathbf{Q185770}}}{astronomer, historian, mathematician, and teacher native to Apamea, Syria<math>_{e_2}^{\mathbf{Q617550}}$.

 $uuil/p=e_1$ born in e_2

Hipparchus $e_1^{\mathbf{Q}159905}$ was born in Nicaea, Bithynia $e_2^{\mathbf{Q}739037}$, and probably died on the island of Rhodes. Greece.

 e_1 born in e_2

Same cluster ⇔ Same relation Induced clusters need **not** be labeled with a relation.

Clustering Metrics

 ${
m B^3}$ Similar to standard F_1 **V-measure** Entropic F_1 ARI Pair of samples consistency $\underline{\text{Megrez}}_{e_1}^{\text{Q850779}}$ is a star in the northern circumpolar constellation of $\underline{\text{Ursa Major}}_{e_2}^{\text{Q10460}}$.

 e_1 part of constellation e_2

 $\underline{\underline{Posidonius}_{e_1}^{\mathbf{Q185770}}}$ was a Greek philosopher, astronomer, historian, mathematician, and teacher native to $\underline{\underline{Apamea}}$, $\underline{\underline{Syria}_{e_2}^{\mathbf{Q617550}}}$.

 e_1 born in e_2

 $\frac{\text{Hipparchus}_{e_1}^{\mathbf{Q}\mathbf{159905}}}{\underline{\text{Bithynia}}_{e_2}^{\mathbf{Q}\mathbf{739037}}}, \text{ and probably died on the island of Rhodes, Greece.}$

 e_1 born in e_2

 $\underline{\text{Megrez}}_{e_1}^{\text{Q850779}}$ is a star in the northern circumpolar constellation of $\underline{\text{Ursa Major}}_{e_2}^{\text{Q10460}}$.

 $\frac{\text{Posidonius}_{e_1}^{\mathbf{Q185770}} \text{ was a Greek philosopher,}}{\text{astronomer, historian, mathematician, and}} \text{ teacher native to } \underline{\text{Apamea, Syria}_{e_2}^{\mathbf{Q617550}}}.$

 $\frac{\text{Hipparchus}_{e_1}^{\mathbf{Q159905}} \text{ was born in } \underline{\text{Nicaea,}}}{\underline{\text{Bithynia}_{e_2}^{\mathbf{Q739037}}}, \text{ and probably died on the island of Rhodes, Greece.}}$

 $\frac{\textit{Megrez}_{e_1}^{\textit{Q850779}} \text{ is a star in the northern circum-polar constellation of } \underbrace{\textit{Ursa Major}_{e_2}^{\textit{Q10460}}}_{x_1}$

 $\frac{\text{Posidonius}_{e_1}^{\mathbf{Q185770}} \text{ was a Greek philosopher,}}{\text{astronomer, historian, mathematician, and}} x_2 \\ \text{teacher native to } \underline{\text{Apamea, Syria}_{e_2}^{\mathbf{Q617550}}}.$

 $\frac{\text{Hipparchus}_{e_1}^{\mathbf{Q159905}} \text{ was born in } \underline{\text{Nicaea,}}_{e_2}}{\text{Bithynia}_{e_2}^{\mathbf{Q739037}}, \text{ and probably died on the island of Rhodes, Greece.}} x_3$

Learn a similarity function $sim: \mathcal{D} \times \mathcal{D} \to \mathbb{R}$

$$\begin{array}{l} \mathrm{sim}(\pmb{x}_1, \pmb{x}_2) < \mathrm{sim}(\pmb{x}_2, \pmb{x}_3) \\ \mathrm{sim}(\pmb{x}_1, \pmb{x}_3) < \mathrm{sim}(\pmb{x}_2, \pmb{x}_3) \end{array}$$

5 way 1 shot: given 1 query and 5 candidates, which of the candidates is most similar to the query? Evaluated using accuracy.

Regularizing Discriminative M	odels	

 $\frac{\text{Megrez}_{e_1}^{\text{Q850779}}}{\text{polar constellation of Ursa Major}_{e_2}^{\text{Q10460}}}$.

 e_1 part of constellation e_2

 $rac{Posidonius}{e_1}^{\mathbf{Q185770}}$ was a Greek philosopher, astronomer, historian, mathematician, and teacher native to $rac{Apamea,\ Syria}{e_2}^{\mathbf{Q617550}}$.

with e_1 born in e_2

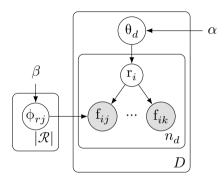
 $\frac{\text{Hipparchus}_{e_1}^{\mathbf{Q}159905}}{\text{Bithynia}_{e_2}^{\mathbf{Q}739037}}$, and probably died on the island of Rhodes, Greece.

 e_1 born in e_2

Same cluster \iff Same relation Induced clusters need **not** be labeled with a relation. Evaluated using clustering metrics similar to standard F_1 /precision/recall.

- 1. Related work
- 2. Limitation: can't train deep classifier
- 3. Model details
- 4. Analysis of limitation
- 5. Proposed solution
- 6. Results

An LDA-like model:



 θ_d distribution of relations in document d

 \mathbf{r}_i conveyed relation

 ϕ_{rj} associate features to relations

 f_i features:

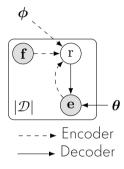
- bag of words of the infix;
- 2. surface form of the entities;
- 3. lemma words on the dependency path;
- 4. POS of the infix words;

. .

Assume $\mathcal{H}_{\text{BICLIQUE}}$: $\forall r \in \mathcal{R}: \exists A, B \subseteq \mathcal{E}: r \bullet \check{r} = A^2 \land \check{r} \bullet r = B^2$

Problem: Makes large independance assumptions.

A conditional β -VAE:



Autoencode the entities **e** given the sentence features **f**.

$$egin{aligned} \mathcal{L}_{ extsf{VAE}}(oldsymbol{ heta}, oldsymbol{\phi}) &= \mathcal{L}_{ extsf{reconstruction}}(oldsymbol{ heta}, oldsymbol{\phi}) + \mathcal{L}_{ extsf{VAE} \ extsf{REG}}(oldsymbol{\phi}) \ \\ \mathcal{L}_{ extsf{VAF} \ extsf{REG}}(oldsymbol{\phi}) &= \mathrm{D}_{ extsf{KI}}(Q(\mathrm{r} \mid \mathbf{e}; oldsymbol{\phi}) \parallel \mathcal{U}(\mathcal{R})) \end{aligned}$$

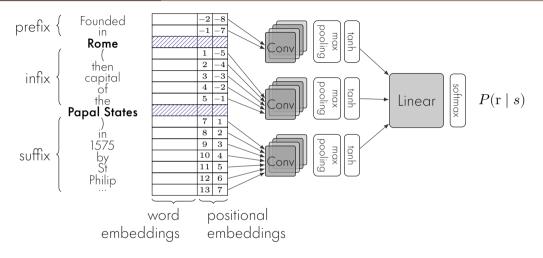
Assume $\mathcal{H}_{\text{UNIFORM}}$: All relations occur with equal frequency.

equal frequency.
$$\forall r \in \mathcal{R} \colon P(r) = \frac{1}{|\mathcal{R}|}$$

Assume $\mathcal{H}_{1 \to 1}$: All relations are bijective.

$$\forall r \in \mathcal{R} \colon r \bullet \breve{r} \cup \mathbf{I} = \breve{r} \bullet r \cup \mathbf{I} = \mathbf{I}$$

Problem: Still uses hand designed features.



