
Automated Composition of Refactorings

Implementing and evaluating a search-based Extract and Move Method
refactoring

Erlend Kristiansen, 2014



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Refactoring, as defined in the literature

Refactoring (noun): a change made to the internal structure of
software to make it easier to understand and cheaper to modify
without changing its observable behavior. [Fow99, p. 53]

June 2, 2014 2



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

An alternative definition of refactoring

Definition
A refactoring is a transformation done to a program without altering its
external behavior.

June 2, 2014 3



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Primitive and composite refactorings

Definition
A primitive refactoring is a refactoring that cannot be expressed in terms of
other refactorings.

Definition
A composite refactoring is a refactoring that can be expressed in terms of two
or more other refactorings.

June 2, 2014 4



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Motivation

June 2, 2014 5



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Bad

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.y.foo();
5 x.y.bar();
6 }
7 }
8 class X {
9 Y y;

10 }
11 class Y {
12 void foo(){/*...*/ }
13 void bar(){/*...*/ }
14 }

Good

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.fooBar();
5 }
6 }
7 class X {
8 Y y;
9 void fooBar() {

10 y.foo();
11 y.bar();
12 }
13 }
14 class Y {
15 void foo(){/*...*/ }
16 void bar(){/*...*/ }
17 }

June 2, 2014 6



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Bad

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.y.foo();
5 x.y.bar();
6 }
7 }
8 class X {
9 Y y;

10 }
11 class Y {
12 void foo(){/*...*/ }
13 void bar(){/*...*/ }
14 }

Good

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.fooBar();
5 }
6 }
7 class X {
8 Y y;
9 void fooBar() {

10 y.foo();
11 y.bar();
12 }
13 }
14 class Y {
15 void foo(){/*...*/ }
16 void bar(){/*...*/ }
17 }June 2, 2014 6



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

I Get rid of long navigation paths.
I Move operations closer to the data they manipulate.
I Reduce coupling.
I Increase maintainability.

June 2, 2014 7



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

The primitive refactorings

June 2, 2014 8



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

The Extract Method refactoring
Extract a fragment of code into a new method.

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.y.foo();
5 x.y.bar();
6 }
7 }

1 class C {
2 A a; B b; X x;
3 void method() {
4 fooBar();
5 }
6 void fooBar() {
7 x.y.foo();
8 x.y.bar();
9 }

10 }

June 2, 2014 9



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

The Extract Method refactoring
Extract a fragment of code into a new method.

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.y.foo();
5 x.y.bar();
6 }
7 }

1 class C {
2 A a; B b; X x;
3 void method() {
4 fooBar();
5 }
6 void fooBar() {
7 x.y.foo();
8 x.y.bar();
9 }

10 }

June 2, 2014 9



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

The Move Method refactoring
Move a method from one class to another.

1 class C {
2 A a; B b; X x;
3 void method() {
4 fooBar();
5 }
6 void fooBar() {
7 x.y.foo();
8 x.y.bar();
9 }

10 }
11 class X {
12 Y y;
13 }

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.fooBar();
5 }
6 }
7 class X {
8 Y y;
9 void fooBar() {

10 y.foo();
11 y.bar();
12 }
13 }

June 2, 2014 10



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

The Move Method refactoring
Move a method from one class to another.

1 class C {
2 A a; B b; X x;
3 void method() {
4 fooBar();
5 }
6 void fooBar() {
7 x.y.foo();
8 x.y.bar();
9 }

10 }
11 class X {
12 Y y;
13 }

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.fooBar();
5 }
6 }
7 class X {
8 Y y;
9 void fooBar() {

10 y.foo();
11 y.bar();
12 }
13 }

June 2, 2014 10



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

The Extract and Move Method refactoring

June 2, 2014 11



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Before

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.y.foo();
5 x.y.bar();
6 }
7 }
8 class X {
9 Y y;

10 }
11 class Y {
12 void foo(){/*...*/ }
13 void bar(){/*...*/ }
14 }

After

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.fooBar();
5 }
6 }
7 class X {
8 Y y;
9 void fooBar() {

10 y.foo();
11 y.bar();
12 }
13 }
14 class Y {
15 void foo(){/*...*/ }
16 void bar(){/*...*/ }
17 }

June 2, 2014 12



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Before

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.y.foo();
5 x.y.bar();
6 }
7 }
8 class X {
9 Y y;

10 }
11 class Y {
12 void foo(){/*...*/ }
13 void bar(){/*...*/ }
14 }

After

1 class C {
2 A a; B b; X x;
3 void method() {
4 x.fooBar();
5 }
6 }
7 class X {
8 Y y;
9 void fooBar() {

10 y.foo();
11 y.bar();
12 }
13 }
14 class Y {
15 void foo(){/*...*/ }
16 void bar(){/*...*/ }
17 }June 2, 2014 12



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

I Composed of Extract Method and Move Method.
I Conceptually, one “atomic” operation.
I Implemented as an Eclipse plugin.

