Multilingual Language Models for Fine-tuning and Feature Extraction in Word-in-Context Disambiguation

Huiling You

Table of Contents

- 1. Introduction
- 2. Related Work
- 3. Multilingual Language Models
- 4. System Description
- 5. Experiment Setup
- 6. Results and Analysis
- 7. Conclusion

1 Introduction

Multilingual and Crosslingual Word-in-Context Disambiguation (MCL-WiC)

SemEval-2021 Task 2

- Extension from WiC shared task at the IJCAI-19 SemDeep workshop (SemDeep-5)
- MCL-WiC Task
 - Given a sentence pair, each containing a polysemous target word
 - Determine the two target words are used in same meaning, or different meanings
 - Datasets -> multilingual and cross-lingual sentence pairs, 5 languages

Multilingual and Crosslingual Word-in-Context Disambiguation (MCL-WiC)

- In the multilingual setting, the two sentences are from the same language.
- In the cross-lingual setting, the two sentences are from different languages, English and one of the other four languages.
- Training data is only available for English--English, effectively leading to a zero-shot setting for the other languages.

Example	Label
The cat chases after the <i>mouse</i> .	F
Click the right mouse button.	Г
The cat chases after the <i>mouse</i> .	
La souris mange le fromage.	T
(The mouse is eating the cheese)	

Table 1: Examples for monolingual (top) and crosslingual (bottom) word-in-context disambiguation.

Main Research Interest

Investigate the usefulness of pre-trained multilingual language models (LMs) in this MCL-WiC task, without resorting to sense inventories, dictionaries, or other resources

- Fine-tune the language models with a span classification head
- Using the multilingual language models as feature extractors, extracting contextual embeddings for the target word, and also adding syntactic information from a dependency parser.

We compare three different LMs: XLM-RoBERTa (XLMR), multilingual BERT (mBERT) and multilingual dis-tilled BERT (mDistilBERT).

2 Related Work

Related Work

WiC at SemDeep-5

- LMMS: BERT + WordNet 3.0
- ElMo + Classifier
- SuperGLUE benchmark: fine-tune

SensEmBERT - knowledge-based approach

3 Multilingual Language Models

Multilingual Language Models

XLMR

- XLMR (XLM-RoBERTa) is a scaled cross-lingual sentence encoder
- trained on 2.5T of data obtained from Common Crawl that covers more than 100 languages

mBERT

- pre-trained on the largest Wikipedias
- It is a multilingual extension of BERT that provides word and sentence representations for 104 languages

mDistilBERT

- a light Transformer trained by distilling mBERT
- reduces the number of parameters in mBERT by 40%

4 System Description

Fine-Tuning

- A span classification head is stacked on top of pre-trained language models, and attends only to the target words.
- The span classification head consists of a span attention extractor and a classifier.
- representation of the last-layer hidden states of either mBERT, mDistilBERT or XLMR.

Target Words Embeddings + Logistic Regression / MLP

- The multilingual language models serve as pure feature extractors, to get target word embeddings from last-layer hidden states.
- We feed the two sentences separately to the models, and concatenate the embeddings for the two target words as input to the classifier.
- We experimented with two classifiers, logistic regression (LR) and a multi-layer perceptron (MLP).

Dependency-based Syntax-Incorporated Embeddings

- First, each sentence is parsed using the spaCy dependency parser
- Next, the sentence is passed to mBERT/mDistilBERT, and the corresponding target word embedding, head word embedding, and dependent word embedding(s) are retrieved
- Finally, the concatenated embeddings of two constituent sentences are further concatenated to form the sample feature vector of the sentence-pair, and fed to an MLP

5 Experiment Setup

Experiment Setup

- Dataset: Only the datasets provided by SemEval-2021 Task 2 are used
- **Fine-tuning:** fine-tuned for three iterations, with batch size of 32, learning rate of 1e-5, and parameters optimized with AdamW
- LR: All LR models are trained for 150 iterations, with batch size of 32, learning rate of 0.0025 and parameters optimized with SGD
- MLP: 2-layer, trained for maximum 200 iterations, with learning rate of 0.001 and parameters optimized with Adam
- Language model: We use the base version of all multilingual language models, with 12 layers, 12 attention heads, and hidden dimension of 768.