Zeng et al. "Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks" EMNLP 2015

We introduced:

- 2 metrics (V-measure, ARI)
- 2 datasets (T-RExes)

 ${f B^3}$ Similar to standard F_1

V-measure Entropic F_1

ARI Pair of samples consistency

Мо	del		B^3		V-measure			ARI
Classifier	Reg.	$\overline{F_1}$	Prec.	Rec.	$\overline{F_1}$	Hom.	Comp.	,
rel-LDA		29.1	24.8	35.2	30.0	26.1	35.1	13.3
rel-LDA1		36.9	30.4	47.0	37.4	31.9	45.1	24.2
Linear	$\mathcal{L}_{VAF\;RFG}$	35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCNN	$\mathcal{L}_{VAE\;REG}$	27.6	24.3	31.9	24.7	21.2	29.6	15.7

We introduced:

- 2 metrics (V-measure, ARI)
- 2 datasets (T-RExes)

 $m B^3$ Similar to standard F_1

V-measure Entropic F_1

ARI Pair of samples consistency

Мо	del		B^3		V-measure			ARI
Classifier	Reg.	$\overline{F_1}$	Prec.	Rec.	$\overline{F_1}$	Hom.	Comp.	, , , , ,
rel-LDA rel-LDA1		29.1 36.9	24.8 30.4	35.2 47.0	30.0 37.4	26.1 31.9	35.1 45.1	13.3 24.2
Linear PCNN	$\mathcal{L}_{ extsf{VAE}\ extsf{REG}}$ $\mathcal{L}_{ extsf{VAE}\ extsf{REG}}$	35.2 27.6		67.1 31.9	27.0 24.7	18.6 21.2	49.6 29.6	18.7 15.7

Yao et al. "Structured Relation Discovery using Generative Models" EMNLP 2011

We introduced:

- 2 metrics (V-measure, ARI)
- 2 datasets (T-RExes)

 ${f B^3}$ Similar to standard F_1

V-measure Entropic F_1

ARI Pair of samples consistency

Мо	del		B^3		V-measure			ARI
Classifier	Reg.	$\overline{F_1}$	Prec.	Rec.	$\overline{F_1}$	Hom.	Comp.	,
rel-LDA		29.1	24.8	35.2	30.0	26.1	35.1	13.3
rel-LDA1		36.9	30.4	47.0	37.4	31.9	45.1	24.2
Linear	$\mathcal{L}_{VAE\;REG}$	35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCNN	$\mathcal{L}_{VAE\;REG}$	27.6	24.3	31.9	24.7	21.2	29.6	15.7

Marcheggiani and Titov "Discrete-State Variational Autoencoders for Joint Discovery and Factorization of Relations" TACL 2016

We introduced:

- 2 metrics (V-measure, ARI)
- 2 datasets (T-RExes)

 ${f B^3}$ Similar to standard F_1

 $extsf{V-measure}$ Entropic F_1

ARI Pair of samples consistency

Мо	del		B^3		V-measure			ARI
Classifier	Reg.	$\overline{F_1}$	Prec.	Rec.	$\overline{F_1}$	Hom.	Comp.	
rel-LDA		29.1	24.8	35.2	30.0	26.1	35.1	13.3
rel-LDA1		36.9	30.4	47.0	37.4	31.9	45.1	24.2
Linear	$\mathcal{L}_{VAE\;REG}$	35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCNN	$\mathcal{L}_{VAE\;REG}$	27.6	24.3	31.9	24.7	21.2	29.6	15.7

Problem: Using a deep encoder does not work.

- We introduce a new formalism.
- The encoder and decoder are sub-models performing different tasks.
- The interaction between these two sub-models is problematic.

"The $\underline{\operatorname{sol}}_{e_1}$ was the currency of $\underline{?}_{e_2}$ between 1863 and 1985."

"The \underline{sol}_{e_1} was the currency of $\underline{?}_{e_2}$ between 1863 and 1985."

 \boldsymbol{e}_{-i} missing entity, \boldsymbol{e}_i remaining entity, \boldsymbol{s} conveying sentence

$$\text{for } i=1,2: \qquad \overbrace{P(e_{-i} \mid s, e_i)}^{\text{fill-in-the-blank}}$$

"The sol $_{e_1}$ was the currency of ? $_{e_2}$ between 1863 and 1985."

 e_{-i} missing entity, e_i remaining entity, s conveying sentence, r conveyed relation

$$\text{for } i = 1, 2: \qquad \overbrace{P(e_{-i} \mid s, e_i)}^{\text{fill-in-the-blank}} \qquad \qquad \underbrace{P(e_{-i} \mid r, e_i)}^{\text{entity predictor}}$$

"The sol $_{e_1}$ was the currency of ? $_{e_2}$ between 1863 and 1985."

 e_{-i} missing entity, e_i remaining entity, s conveying sentence, r conveyed relation

$$\text{for } i = 1, 2: \qquad \overbrace{P(e_{-i} \mid s, e_i)}^{\text{fill-in-the-blank}} = \sum_{r \in \mathcal{R}} \overbrace{P(r \mid s)}^{\text{classifier}} \ \underbrace{P(e_{-i} \mid r, e_i)}^{\text{entity predictor}}$$

Assume $\mathcal{H}_{\text{BLANKABLE}}$: The relation can be predicted from the text surrounding the two entities alone.

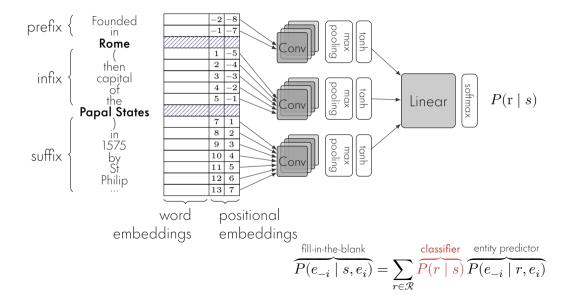
"The \underline{sol}_{e_1} was the currency of $\underline{?}_{e_2}$ between 1863 and 1985."

 e_{-i} missing entity, e_i remaining entity, s conveying sentence, r conveyed relation

$$\text{for } i = 1, 2: \qquad \overbrace{P(e_{-i} \mid s, e_i)}^{\text{fill-in-the-blank}} = \sum_{r \in \mathcal{R}} \overbrace{P(r \mid s)}^{\text{classifier}} \underbrace{P(e_{-i} \mid r, e_i)}^{\text{entity predictor}}$$

Assume $\mathcal{H}_{\text{BLANKABLE}}$: The relation can be predicted from the text surrounding the two entities alone.

- 1. Train a fill-in-the-blank model on an unsupervised dataset.
- 2. Throw away the entity predictor.
- 3. Use the classifier on new samples.



