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Refactoring, as defined in the literature

Refactoring (noun): a change made to the internal structure of
software to make it easier to understand and cheaper to modify
without changing its observable behavior. [Fow99, p. 53]
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An alternative definition of refactoring

Definition
A refactoring is a transformation done to a program without altering its
external behavior.
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Primitive and composite refactorings

Definition
A primitive refactoring is a refactoring that cannot be expressed in terms of
other refactorings.

Definition
A composite refactoring is a refactoring that can be expressed in terms of two
or more other refactorings.
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Motivation
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Bad

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.y.foo();
5 x.y.bar();
6 }
7 }
8 class X {
9 Y y;

10 }
11 class Y {
12 void foo(){/*...*/ }
13 void bar(){/*...*/ }
14 }

Good

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.fooBar();
5 }
6 }
7 class X {
8 Y y;
9 void fooBar() {

10 y.foo();
11 y.bar();
12 }
13 }
14 class Y {
15 void foo(){/*...*/ }
16 void bar(){/*...*/ }
17 }
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I Get rid of long navigation paths.
I Move operations closer to the data they manipulate.
I Reduce coupling.
I Increase maintainability.
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The primitive refactorings
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The Extract Method refactoring
Extract a fragment of code into a new method.

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.y.foo();
5 x.y.bar();
6 }
7 }

1 class C {
2 A a; B b; X x;
3 void method() {
4 fooBar();
5 }
6 void fooBar() {
7 x.y.foo();
8 x.y.bar();
9 }

10 }
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The Move Method refactoring
Move a method from one class to another.

1 class C {
2 A a; B b; X x;
3 void method() {
4 fooBar();
5 }
6 void fooBar() {
7 x.y.foo();
8 x.y.bar();
9 }

10 }
11 class X {
12 Y y;
13 }

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.fooBar();
5 }
6 }
7 class X {
8 Y y;
9 void fooBar() {

10 y.foo();
11 y.bar();
12 }
13 }
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The Extract and Move Method refactoring
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Before

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.y.foo();
5 x.y.bar();
6 }
7 }
8 class X {
9 Y y;

10 }
11 class Y {
12 void foo(){/*...*/ }
13 void bar(){/*...*/ }
14 }

After

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.fooBar();
5 }
6 }
7 class X {
8 Y y;
9 void fooBar() {

10 y.foo();
11 y.bar();
12 }
13 }
14 class Y {
15 void foo(){/*...*/ }
16 void bar(){/*...*/ }
17 }

June 2, 2014 12



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Before

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.y.foo();
5 x.y.bar();
6 }
7 }
8 class X {
9 Y y;

10 }
11 class Y {
12 void foo(){/*...*/ }
13 void bar(){/*...*/ }
14 }

After

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.fooBar();
5 }
6 }
7 class X {
8 Y y;
9 void fooBar() {

10 y.foo();
11 y.bar();
12 }
13 }
14 class Y {
15 void foo(){/*...*/ }
16 void bar(){/*...*/ }
17 }June 2, 2014 12



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

I Composed of Extract Method and Move Method.
I Conceptually, one “atomic” operation.
I Implemented as an Eclipse plugin.

• The primitive refactorings are supplied by the Eclipse JDT.
• The composition work had to be done by us.
• Not seamless (find the extracted method, move target etc.).
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Research questions
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Main research question:
Is it possible to automate the analysis and execution of the Extract
and Move Method refactoring, and do so for all of the code of a
larger project?

Secondary questions:
I Can we do this efficiently?
I Can we perform changes safely?
I Can we improve the quality of source code?
I How can the automation of the refactoring be helpful?
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Automating the refactoring
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For any given method: We want to find the best candidate for the Extract and
Move Method refactoring, if any exist.

?
void method() {

statement_1;
statement_2;
statement_3;
statement_4;
statement_5;

}
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text selection

move target

1 class C {
2 A a; B b; boolean bool;
3 void method(int val) {
4 if (bool) {
5 a.foo();
6 a = new A();
7 a.bar();
8 }
9 a.foo();

10 a.bar();
11 switch (val) {
12 case 1:
13 b.a.foo();
14 b.a.bar();
15 break;
16 default:
17 a.foo();
18 }
19 }
20 }

A candidate consists of a text selection
and a move target.

A valid text selection is a text selec-
tion that contains all of one or more
consecutive program statements. It
is the input to the Extract Method
refactoring.

A move target is a variable (local or
field), whose type is the destination class
in the Move Method refactoring.
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Searching
Usually, search-based refactoring is based on metrics.

I Refactor a lot.
I Choose the best candidate based on measurements.

Our refactoring is based on heuristics.
I Up-front analysis.
I A set of assumptions defining what is considered the best candidate.
I No need to actually perform changes (before deciding).
I Search through all valid selections to find the best candidate.
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Choosing a refactoring candidate

I Search through all selections to find the possible candidates.
I Find the best move target for all the candidates.
I Choose the best among the possible candidates.
I Based on the lengths of the navigation paths and the occurrence counts.
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Demonstration
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Case studies
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Case studies performed on the org.eclipse.jdt.ui and
no.uio.ifi.refaktor projects. The resulting code was analyzed with
SonarQube.

The Eclipse JDT UI project:
I Over 300,000 lines of code.
I 2,552 methods out of 27,667 methods chosen to be refactored.
I Approx. 100 minutes.
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The case studies are inconclusive

I Measurements show some deterioration regarding coupling.
I All improvement not measured, only strict coupling between classes.
I Examples exist where coupling is improved.
I More examples exist where dependencies are introduced.
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Demonstration continued
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Conclusions
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I Automation is possible.
I Efficient enough for some kinds of use.
I Difficult not to break source code.
I Code is not improved in most cases.
I Not particularly useful in its current state.
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Future work
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I Complete analysis.
I Make refactoring safer.
I Improve heuristics to avoid introducing new dependencies.
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