	Train	Dev	Test
en-en	8000	500	1000
ar-ar		500	1000
fr-fr	_	500	1000
ru-ru	_	500	1000
zh-zh	_	500	1000
en-ar	-	-202	1000
en-fr	_		1000
en-ru	_	_	1000
en-zh	<u> </u>	100	1000

6 Results and Analysis

	System	en-en	zh-zh	fr-fr	ru-ru	ar-ar	en-zh	en-fr	en-ru	en-ar
	XLMR	84.5%	78.3%	76.7%	73.1%	75.1%	66.3%	70.9%	73.6%	65.2%
Fine-tune	mBERT	82.9%	76.2%	80.3%	73.6%	75.6%	62.2%	66.3%	63.1%	59.4%
	mDistilBERT	75.5%	68.0%	66.8%	64.8%	68.9%	51.8%	53.4%	51.9%	50.9%
	XLMR + LR	53.9%	55.4%	54.8%	57.2%	53.0%	58.2%	55.8%	55.4%	54.7%
	mBERT + LR	53.4%	53.5%	49.7%	51.7%	53.1%	52.0%	52.8%	52.8%	51.1%
Faatuus	mDistilBERT + LR	55.7%	50.5%	52.6%	52.5%	51.9%	54.0%	52.5%	52.0%	51.6%
Feature	mBERT + MLP	67.7%	51.4%	57.6%	54.2%	54.0%	47.4%	62.6%	55.6%	53.2%
Extractor	mDistilBERT + MLP	66.6%	59.1%	59.8%	61.8%	56.0%	48.2%	63.2%	57.4%	52.3%
	mBERT + Syntax + MLP	61.4%	52.7%	57.6%	57.0%	-	53.4%	57.8%	55.6%	_
	mDistilBERT + Syntax + MLP	67.0%	56.6%	58.2%	57.6%	_	54.0%	57.2%	56.2%	_

• We can see that the fine-tuning approach is preferable to the feature extraction approach. All feature extraction variants fall behind the fine-tuned systems by a large margin.

	System	en-en	zh-zh	fr-fr	ru-ru	ar-ar	en-zh	en-fr	en-ru	en-ar
	XLMR	84.5%	78.3%	76.7%	73.1%	75.1%	66.3%	70.9%	73.6%	65.2%
Fine-tune	mBERT	82.9%	76.2%	80.3%	73.6%	75.6%	62.2%	66.3%	63.1%	59.4%
	mDistilBERT	75.5%	68.0%	66.8%	64.8%	68.9%	51.8%	53.4%	51.9%	50.9%
	XLMR + LR	53.9%	55.4%	54.8%	57.2%	53.0%	58.2%	55.8%	55.4%	54.7%
	mBERT + LR	53.4%	53.5%	49.7%	51.7%	53.1%	52.0%	52.8%	52.8%	51.1%
Eastura	mDistilBERT + LR	55.7%	50.5%	52.6%	52.5%	51.9%	54.0%	52.5%	52.0%	51.6%
Feature	mBERT + MLP	67.7%	51.4%	57.6%	54.2%	54.0%	47.4%	62.6%	55.6%	53.2%
Extractor	mDistilBERT + MLP	66.6%	59.1%	59.8%	61.8%	56.0%	48.2%	63.2%	57.4%	52.3%
	mBERT + Syntax + MLP	61.4%	52.7%	57.6%	57.0%	-	53.4%	57.8%	55.6%	_
	mDistilBERT + Syntax + MLP	67.0%	56.6%	58.2%	57.6%	-	54.0%	57.2%	56.2%	_

 Among the fine-tuned systems, XLMR and mBERT give the best results, whereas mDistilBERT falls behind by quite a large margin in most cases, in several cases by more than 10 percentage points.