Hybrid (Marcheggiani and Titov 2016)

$$\psi(e_1,r,e_2) = \psi_{\mathrm{SP}}(e_1,r,e_2) + \psi_{\mathrm{RESCAL}}(e_1,r,e_2)$$

$$P(e_1 \mid r, e_2) = \frac{\exp \psi(e_1, r, e_2)}{\sum_{e' \in \mathcal{E}} \exp \psi(e', r, e_2)}$$

Selectional Preferences

$$\psi_{\mathrm{SP}}(e_1,r,e_2) = \boldsymbol{u}_{e_1}^{\mathrm{T}}\boldsymbol{a}_r + \boldsymbol{u}_{e_2}^{\mathrm{T}}\boldsymbol{b}_r$$

 $oldsymbol{U} \in \mathbb{R}^{\mathcal{E} imes d}$ entity embeddings

 $oldsymbol{A}, oldsymbol{B} \in \mathbb{R}^{\mathcal{R} imes d}$ relation embeddings

RESCAL

$$\psi_{\mathrm{RESCAL}}(e_1,r,e_2) = \boldsymbol{u}_{e_1}^{\mathsf{T}}\boldsymbol{C}_r\boldsymbol{u}_{e_2}$$

 $oldsymbol{U} \in \mathbb{R}^{\mathcal{E} imes d}$ entity embeddings $oldsymbol{C} \in \mathbb{R}^{\mathcal{R} imes d imes d}$ relation embeddings

$$\overbrace{P(e_{-i} \mid s, e_i)}^{\text{fill-in-the-blank}} = \sum_{r \in \mathcal{R}} \overbrace{P(r \mid s)}^{\text{classifier}} \underbrace{\frac{\text{entity predictor}}{P(e_{-i} \mid r, e_i)}}$$

$$\begin{split} \mathcal{L}_{\mathrm{EP}}(\pmb{\theta}, \pmb{\phi}) &= \underset{(\mathbf{s}, \mathbf{e}_1, \mathbf{e}_2) \sim \mathcal{U}(\mathcal{D})}{\mathbb{E}} \left[-\log \sigma \left(\psi(\mathbf{e}_1, \mathbf{r}, \mathbf{e}_2; \pmb{\theta}) \right) \right. \\ &\left. - \sum_{\mathbf{r} \sim \mathrm{PCNN}(\mathbf{s}; \pmb{\phi})}^{k} \left. - \sum_{j=1}^{k} \underset{\mathbf{e}' \sim \mathcal{U}_{\mathcal{D}}(\mathcal{E})}{\mathbb{E}} \left[\log \sigma \left(-\psi(\mathbf{e}_1, \mathbf{r}, \mathbf{e}'; \pmb{\theta}) \right) \right] \right. \\ &\left. - \sum_{i=1}^{k} \underset{\mathbf{e}' \sim \mathcal{U}_{\mathcal{D}}(\mathcal{E})}{\mathbb{E}} \left[\log \sigma \left(-\psi(\mathbf{e}', \mathbf{r}, \mathbf{e}_2; \pmb{\theta}) \right) \right] \right] \end{split}$$

$$\begin{split} \mathcal{L}_{\mathrm{EP}}(\pmb{\theta}, \pmb{\phi}) &= \underset{\mathbf{r} \sim \mathrm{PCNN}(\mathbf{s}; \pmb{\phi})}{\mathbb{E}} \begin{bmatrix} -\log \sigma \left(\psi(\mathbf{e}_1, \mathbf{r}, \mathbf{e}_2; \pmb{\theta}) \right) \\ &- \sum_{j=1}^k \underset{\mathbf{e}' \sim \mathcal{U}_{\mathcal{D}}(\mathcal{E})}{\mathbb{E}} \left[\log \sigma \left(-\psi(\mathbf{e}_1, \mathbf{r}, \mathbf{e}'; \pmb{\theta}) \right) \right] \\ &- \sum_{j=1}^k \underset{\mathbf{e}' \sim \mathcal{U}_{\mathcal{D}}(\mathcal{E})}{\mathbb{E}} \left[\log \sigma \left(-\psi(\mathbf{e}', \mathbf{r}, \mathbf{e}_2; \pmb{\theta}) \right) \right] \end{bmatrix} \end{split}$$

$$\mathcal{L}_{\mathrm{EP}}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \underbrace{\mathbb{E}_{\left(\mathbf{s}, \mathbf{e}_{1}, \mathbf{e}_{2}) \sim \mathcal{U}(\mathcal{D})}} \left[-\log \sigma \left(\psi(\mathbf{e}_{1}, \mathbf{r}, \mathbf{e}_{2}; \boldsymbol{\theta}) \right) - \sum_{j=1}^{k} \underbrace{\mathbb{E}_{\mathbf{e}' \sim \mathcal{U}_{\mathcal{D}}(\mathcal{E})}} \left[\log \sigma \left(-\psi(\mathbf{e}_{1}, \mathbf{r}, \mathbf{e}'; \boldsymbol{\theta}) \right) \right] - \sum_{j=1}^{k} \underbrace{\mathbb{E}_{\mathbf{e}' \sim \mathcal{U}_{\mathcal{D}}(\mathcal{E})}} \left[\log \sigma \left(-\psi(\mathbf{e}', \mathbf{r}, \mathbf{e}_{2}; \boldsymbol{\theta}) \right) \right] \right]$$

$$-1. \text{ Take a sample uniformly from the dataset.}$$

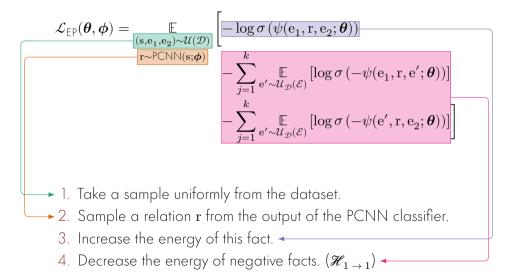
$$-2. \text{ Sample a relation } \mathbf{r} \text{ from the output of the PCNN classifier.}$$

$$\mathcal{L}_{\text{EP}}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \underset{[\mathbf{s}, \mathbf{e}_1, \mathbf{e}_2) \sim \mathcal{U}(\mathcal{D})}{\mathbb{E}} \begin{bmatrix} -\log \sigma \left(\psi(\mathbf{e}_1, \mathbf{r}, \mathbf{e}_2; \boldsymbol{\theta}) \right) \\ -\sum_{j=1}^k \underset{\mathbf{e}' \sim \mathcal{U}_{\mathcal{D}}(\mathcal{E})}{\mathbb{E}} \left[\log \sigma \left(-\psi(\mathbf{e}_1, \mathbf{r}, \mathbf{e}'; \boldsymbol{\theta}) \right) \right] \\ -\sum_{j=1}^k \underset{\mathbf{e}' \sim \mathcal{U}_{\mathcal{D}}(\mathcal{E})}{\mathbb{E}} \left[\log \sigma \left(-\psi(\mathbf{e}', \mathbf{r}, \mathbf{e}_2; \boldsymbol{\theta}) \right) \right] \end{bmatrix}$$

$$= 1. \text{ Take a sample uniformly from the dataset.}$$

$$= 2. \text{ Sample a relation } \mathbf{r} \text{ from the output of the PCNN classifier.}$$

$$= 3. \text{ Increase the energy of this fact.}$$



Degenerate distributions

$$\begin{array}{l} P(\mathbf{r} \mid s_1) = \\ P(\mathbf{r} \mid s_2) = \\ P(\mathbf{r} \mid s_3) = \\ P(\mathbf{r} \mid s_4) = \\ \vdots \end{array}$$

$$P(\mathbf{r} \mid s_1) =$$
 $P(\mathbf{r} \mid s_2) =$
 $P(\mathbf{r} \mid s_3) =$
 $P(\mathbf{r} \mid s_4) =$
 \vdots

Desired distribution

$$P(\mathbf{r} \mid s_1) = \\ P(\mathbf{r} \mid s_2) = \\ P(\mathbf{r} \mid s_3) = \\ P(\mathbf{r} \mid s_4) = \\ \vdots$$

VAE Model Reminder (Marcheggiani)

$$\widehat{P(e_{-i} \mid s, e_i)} = \sum_{r \in \mathcal{R}} \widehat{P(r \mid s)} \underbrace{P(e_{-i} \mid r, e_i)}^{\text{entity predictor}}$$

$$\mathcal{L}_{\text{VAE REG}}(\boldsymbol{\phi}) = \mathrm{D}_{\mathrm{KL}}(Q(\mathbf{r} \mid \mathbf{e}; \boldsymbol{\phi}) \parallel \mathcal{U}(\mathcal{R}))$$

Degenerate distributions

$$P(\mathbf{r} \mid s_1) = \\ P(\mathbf{r} \mid s_2) = \\ P(\mathbf{r} \mid s_3) = \\ P(\mathbf{r} \mid s_4) = \\$$

$$P(\mathbf{r} \mid s_1) =$$
 $P(\mathbf{r} \mid s_2) =$
 $P(\mathbf{r} \mid s_3) =$
 $P(\mathbf{r} \mid s_4) =$

Problem: Marcheggiani's model cannot handle deep encoder.

