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First of all – what is retrieval augmentation?

• The language model gets help

during pretraining: we give it

the most relevant documents.

• Very different from standard

pretraining where the language

model is on its own.
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What is our goal?

• Our question: How does re-

trieval augmentation change

the behavior of a language

model?
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Three dimensions of the examined ‘behavior’

1. World knowledge – How many facts are stored in the weights?

2. Syntactic knowledge – More local & low-level linguistic understanding (DP)

3. Language understanding – More global & high-level understanding of language (SQuAD)

They can’t be clearly separated, but we are interested in their relative change, not in the

absolute values.

• For example, answering ‘What is the capital of Germany?’ requires understanding the English

syntax, knowledge of geography is not enough.
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Fully-controllable ‘ideal retrieval’ methodology

• Studying realistic retrieval models comes with many variables that need to be controlled

• What is the retriever? BM-25 or a dense model? Which dense model exactly?

• What is the database? Wikipedia, Common Crawl or a knowledge base?

• How do you deal with duplicates?

• How do you chunk the documents?

• How many documents are retrieved?

• How are the documents fed into the language model?

• Is the pipeline trained end-to-end or not?

• We need an ideal setting where we can fully control the retrieval accuracy and where we can

abstract away from the technical details.
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Fully-controllable ‘ideal retrieval’ methodology

• Solution: paraphrase!

• Example:

• Original: “The term Orphism was coined byApollinaire at the Salon de la Section d’Or in 1912, re-

ferring to the works of Robert Delaunay and František Kupka.”

• Paraphrase: “At a showcase organized by the Salon de la Section d’Or in 1912, French poet Guillaume

Apollinaire used the term ’Orphism’ to describe the style of art portrayed by two artists – Robert De-

launay and František Kupka.”

• A good paraphraser will preserve all facts while changing the surface appearance.

• it is a model of a perfect, 100% accurate, retriever!
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Fully-controllable ‘ideal retrieval’ methodology

• A good paraphraser will preserve all facts while changing the surface appearance.

• We use Mistral-7B-Instruct-v0.1, is it good?

1. Preservation of meaning – measured by the semantic similarity of the original and paraphrase

• The average cosine similarity is 0.88 according to all-mpnet-base-v2.

2. The lexical (and to some extend syntactic) similarity is evaluated by the BLEU score

• The average BLEU score is 0.13 for the raw pairs, and 0.07 for pairs with removed named enti-

ties and digits
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Evaluating a stand-alone language model
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Pretraining

• All models are trained from scratch on the top 10% most visited English Wikipedia pages.

• We do this so that our dataset is rich in world knowledge.

• We use Mistral-7B-Instruct-v0.1 to paraphrase the Wikipedia passages.

• We test only masked language models

• Easier to evaluate and work nicely at ‘small’ scale

• Three sizes – base (98M), small (28M), and x-small (9M)

• The base model is also pretrain with 25% and 50% noisy retrieval
• To simulate a more realistic scenario
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Evaluation – world knowledge: LAMA probes

• A probe to test the factual and commonsense knowledge in language models, introduced

in Petroni et al. (2019).

• The test uses cloze-style statements as an evaluation framework. E.g:

• A joke would make you want to ___

• The official language of Mauritius is ___

• Results are reported as the average precision at k for different values of k, together with the

Mean Reciprocal Rank. For a given fact, we count it as correctly predicted if the object is

ranked among the top k results, false otherwise.

• Three subsets:

• ConceptNet

• TREx

• SQuAD
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Evaluation – syntactic knowledge: linear probing

• Tests how much information about dependencies can be extracted from the hidden repre-

sentations with a simple linear transformation.

• A model with a better syntactic understanding should encode more of the syntactic information

in the latent vectors.

• And this information should be easily accessible (linearly separable) to be used in self-attention.

• Freeze a language model→ do dependency parsing without nonlinearities→ measure LAS
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Evaluation – syntactic knowledge: attention probing

• We mostly follow Raganato and Tiedemann (2018), and Ravishankar et al. (2021) in their eval-

uation setup of attention probing.

• The goal is to decode dependency trees directly from the attention weights.

• With the idea that a language model with better syntactic understanding should better utilize the

hierarchical syntactic structure in its attention mechanism.

• Take a matrix with attention probabilities→ make it symmetric→ find the maximum span-

ning tree→ measure UUAS
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Evaluation – syntactic knowledge: BLiMP

• Zero-shot linguistic acceptability judgments byWarstadt et al. (2020a).

• Consists of 67 tasks, each focuses on a specific linguistic feature, which is tested with 1 000

sentence pairs.

• Each pair of sentences differs minimally on the surface level, but only one of the sentences

is grammatically valid.

• We test if the LM assigns a higher (pseudo-)probability to the correct sentence

• a) The cats annoy Tim. (grammatical)

b) The cats annoys Tim. (ungrammatical)
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Evaluation – syntactic knowledge: MSGS

• A finetuning task that aims to ascertain whether a model biases surface or linguistic features

byWarstadt et al. (2020b)

• Finetuned on ambiguous data, containing both feature types or neither while evaluation is

done on unambiguous data with labels indicating the presence of the linguistic feature.