• The primitive refactorings are supplied by the Eclipse JDT.
• The composition work had to be done by us.
• Not seamless (find the extracted method, move target etc.).

June 2, 2014 13



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Research questions

June 2, 2014 14



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Main research question:
Is it possible to automate the analysis and execution of the Extract
and Move Method refactoring, and do so for all of the code of a
larger project?

Secondary questions:
I Can we do this efficiently?
I Can we perform changes safely?
I Can we improve the quality of source code?
I How can the automation of the refactoring be helpful?

June 2, 2014 15



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Automating the refactoring

June 2, 2014 16



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

For any given method: We want to find the best candidate for the Extract and
Move Method refactoring, if any exist.

?
void method() {

statement_1;
statement_2;
statement_3;
statement_4;
statement_5;

}

June 2, 2014 17



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

text selection

move target

1 class C {
2 A a; B b; boolean bool;
3 void method(int val) {
4 if (bool) {
5 a.foo();
6 a = new A();
7 a.bar();
8 }
9 a.foo();

10 a.bar();
11 switch (val) {
12 case 1:
13 b.a.foo();
14 b.a.bar();
15 break;
16 default:
17 a.foo();
18 }
19 }
20 }

A candidate consists of a text selection
and a move target.

A valid text selection is a text selec-
tion that contains all of one or more
consecutive program statements. It
is the input to the Extract Method
refactoring.

A move target is a variable (local or
field), whose type is the destination class
in the Move Method refactoring.

June 2, 2014 18



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

text selection

move target

1 class C {
2 A a; B b; boolean bool;
3 void method(int val) {
4 if (bool) {
5 a.foo();
6 a = new A();
7 a.bar();
8 }
9 a.foo();

10 a.bar();
11 switch (val) {
12 case 1:
13 b.a.foo();
14 b.a.bar();
15 break;
16 default:
17 a.foo();
18 }
19 }
20 }

A candidate consists of a text selection
and a move target.

A valid text selection is a text selec-
tion that contains all of one or more
consecutive program statements. It
is the input to the Extract Method
refactoring.

A move target is a variable (local or
field), whose type is the destination class
in the Move Method refactoring.

June 2, 2014 18



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Searching
Usually, search-based refactoring is based on metrics.

I Refactor a lot.
I Choose the best candidate based on measurements.

Our refactoring is based on heuristics.
I Up-front analysis.
I A set of assumptions defining what is considered the best candidate.
I No need to actually perform changes (before deciding).
I Search through all valid selections to find the best candidate.

June 2, 2014 19



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Choosing a refactoring candidate

I Search through all selections to find the possible candidates.
I Find the best move target for all the candidates.
I Choose the best among the possible candidates.
I Based on the lengths of the navigation paths and the occurrence counts.

June 2, 2014 20



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Demonstration

June 2, 2014 21



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Case studies

June 2, 2014 22



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Case studies performed on the org.eclipse.jdt.ui and
no.uio.ifi.refaktor projects. The resulting code was analyzed with
SonarQube.

The Eclipse JDT UI project:
I Over 300,000 lines of code.
I 2,552 methods out of 27,667 methods chosen to be refactored.
I Approx. 100 minutes.

June 2, 2014 23



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

The case studies are inconclusive

I Measurements show some deterioration regarding coupling.
I All improvement not measured, only strict coupling between classes.
I Examples exist where coupling is improved.
I More examples exist where dependencies are introduced.

June 2, 2014 24



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Demonstration continued

June 2, 2014 25



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Conclusions

June 2, 2014 26



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

I Automation is possible.
I Efficient enough for some kinds of use.
I Difficult not to break source code.
I Code is not improved in most cases.
I Not particularly useful in its current state.

June 2, 2014 27



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

Future work

June 2, 2014 28



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

I Complete analysis.
I Make refactoring safer.
I Improve heuristics to avoid introducing new dependencies.

June 2, 2014 29



Definitions Motivation The primitive refactorings The Extract and Move Method refactoring Research questions Automating the refactoring
Demonstration Case studies Demonstration continued Conclusions Future work References

References

[Fow99] Martin Fowler. Refactoring: improving the design of existing code.
Reading, MA: Addison-Wesley, 1999.

June 2, 2014 30


	Definitions
	Motivation
	The primitive refactorings
	The Extract and Move Method refactoring
	Research questions
	Automating the refactoring
	Demonstration
	Case studies
	Demonstration continued
	Conclusions
	Future work