Desired distribution

$$P(\mathbf{r} \mid s_1) = \\ P(\mathbf{r} \mid s_2) = \\ P(\mathbf{r} \mid s_3) = \\ P(\mathbf{r} \mid s_4) = \\ \vdots$$

VAE Model Reminder (Marcheggiani)

$$\widehat{P(e_{-i} \mid s, e_i)} = \sum_{r \in \mathcal{R}} \widehat{P(r \mid s)} \underbrace{P(e_{-i} \mid r, e_i)}_{\text{entity predictor}}$$

$$\mathcal{L}_{\text{VAE REG}}(oldsymbol{\phi}) = \mathrm{D}_{\mathrm{KL}}(Q(\mathbf{r} \mid \mathbf{e}; oldsymbol{\phi}) \parallel \mathcal{U}(\mathcal{R}))$$

Skewness Loss 20

Degenerate distributions:

$$\begin{array}{l} P(\mathbf{r} \mid s_1) = \\ P(\mathbf{r} \mid s_2) = \\ P(\mathbf{r} \mid s_3) = \\ P(\mathbf{r} \mid s_4) = \\ \vdots \end{array}$$

Desired distributions:

$$P(\mathbf{r} \mid s_1) = P(\mathbf{r} \mid s_2) = P(\mathbf{r} \mid s_3) = P(\mathbf{r} \mid s_4) = \vdots$$

Ensure Confidence

$$\mathcal{L}_{\mathbb{S}}(\boldsymbol{\phi}) = \underset{(\mathbf{s}, \mathbf{e}) \sim \mathcal{U}(\mathcal{D})}{\mathbb{E}} [H(\mathbf{R} \mid \mathbf{s}, \mathbf{e}; \boldsymbol{\phi})]$$

The entropy of the relation distribution must be low for each sample.

Degenerate distributions:

$$P(\mathbf{r} \mid s_1) = \\ P(\mathbf{r} \mid s_2) = \\ P(\mathbf{r} \mid s_3) = \\ P(\mathbf{r} \mid s_4) = \\ \vdots \\ \text{expectation} =$$

Desired distributions:

$$P(\mathbf{r} \mid s_1) = \\ P(\mathbf{r} \mid s_2) = \\ P(\mathbf{r} \mid s_3) = \\ P(\mathbf{r} \mid s_4) = \\ \vdots$$
expectation =

Ensure Diversity

$$\mathcal{L}_{\mathbb{D}}(\boldsymbol{\phi}) = \mathrm{D}_{\mathbb{KL}}(P(\mathbf{R} \mid \boldsymbol{\phi}) \parallel \mathcal{U}(\mathcal{R}))$$

At the level of the dataset (or mini-batch) the distribution of relations must be uniform.

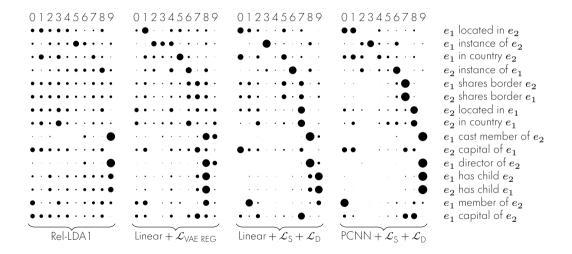
Mod	del		B^3		,	V-measu	ire	ARI
Classifier	Reg.	F_1	Prec.	Rec.	F_1	Hom.	Comp.	,
rel-LDA	$\mathcal{L}_{VAE\;REG}$	29.1	24.8	35.2	30.0	26.1	35.1	13.3
rel-LDA1		36.9	30.4	47.0	37.4	31.9	45.1	24.2
Linear		35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCNN	$ \begin{array}{c} \mathcal{L}_{\text{VAE REG}} \\ \mathcal{L}_{\text{S}} + \mathcal{L}_{\text{D}} \\ \mathcal{L}_{\text{S}} + \mathcal{L}_{\text{D}} \end{array} $	27.6	24.3	31.9	24.7	21.2	29.6	15.7
Linear		37.5	31.1	47.4	38.7	32.6	47.8	27.6
PCNN		39.4	32.2	50.7	38.3	32.2	47.2	33.8
BERTcoder	$\mathcal{L}_{\mathrm{S}} + \mathcal{L}_{\mathrm{D}}$	41.5	34.6	51.8	39.9	33.9	48.5	35.1
BERTcoder	SelfORE	49.1	47.3	51.1	46.6	45.7	47.6	40.3

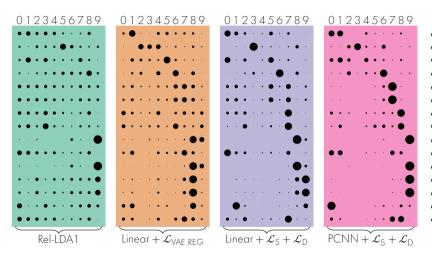
Mo	odel		B^3			V-measu	ıre	ARI
Classifier	Reg.	F_1	Prec.	Rec.	F_1	Hom.	Comp.	,
rel-LDA	$\mathcal{L}_{VAE\;REG}$	29.1	24.8	35.2	30.0	26.1	35.1	13.3
rel-LDA1		36.9	30.4	47.0	37.4	31.9	45.1	24.2
Linear		35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCNN	$egin{aligned} \mathcal{L}_{ ext{VAE REG}} \ \mathcal{L}_{ ext{S}} + \mathcal{L}_{ ext{D}} \ \mathcal{L}_{ ext{S}} + \mathcal{L}_{ ext{D}} \end{aligned}$	27.6	24.3	31.9	24.7	21.2	29.6	15.7
Linear		37.5	31.1	47.4	38.7	32.6	47.8	27.6
PCNN		39.4	32.2	50.7	38.3	32.2	47.2	33.8
BERTcoder	5	41.5	34.6	51.8	39.9	33.9	48.5	35.1
BERTcoder		49.1	47.3	51.1	46.6	45.7	47.6	40.3

Mod	del		B^3		,	V-measu	ire	ARI
Classifier	Reg.	F_1	Prec.	Rec.	F_1	Hom.	Comp.	,
rel-LDA	$\mathcal{L}_{VAE\;REG}$	29.1	24.8	35.2	30.0	26.1	35.1	13.3
rel-LDA1		36.9	30.4	47.0	37.4	31.9	45.1	24.2
Linear		35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCNN	$\mathcal{L}_{ ext{VAE REG}}$ $\mathcal{L}_{ ext{S}} + \mathcal{L}_{ ext{D}}$ $\mathcal{L}_{ ext{S}} + \mathcal{L}_{ ext{D}}$	27.6	24.3	31.9	24.7	21.2	29.6	15.7
Linear		37.5	31.1	47.4	38.7	32.6	47.8	27.6
PCNN		39.4	32.2	50.7	38.3	32.2	47.2	33.8
BERTcoder	$\mathcal{L}_{\mathrm{S}} + \mathcal{L}_{\mathrm{D}}$	41.5	34.6	51.8	39.9	33.9	48.5	35.1
BERTcoder	SelfORE	49.1	47.3	51.1	46.6	45.7	47.6	40.3