	System	en-en	zh-zh	fr-fr	ru-ru	ar-ar	en-zh	en-fr	en-ru	en-ar
	XLMR	84.5%	78.3%	76.7%	73.1%	75.1%	66.3%	70.9%	73.6%	65.2%
Fine-tune	mBERT	82.9%	76.2%	80.3%	73.6%	75.6%	62.2%	66.3%	63.1%	59.4%
	mDistilBERT	75.5%	68.0%	66.8%	64.8%	68.9%	51.8%	53.4%	51.9%	50.9%
	XLMR + LR	53.9%	55.4%	54.8%	57.2%	53.0%	58.2%	55.8%	55.4%	54.7%
	mBERT + LR	53.4%	53.5%	49.7%	51.7%	53.1%	52.0%	52.8%	52.8%	51.1%
Eastura	mDistilBERT + LR	55.7%	50.5%	52.6%	52.5%	51.9%	54.0%	52.5%	52.0%	51.6%
Feature Extractor	mBERT + MLP	67.7%	51.4%	57.6%	54.2%	54.0%	47.4%	62.6%	55.6%	53.2%
	mDistilBERT + MLP	66.6%	59.1%	59.8%	61.8%	56.0%	48.2%	63.2%	57.4%	52.3%
	mBERT + Syntax + MLP	61.4%	52.7%	57.6%	57.0%	-	53.4%	57.8%	55.6%	-
	mDistilBERT + Syntax + MLP	67.0%	56.6%	58.2%	57.6%	-	54.0%	57.2%	56.2%	0.00

- Among the systems with feature extraction, the relative performance of the three sets of contextual embeddings differ from the fine-tuning. Here, mDistilBERT are competitive to the other two embeddings.
- Using an MLP is preferable to LR, leading to large improvements in most cases.
- The addition of syntax leads to mixed results

	System	en-en	zh-zh	fr-fr	ru-ru	ar-ar	en-zh	en-fr	en-ru	en-ar
	XLMR	84.5%	78.3%	76.7%	73.1%	75.1%	66.3%	70.9%	73.6%	65.2%
Fine-tune	mBERT	82.9%	76.2%	80.3%	73.6%	75.6%	62.2%	66.3%	63.1%	59.4%
	mDistilBERT	75.5%	68.0%	66.8%	64.8%	68.9%	51.8%	53.4%	51.9%	50.9%
	XLMR + LR	53.9%	55.4%	54.8%	57.2%	53.0%	58.2%	55.8%	55.4%	54.7%
	mBERT + LR	53.4%	53.5%	49.7%	51.7%	53.1%	52.0%	52.8%	52.8%	51.1%
Cantuma	mDistilBERT + LR	55.7%	50.5%	52.6%	52.5%	51.9%	54.0%	52.5%	52.0%	51.6%
Feature	mBERT + MLP	67.7%	51.4%	57.6%	54.2%	54.0%	47.4%	62.6%	55.6%	53.2%
Extractor	mDistilBERT + MLP	66.6%	59.1%	59.8%	61.8%	56.0%	48.2%	63.2%	57.4%	52.3%
	mBERT + Syntax + MLP	61.4%	52.7%	57.6%	57.0%	-	53.4%	57.8%	55.6%	_
	mDistilBERT + Syntax + MLP	67.0%	56.6%	58.2%	57.6%	-	54.0%	57.2%	56.2%	a-8

 We also note that the performance is stronger for English--English than for the other languages in most settings. This is expected, since we only have English--English training data.

7 Conclusion

Conclusion

- Fine-tuning the language models is preferable to using them as feature extractors
- Add dependency-based syntax information in the MLP gave mixed results.
- XLMR performed better than mBERT in the cross-lingual setting, both with fine-tuning and feature extraction,
- mDistilBERT did not perform well with fine-tuning, but was competitive to the other models in the feature extraction setting.

Future work

- Hypothesis: XLMR has a better representation of words across languages than mBERT and mDistilBERT.
- Explore sub-word models of XLMR and mBERT
- Using representations from different layers of the pre-trained multilingual language models.

ANY QUESTIONS?