• Adapting the Mathews’ Correlation Coefficent scoring such that a score of -1 = Surface bias,

1 = Linguistic bias.

• Surface features include lexical content, relative token position, absolute token position, or-

thography, and length.

• Linguistic features include main verb form, syntactic category, control raising, and morphol-

ogy.

• a) The cat chased a mouse. Relative token position: positive

b) A cat chased the mouse. Relative token position: negative 14



Evaluation – language understanding: LAMBADA

• A zero-shot language modeling tasks that focuses on resolving long-range dependencies in

text (Paperno et al., 2016).

• While it has been traditionally used for evaluating autoregressive LMs, we adapt the task

for masked language models.

• Preston had been the last person to wear those chains, and I knew what I’d see and feel if they

were slipped onto my skin – the Reaper’s unending hatred of me. I’d felt enough of that emotion

already in the amphitheater. I didn’t want to feel anymore. ”Don’t put those on me,” I whispered.

”Please.” Sergei looked at me, surprised by my low, raspy please, but he put down the {answer}.

Gold answer: chains
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Evaluation – language understanding: GLUE

• A finetuning benchmark that evaluates multiple downstream tasks, put together by Wang

et al. (2019).

• The benchmark evaluates language acceptability, paraphrase recognition, natural language

inference, and sentiment analysis.

• 4 different metrics are used to evaluate the tasks (one per task): Mathews’ Correlation Co-

efficent, F1-score, Accuracy, and Pearsons’ / Spearman’s r-score.
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Evaluation – language understanding: SQuAD

• Lastly, we use the Stanford Question

Answering Dataset (SQuAD), a reading

comprehension task (Rajpurkar et al.,

2016).

• Models are given two inputs: a question,

and a longer passage. The task is to pre-

dict the span of the passage that answers

the question.

• 100000+ questions, created from

Wikipedia using crowd-sourcing.

Answer type Percentage

Common noun phrase 31.8%

Other entity 15.3%

Person 12.9%

Other numeric 10.9%

Date 8.9%

Verb phrase 5.5%

Location 4.4%

Adjective phrase 3.9%

Clause 3.7%

Other 2.7%

17



Results – high-level view
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Results – medium-level view

(MRR ↑) (MRR ↑) (MRR ↑) (LAS ↑) (UUAS ↑) (Acc. ↑) (LBS ↑) (Acc. ↑) (Avg. ↑) (F1 ↑)

reference model (110M)

bert-base-cased 26.0 34.0 62.0 82.0 45.1 85.6 -0.10 44.8 82.1 88.4

base (98M)

− retrieval 20.3 32.1 53.6 78.1 48.0 82.9 -0.47 46.0 82.2 91.2

+ retrieval (50% noise) 17.7 23.2 49.1 79.8 51.3 81.3 -0.37 43.2 82.0 90.7

+ retrieval (25% noise) 18.1 23.4 48.3 79.9 51.6 82.7 -0.38 40.6 81.9 90.2

+ retrieval (0% noise) 14.9 15.8 41.5 80.2 51.8 83.2 -0.37 37.5 81.2 89.7

small (28M)

− retrieval 17.2 28.3 47.4 71.1 49.7 78.6 -0.56 35.1 78.0 88.6

+ retrieval 11.8 15.3 36.3 71.2 50.4 78.8 -0.53 26.2 78.4 86.2

x-small (9M)

− retrieval 9.9 14.7 39.2 63.3 45.5 73.4 -0.55 25.3 75.2 81.1

+ retrieval 7.5 10.6 23.4 63.6 49.2 73.3 -0.57 19.3 76.0 78.7
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Discussion: Retrieval augmentation separates linguistic knowledge

from world knowledge

• There is clear trend between the world knowledge tasks and linguistic tasks:

• When a LM can rely more on retrieval, it remembers less facts and gets progressively worse on

all evaluated world knowledge tasks.

• On the other hand, its syntactic understanding gets consistently better.

• LM with retrieval does not allocate as many parameters to store world knowledge and in-

stead uses them for other features, such as syntax.

• Thus, retrieval-augmented pretraining leads to separation between the world knowledge

(in the retriever) and syntactic knowledge (in the language model).

• Retrieval-based pretraining can be a promising avenue for efficient language modeling.
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Discussion: Retrieval augmentation negatively impacts NLU performance

• Contrary to syntactic understanding, the language understanding gets worse with retrieval-

augmented pretraining.

• The fine-grained GLUE results show that this affects tasks that require global inter-sentence

comprehension tasks (NLI) more than the short-range local tasks (CoLA or SST-2).

• We argue that this is in part caused by the lacking factual knowledge but it is also indirectly

caused by the mechanism of retrieval-augmented pretraining.

• When looking for the global context, the language model is incentivized to trust the retrieved

document more than the partially masked input.

• This poses a challenge to utilizing retrieval-augmentation for pretraining general-purpose

language models.
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Discussion: Poor retrieval quality does not negatively impact pretraining

• Noisy retrieval pretraining does not lead to an overall drop in performance.

• Instead, it interpolates the behavior of standard pretraining and of pretraining with a per-

fect retrieval.

• Our results suggest that a subpar (but computationally inexpensive) retrieval should not neg-

atively impact training.
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