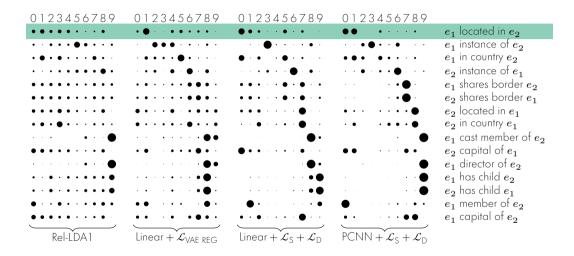
Mod	del		B^3		,	V-meası	ıre	ARI
Classifier	Reg.	$\overline{F_1}$	Prec.	Rec.	$\overline{F_1}$	Hom.	Comp.	7 (1)
rel-LDA	$\mathcal{L}_{VAE\;REG}$	29.1	24.8	35.2	30.0	26.1	35.1	13.3
rel-LDA1		36.9	30.4	47.0	37.4	31.9	45.1	24.2
Linear		35.2	23.8	67.1	27.0	18.6	49.6	18.7
PCNN	$\mathcal{L}_{ ext{VAE REG}}$ $\mathcal{L}_{ ext{S}} + \mathcal{L}_{ ext{D}}$ $\mathcal{L}_{ ext{S}} + \mathcal{L}_{ ext{D}}$	27.6	24.3	31.9	24.7	21.2	29.6	15.7
Linear		37.5	31.1	47.4	38.7	32.6	47.8	27.6
PCNN		39.4	32.2	50.7	38.3	32.2	47.2	33.8
BERTcoder	$\mathcal{L}_{\mathrm{S}} + \mathcal{L}_{\mathrm{D}}$	41.5	34.6	51.8	39.9	33.9	48.5	35.1
BERTcoder	SelfORE	49.1	47.3	51.1	46.6	45.7	47.6	40.3

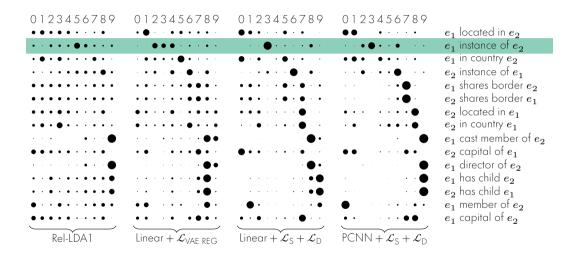
Hu et al. "SelfORE: Self-supervised Relational Feature Learning for Open Relation Extraction" EMNIP 2020

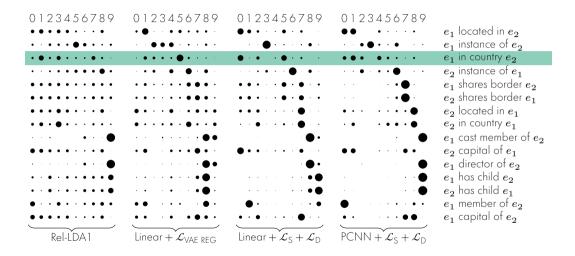


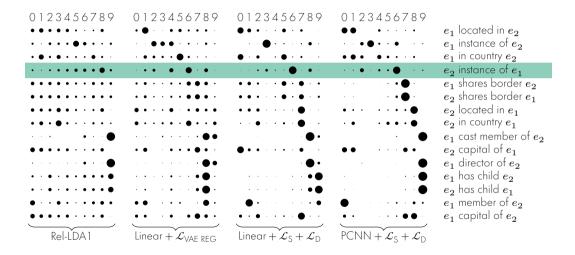


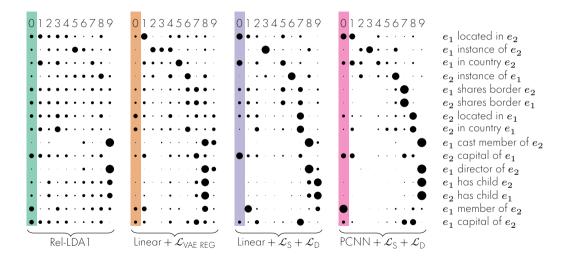
 e_1 located in e_2 e_1 instance of e_2 e_1 in country e_2 e_2 instance of e_1 e_1 shares border e_2 e_2 shares border e_1 e_2 located in e_1 e_2 in country e_1 e_1 cast member of e_2 e_2 capital of e_1 e1 director of e2 e_1 has child e_2 e_2 has child e_1 e_1 member of e_2 e_1 capital of e_2

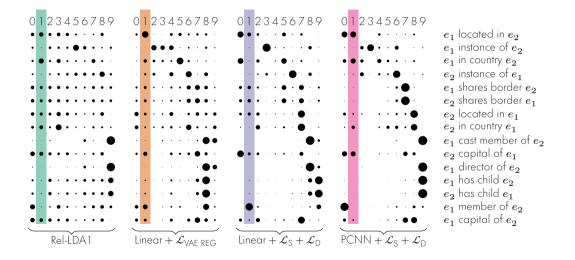


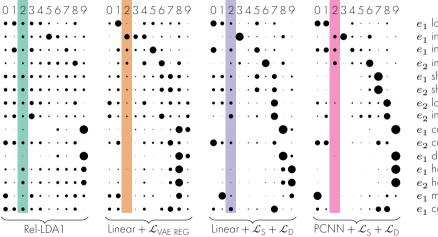




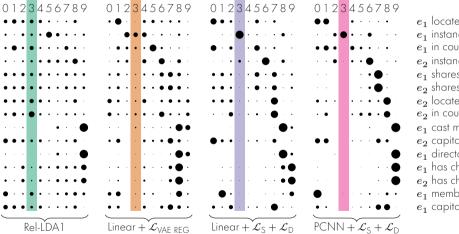




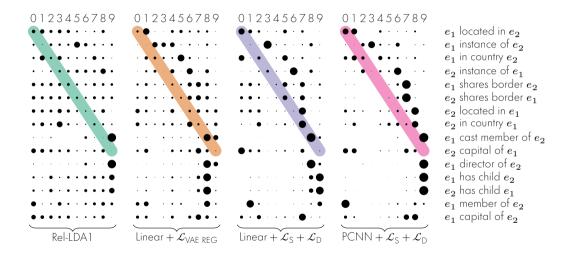


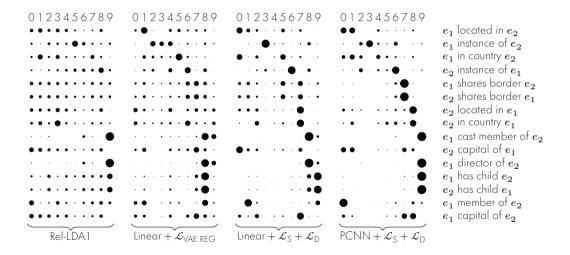


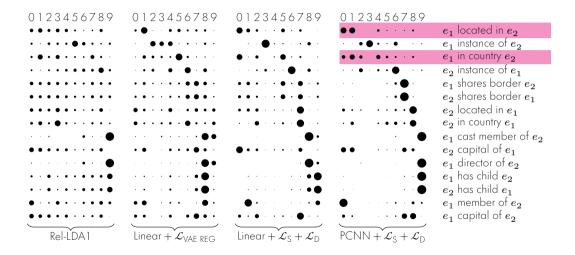
 e_1 located in e_2 e_1 instance of e_2 e_1 in country e_2 e_2 instance of e_1 e_1 shares border e_2 e_2 shares border e_1 e_2 located in e_1 e_2 in country e_1 e_1 cast member of e_2 e_2 capital of e_1 e1 director of e2 e_1 has child e_2 e_2 has child e_1 e_1 member of e_2 e_1 capital of e_2

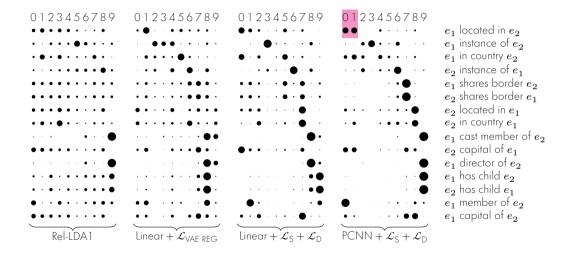


 e_1 located in e_2 e_1 instance of e_2 e_1 in country e_2 e_2 instance of e_1 e_1 shares border e_2 e_2 shares border e_1 e_2 located in e_1 e_2 in country e_1 e_1 cast member of e_2 e_2 capital of e_1 e1 director of e2 e_1 has child e_2 e_2 has child e_1 e_1 member of e_2 e_1 capital of e_2









Conclusion 24

Take-home Message

Selecting good regularizations to enforce modeling hypotheses enables us to train a deep classifier.

Contributions

- Train a PCNN without supervision
- Designed two regularization losses (Skewness, Distribution distance)
- Introduced new datasets (T-RExes)
- Evaluated using additional metrics (V-measure, ARI)

Graph-based Aggregate Extraction							

 $\underbrace{\frac{\text{Megrez}_{e_1}^{\text{Q850779}}}_{\text{polar constellation of}}}_{\text{sa star in the northern circum-polar constellation of}}_{\text{Ursa Major}_{e_2}^{\text{Q10460}}} \right\} x_1$

 $\frac{\text{Posidonius}_{e_1}^{\mathbf{Q185770}} \text{ was a Greek philosopher,}}{\text{astronomer, historian, mathematician, and}} x_2 \\ \text{teacher native to } \underline{\text{Apamea, Syria}_{e_2}^{\mathbf{Q617550}}}.$

 $\frac{\text{Hipparchus}_{e_1}^{\mathbf{Q159905}} \text{ was born in } \underline{\text{Nicaea,}}_{e_2}}{\text{Bithynia}_{e_2}^{\mathbf{Q739037}}, \text{ and probably died on the island of Rhodes, Greece.}} x_3$

Learn a similarity function $sim: \mathcal{D} \times \mathcal{D} \to \mathbb{R}$

$$\begin{aligned} & \sin(\pmb{x}_1, x_2) < \sin(x_2, x_3) \\ & \sin(\pmb{x}_1, x_3) < \sin(x_2, x_3) \end{aligned}$$

5 way 1 shot: given 1 query and 5 candidates, which of the candidates is most similar to the query? Evaluated using accuracy.

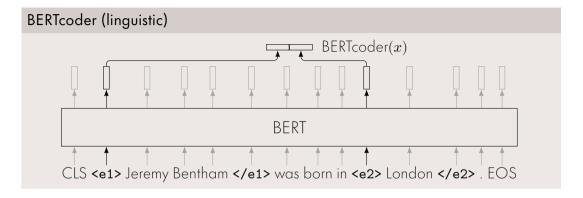
Sentential approaches: extract sentences' relation independently $(\mathcal{S} \times \mathcal{E}^2 \to \mathcal{R})$ Aggregate approaches: maps a set of sentences to a set of facts $(2^{\mathcal{S} \times \mathcal{E}^2} \to 2^{\mathcal{E}^2 \times \mathcal{R}})$

Goal

Exploit dataset-level regularities to leverage additional information

Plan

- 1. Model datasets as graphs
- 2. Related relation extraction work only uses linguistic similarities
- 3. Proof that topological information can be used
- 4. How topological features are usually extracted (GCN)
- 5. How to extract them differently (WL isomorphism test)
- 6. Experimental results
- 7. Perspective



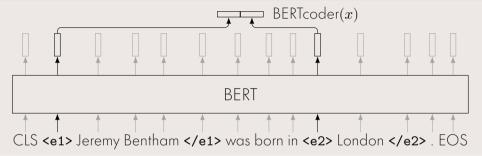
BERTcoder (linguistic)



Prediction

Compare samples using: sim(x, x') = sigmoid(BERTcoder $(x)^T$ BERTcoder(x'))

BERTcoder (linguistic)



Prediction

Compare samples using: sim(x, x') = sigmoid(BERTcoder(x') BERTcoder(x'))

Hypotheses

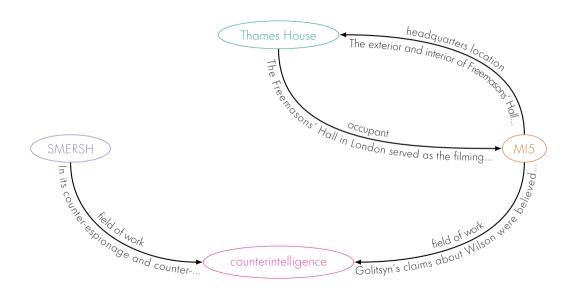
$$e_{3} \underbrace{r_{3}}_{r_{2}} e_{1} \underbrace{r_{1}}_{r_{2}} e_{2} \quad \begin{aligned} &\text{MTB assumes:} \\ &r_{1} = r_{2} \left(\mathcal{H}_{\text{I-ADJACENCY}} \right) \\ &r_{3} \neq r_{1} \land r_{3} \neq r_{2} \left(\mathcal{H}_{1 \rightarrow 1} \right) \end{aligned}$$

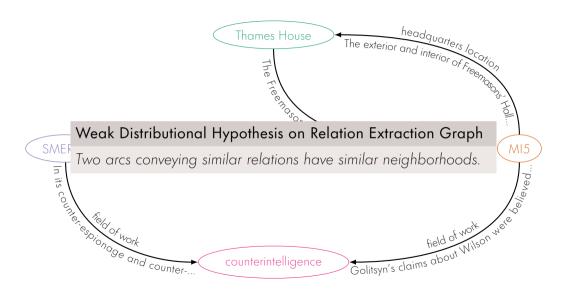
The exterior and interior of Freemasons' Hall continued to be a stand-in for $\underline{\text{Thames}}$ $\underline{\text{House}_{e_2}}$, the headquarters of $\underline{\text{MIS}_{e_1}}$.

Golitsyn's claims about Wilson were believed in particular by the senior $\underline{\text{MI5}_{e_1}}$ counterintelligence_{e2} officer Peter Wright.

In its $\underline{\text{counter-espionage}_{e_2}}$ and counter-intelligence roles, $\underline{\text{SMERSH}}_{e_1}$ appears to have been extremely successful throughout World War II.

The Freemasons' Hall in London served as the filming location for $\underline{\text{Thames House}}_{e_1}$, the headquarters for $\underline{\text{Ml5}}_{e_2}$.





Proposition

Given the path $e_1 \xrightarrow{r_1} e_2 \xrightarrow{r_2} e_3 \xrightarrow{r_3} e_4$, we expect $r_1 \not\perp r_2 \not\perp r_3$.

Goal

Compute the mutual information $I(\boldsymbol{r}_2;\boldsymbol{r}_1,\boldsymbol{r}_3)$

Proposition

Given the path
$$e_1 \xrightarrow{r_1} e_2 \xrightarrow{r_2} e_3 \xrightarrow{r_3} e_4$$
, we expect $r_1 \not\perp r_2 \not\perp r_3$.

Goal

Compute the mutual information $I(r_2;r_1,r_3)$

Path Counting Algorithm

We can (slowly) sample walks using power of the adjacency matrix.

- 1. Sample a walk by chaining neighbors
- 2. Reject non-path
- 3. Count the accepted paths weighted by importance

Path Frequency

Frequency	Relation Surface forms	Relation Identifiers			
31.696‰	country • diplomatic relation • citizen of	P17 • P530 • P27			

Example of path:

Path Frequency

Frequency	Relation Surface forms	Relation Identifiers
31.696‰	country • diplomatic relation • citizen of	P17 • P530 • P27

Example of path:

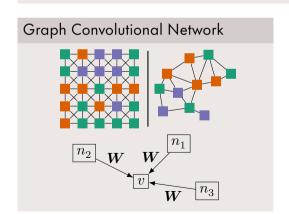
Vat Phou → Laos → Japan → Japan → Natsume Sōseki

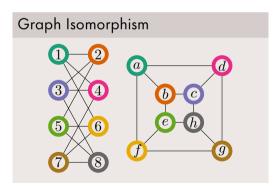
Summary Statistics

Modeling Hypothesis

 $\mathcal{H}_{1-\text{NEIGHBORHOOD}}$: Two samples with the same neighborhood in the relation extraction graph convey the same relation.

$$\forall a, a' \in \mathcal{A}: \mathcal{N}(a) = \mathcal{N}(a') \implies \rho(a) = \rho(a')$$





Earth Mover Distance

Compare Topological Features

Skip recoloring, directly compare neighborhoods in \mathbb{R}^d :

$$\begin{split} S(x,k) &= \text{samples at distance } k \text{ of } x \\ \mathfrak{S}(x,k) &= \\ \big\{ \text{BERTcoder}(y) \in \mathbb{R}^d \mid y \in S(x,k) \big\} \\ \hline \big[W_1(\mathfrak{S}(x,1),\mathfrak{S}(x',1)) \big] \end{split}$$

```
algorithm WEISFEILER-LEMAN
      Inputs: G = (V, E) graph
                   k dimensionality
      Output: \chi_{\infty} coloring of k-tuples
      \chi_0(\boldsymbol{x}) \leftarrow \mathrm{iso}(\boldsymbol{x}) \quad \forall \boldsymbol{x} \in V^k
     for \ell = 1, 2, ... do
            \mathfrak{I}_{\ell} \leftarrow \text{new color index}
            for all x \in V^k do
                  c_{\ell}(\boldsymbol{x}) \leftarrow
                     \{ \chi_{\ell-1}(y) \mid y \in N^k(x) \}
                 \chi_\ell(m{x}) 
otin (\chi_{\ell-1}(m{x}), c_\ell(m{x})) 	ext{ in } \mathfrak{I}_\ell
     until \chi_{\ell} = \chi_{\ell-1}
      output \chi_{\ell}
```

Redefining similarity

We keep the linguistic similarity from MTB:

$$\operatorname{sim}_{\operatorname{ling}}(x, x') = \operatorname{sigmoid}\left(\operatorname{BERTcoder}(x)^{\mathsf{T}}\operatorname{BERTcoder}(x')\right)$$

But also define a topological similarity:

Either using GCN:

$$\operatorname{sim}_{\mathsf{lopo}}^{\mathsf{GCN}}(x,x') = \operatorname{sigmoid}\left(\operatorname{GCN}(G)_x^\mathsf{T}\operatorname{GCN}(G)_{x'}\right)$$

Or 1-Wasserstein:

$$\mathrm{sim}_{\mathrm{topo}}^{W_1}(x,x') = -W_1(\mathfrak{S}(x,1),\mathfrak{S}(x',1))$$

Define the topolinguistic similarity as:

$$sim_{topoling}(x, x') = sim_{ling}(x, x') + \lambda sim_{topo}(x, x')$$

Model	Accuracy			
Pre-trained				
Linguistic (BERT) Topological (W_1) Topolinguistic	69.46 65.75 72.18			
Fine-tuned				
MTB MTB GCN-Chebyshev	78.83 76.10			

Model	Accuracy				
Pre-trained					
Linguistic (BERT)	69.46				
Topological (W_1)	65.75				
Topolinguistic	72.18				
Fine-tuned					
MTB MTB GCN-Chebyshev	78.83 76.10				

Few-Shot Evaluation
1 query 5 candidates Which candidate conveys the same relation as the query?
Random model score 20% accuracy.

Soares et al. "Matching the Blanks: Distributional Similarity for Relation Learning" ACL 2019

Model	Accuracy				
Pre-trained					
Linguistic (BERT)	69.46				
Topological (W_1)	65.75				
Topolinguistic	72.18				
Fine-tuned					
MTB	78.83				
MTB GCN-Chebyshev	76.10				

Model	Accuracy			
Pre-trained				
Linguistic (BERT) Topological (W_1) Topolinguistic	69.46 65.75 72.18			
Fine-tuned				
MTB MTB GCN-Chebyshev	78.83 76.10			

Model	Accuracy				
Pre-trained					
Linguistic (BERT)	69.46				
Topological $\left(W_{1} ight)$	65.75				
Topolinguistic	72.18				
Fine-tuned					
MTB	78.83				
MTB GCN-Chebyshev	76.10				

Few-Shot Evaluation
1 query 5 candidates Which candidate conveys the same relation as the query? Random model score 20% accuracy.

Soares et al. "Matching the Blanks: Distributional Similarity for Relation Learning" ACL 2019

Model	Accuracy			
Pre-trained				
Linguistic (BERT) Topological (W_1) Topolinguistic	69.46 65.75 72.18			
Fine-tuned				
MTB GCN-Chebyshev	78.83 76.10			

Conclusion 36

Take-home Message

Topological information can be leverage for unsupervised relation extraction.

Contributions

- Explicitly modeled the aggregate setup for the unsupervised problem.
- Provided proof on the quality of topological information.
- Proposed an approach to exploit the mutual information between topological and linguistic features.

Several directions still need to be explored.

$$\begin{split} \mathcal{L}_{\text{LT}}(x_1, x_2, x_3) &= \max \begin{pmatrix} 0, \, \zeta + 2 \, \big(\, \text{sim}_{\text{ling}}(x_1, x_2) - \text{sim}_{\text{topo}}(x_1, x_2) \big)^2 \\ &- \big(\, \text{sim}_{\text{ling}}(x_1, x_2) - \text{sim}_{\text{topo}}(x_1, x_3) \big)^2 \\ &- \big(\, \text{sim}_{\text{ling}}(x_1, x_3) - \text{sim}_{\text{topo}}(x_1, x_2) \big)^2 \end{pmatrix} \end{split}$$

$$\mathcal{L}_{\text{LT}}(x_1, x_2, x_3) = \max \begin{pmatrix} 0, \, \zeta + 2 \boxed{ \left(\, \mathrm{sim}_{\text{ling}}(x_1, x_2) - \mathrm{sim}_{\text{topo}}(x_1, x_2) \right)^2} \\ & - \left(\, \mathrm{sim}_{\text{ling}}(x_1, x_2) - \mathrm{sim}_{\text{topo}}(x_1, x_3) \right)^2 \\ & - \left(\, \mathrm{sim}_{\text{ling}}(x_1, x_3) - \mathrm{sim}_{\text{topo}}(x_1, x_2) \right)^2 \end{pmatrix}$$

Idealy we want to align the two similarities. ◄

$$\mathcal{L}_{\text{LT}}(x_1, x_2, x_3) = \max \begin{pmatrix} 0, \zeta + 2 \boxed{\left(\operatorname{sim}_{\text{ling}}(x_1, x_2) - \operatorname{sim}_{\text{topo}}(x_1, x_2) \right)^2} \\ - \boxed{\left(\operatorname{sim}_{\text{ling}}(x_1, x_2) - \operatorname{sim}_{\text{topo}}(x_1, x_3) \right)^2} \\ - \boxed{\left(\operatorname{sim}_{\text{ling}}(x_1, x_3) - \operatorname{sim}_{\text{topo}}(x_1, x_2) \right)^2} \end{pmatrix}$$

- Idealy we want to align the two similarities. •
- However to stabilize the loss we need to use negative samples.

$$\mathcal{L}_{\mathsf{LT}}(x_1, x_2, x_3) = \max \begin{pmatrix} 0, \boxed{\zeta} + 2 \left(\operatorname{sim}_{\mathsf{ling}}(x_1, x_2) - \operatorname{sim}_{\mathsf{topo}}(x_1, x_2) \right)^2 \\ - \left(\operatorname{sim}_{\mathsf{ling}}(x_1, x_2) - \operatorname{sim}_{\mathsf{topo}}(x_1, x_3) \right)^2 \\ - \left(\operatorname{sim}_{\mathsf{ling}}(x_1, x_3) - \operatorname{sim}_{\mathsf{topo}}(x_1, x_2) \right)^2 \end{pmatrix}$$

- Idealy we want to align the two similarities. •
- However to stabilize the loss we need to use negative samples.
- Up to a margin ζ . •

Questions?



$\mathcal{H}_{\mathsf{DISTANT}}$

A sentence conveys all the possible relations between all the entities it contains.

$$\mathcal{D}_{\mathcal{R}} = \mathcal{D} \bowtie \mathcal{D}_{\mathrm{KB}}$$

where M denotes the natural join operator:

$$\mathcal{D} \bowtie \mathcal{D}_{\mathsf{KB}} = \left\{\, (s, e_1, e_2, r) \mid (s, e_1, e_2) \in \mathcal{D} \land (e_1, e_2, r) \in \mathcal{D}_{\mathsf{KB}} \,\right\}.$$

- 1. the bag of words of the infix;
- 2. the surface form of the entities;
- 3. the lemma words on the dependency path;
- 4. the POS of the infix words;
- 5. the type of the entity pair (e.g. person-location);
- 6. the type of the head entity (e.g. person);
- 7. the type of the tail entity (e.g. location);
- 8. the words on the dependency path between the two entities.

$$\begin{split} \mathbf{B}^3 \operatorname{precision}(g,c) &= \underset{\mathbf{X},\mathbf{Y} \sim \mathcal{U}(\mathcal{D}_{\mathcal{R}})}{\mathbb{E}} P(g(\mathbf{X}) = g(\mathbf{Y}) \mid c(\mathbf{X}) = c(\mathbf{Y})) \\ \mathbf{B}^3 \operatorname{recall}(g,c) &= \underset{\mathbf{X},\mathbf{Y} \sim \mathcal{U}(\mathcal{D}_{\mathcal{R}})}{\mathbb{E}} P(c(\mathbf{X}) = c(\mathbf{Y}) \mid g(\mathbf{X}) = g(\mathbf{Y})) \\ \mathbf{B}^3 F_1(g,c) &= \frac{2}{\mathbf{B}^3 \operatorname{precision}(g,c)^{-1} + \mathbf{B}^3 \operatorname{recall}(g,c)^{-1}} \end{split}$$

$$\begin{aligned} &\text{homogeneity}(g,c) = 1 - \frac{\mathbf{H}\left(c(\mathbf{X}) \mid g(\mathbf{X})\right)}{\mathbf{H}\left(c(\mathbf{X})\right)} \\ &\text{completeness}(g,c) = 1 - \frac{\mathbf{H}\left(g(\mathbf{X}) \mid c(\mathbf{X})\right)}{\mathbf{H}\left(g(\mathbf{X})\right)} \\ &\mathbf{V}\text{-measure}(g,c) = \frac{2}{\text{homogeneity}(g,c)^{-1} + \text{completeness}(g,c)^{-1}} \end{aligned}$$

$$\begin{split} \mathrm{RI}(g,c) &= \underset{\mathbf{X},\mathbf{Y}}{\mathbb{E}} \left[P(c(\mathbf{X}) = c(\mathbf{Y}) \Leftrightarrow g(\mathbf{X}) = g(\mathbf{Y})) \right] \\ \mathrm{ARI}(g,c) &= \frac{\mathrm{RI}(g,c) - \underset{c \sim \mathcal{U}(\mathcal{R}^{\mathcal{D}})}{\mathbb{E}} \left[\mathrm{RI}(g,c) \right]}{\underset{c \in \mathcal{R}^{\mathcal{D}}}{\max} \, \mathrm{RI}(g,c) - \underset{c \sim \mathcal{U}(\mathcal{R}^{\mathcal{D}})}{\mathbb{E}} \left[\mathrm{RI}(g,c) \right]} \end{split}$$

$$\pi_r = \frac{\left(\exp(y_r) + \mathbf{G}_r\right) \, / \, \tau}{\sum_{r' \in \mathcal{R}} (\exp(y_{r'}) + \mathbf{G}_{r'}) \, / \, \tau}$$

Confidence	B^3			V-measure			ARI
gormanico.	$\overline{F_1}$	Prec.	Rec.	$\overline{F_1}$	Hom.	Comp.	,
\mathcal{L}_{S} regularization Gumbel–Softmax	39.4 35.0	32.2 29.9	50.7 42.2	38.3 33.2	32.2 28.3	47.2 40.2	

$$P(\mathbf{r} = r \mid s, \mathbf{e}; \boldsymbol{\theta}, \boldsymbol{\phi}) = P(\mathbf{r}_s = r \mid s; \boldsymbol{\phi}) P(\mathbf{r}_e = r \mid \mathbf{e}; \boldsymbol{\theta})$$

$$\mathcal{L}_{\mathrm{ALIGN}}(\boldsymbol{\theta}, \boldsymbol{\phi}) = -\log \sum_{r \in \mathcal{R}} P(r \mid s, \boldsymbol{e}; \boldsymbol{\theta}, \boldsymbol{\phi}) + \mathcal{L}_{\mathrm{D}}(\boldsymbol{\theta}) + \mathcal{L}_{\mathrm{D}}(\boldsymbol{\phi}).$$

Model	B^3			V-measure			ARI
	$\overline{F_1}$	Prec.	Rec.	$\overline{F_1}$	Hom.	Comp.	7 (1(1
$\mathcal{L}_{EP} + \mathcal{L}_{S} + \mathcal{L}_{D}$	39.4	32.2	50.7	38.3	32.2	47.2	33.8
\mathcal{L}_{ALIGN} average	37.6	30.3	49.7	39.4	33.1	48.8	20.3
\mathcal{L}_{ALIGN} maximum	41.2	33.6	53.4	43.5	36.9	53.1	29.5
\mathcal{L}_{ALIGN} minimum	34.5	26.5	49.3	35.9	29.6	45.7	15.3

Spectral (convolution is multiplication in Fourier space)

	Graph	Euclidean
Laplacian	$oldsymbol{L} = oldsymbol{D} - oldsymbol{M}$	$ abla^2$
→ Eigenfunctions	$oldsymbol{U}$ s.t. $oldsymbol{L} = oldsymbol{U}oldsymbol{\Lambda}oldsymbol{U}^{-1}$	
Fourier transform	$\boldsymbol{U}^{T}\boldsymbol{f}$	$\mathcal{F}(f) = \int_{-\infty}^{\infty} f(x)e^{2\pi i \xi x} dx$ $\mathcal{F}^{-1}(\mathcal{F}(w)\mathcal{F}(f))$
Convolution	$m{U}(m{U}^{T}m{w}m{U}^{T}m{f})$	$\mathscr{F}^{\text{-}1}(\mathscr{F}(w)\widetilde{\mathscr{F}}(f))$

Spatial

$$\operatorname{GCN}(\boldsymbol{X}; \boldsymbol{W})_v = \operatorname{ReLU}\left(\frac{1}{|N(v)|} \sum_{n_i \in N(v)} \boldsymbol{W} \boldsymbol{X}_{n_i}\right)$$

