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Abstract

When programmers access external data in a statically typed programming language,
they are often faced with a dilemma between convenient and type-safe access to the
data.

In the programming language F#, a concept called type providers has been proposed
as a solution to this problem by having compiler support for libraries with the capa-
bility to generate types at compile time.

This thesis presents json_typegen, a project which aims to show the feasibility of similar
solutions in the Rust programming language. The project uses compile-time metapro-
gramming along with alternative interfaces to the same code generation implemen-
tation to achieve convenient, type-safe access to data in the JSON data format. While
JSON is chosen as the format for the presented library, the approach also applies to
other data formats and sources.
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Chapter 1

Introduction

Whether communicating with an API, reading configuration files, or using a static
dataset, most modern programs at some point have to interact with external data
sources. And with the rise of micro-services it is not uncommon to have to access
data from many such external data sources in a single program. When programmers
write code that accesses external data in a statically typed programming language,
they are often faced with a dilemma between convenience and type-safety. For type-
safe access to external data, significant boiler-plate in the form of code with abundant
checks or a large amount of custom types must usually be written. While approaches
that avoid this boiler-plate often abandons many of the benefits of static types.

In the programming language F#, a concept called type providers has been proposed
as a solution to this problem by having compiler support for libraries with the capa-
bility to generate custom types, based on the external data, at compile time. With this
method, a type provider offers access to external, potentially complex resources, in a
way that is both convenient and type-safe.

This thesis presents json_typegen, a project which aims to show the feasibility of similar
solutions in the Rust programming language. The project uses compile-time metapro-
gramming, along with alternative interfaces to the same code generation implemen-
tation, to achieve convenient, type-safe access to data in the JSON data format, in
a way similar to the type providers of F#. The presented project provides support
for the very common JSON format, but the approach, and much of the actual code
used by json_typegen, can be applied to create similar tools for other data formats and
sources.

1



2 1.1 The Rust programming language

In this introductory chapter wewill look at the background for the json_typegen project.
First, in section 1.1, we will look at the Rust programming language. Then, in sec-
tion 1.2, we will look at the JSON data interchange format, and the challenges associ-
ated with accessing data in JSON from statically typed programming languages, and
Rust in particular. Finally, in section 1.3 we will look at how these challenges have
been attempted solved with type providers in the programming language F#.

In chapter 2, the project and its interfaces is presented in detail. And in chapter 3 we
will look at how the code inference and code generation used in the project works,
and ways in which it could be extended.

1.1 The Rust programming language

The project presented in the thesis, json_typegen, creates types for programs written in
the Rust programming language, and is itself written in Rust. The Rust programming
language is a modern, open source programming language with C-like surface syntax.
It is a statically typed language with type inference, with a focus on memory safety
and zero-cost abstractions.

Rust does not use a garbage collector and the core library can be used without ac-
cess to heap allocation. This allows Rust to be used for what is often referred to as
“systems programming”, e.g. for writing drivers, operating systems and code for mi-
crocontrollers. Spaces which has so far been occupied mainly by C and C++1. Rust
tries to combine the low-level control of these languages with modern syntax and an
advanced type system that statically prevents whole classes of memory safety issues
[16].

While the basic syntax of Rust can be said to be C-like it also has a lot of functionality
and syntax reminiscent of functional languages and in particular languages of the ML-
family. Features such as closures, pattern matching and monadic error handling are
available and a significant part of idiomatic Rust code.

What follows is a very basic introduction to the parts of Rust we need to talk about

1There are some other languages that can be said to compete in this area, like Ada, Objective-C and
D. I won’t go into the details of how these languages compare to Rust, but for various reasons C++ is
the main competitor and point of comparison for most use cases.



1.1 The Rust programming language 3

in this thesis. Many of Rusts more advanced language features are not necessary to
understand the basic concepts of this thesis, and are as such not explained here. For
more details on the language features of Rust, see the Rust book2.

1.1.1 Structs

struct Person {
name: String,
age: i64,

}
Listing 1: A basic Rust struct

The primary language construct for complex types in Rust are structs. A struct dec-
laration, as shown in Listing 1, is a sequence of field names, along with their types.
Structs are product types and are analogous to records in some languages. Rust does
not have classes or objects, and is not object oriented in the classical sense. In other
words is there no inheritance between structs, and polymorphism in Rust is instead
supported by other language features, such as enumerated types, and traits.

1.1.2 Enums

enum Option<T> {
None,
Some(T),

}
Listing 2: The enumerated type Option in Rust

An enum in Rust is a data type that is one alternative from a number of variants, i.e.
an enumerated type, sum type or union. A declaration of an enum, as seen in Listing 2
is given as a list of variant names, used as constructors. Each variant can optionally
carry some associated data.

2https://doc.rust-lang.org/book/

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
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Rust supports pattern matching on enum types and verifies that any match is exhaus-
tive.

1.1.3 Traits

A trait specifies methods that a type needs to provide to implement the trait. On a
superficial level, traits in Rust are similar to interfaces in languages like Java, and type
classes in Haskell.

trait Clone {
fn clone(&self) -> Self;

}

#[derive(Debug)]
struct Bag {

label: String
}

impl Clone for Bag {
fn clone(&self) -> Self {

Bag {
label: self.label.clone()

}
}

}
Listing 3: The Rust trait Clone and examples of implementation

Listing 3 shows the trait Clone, which is a slightly simplified version of a trait in
the Rust standard library. The trait defines the function clone, which takes as its
argument a reference to an instance of the type implementing the trait – &self – and
returns a new copy of the same type – Self.

The listing also shows a struct, Bag, which implements two traits. Bag implements the
trait Clone with an impl Clone block, providing an implementation of the required
function.
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In addition to the manual implementation of Clone, the trait Debug, is “derived”, i.e.
automatically implemented by the compiler, using an annotation, #[derive(Debug)].
The code for this automatic implementation is included with the compiler, but it is
also possible to write libraries that can derive custom traits. Deriving a trait usually
requires that the constituent types also implements the trait. E.g. to derive Clone for
Ty you need to be able to clone all parts of Ty.

1.1.4 Macros

A macro system is in short a language feature that allows a programmer to write code
that does source-to-source transformations, also known as metaprogramming. In Rust
there are two categories of macros: declarative macros and procedural macros, which
are both expanded at compile time.

Macro declaration:
macro_rules! double {

($e: expr) => ({
let temp = $e;
temp + temp

})
}

Macro usage:
let ten = double!(2 + 3);

Listing 4: A simple declarative macro in Rust

Declarative macros in Rust are also known as “macros by example” or “pattern-based
macros”. These are syntactic, hygienic macros that with a syntax similar to pattern
matching, match input patterns to expanded source code. Listing 4 show declaration
and usage of a very basic declarative macro. The macro double has a single rule
transforming a single expression to a block expression. A macro can have multiple
rules and each pattern can be a combination of tokens and metavariables.

Procedural macros are macros where the expansion is done by running a procedure
rather than by evaluating rules. To create a procedural macro in Rust you create
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a library that exposes a function that takes a TokenStream as input and outputs a
TokenStream. Since this library and function can use arbitrary Rust code to generate
its output, it can do things that are outside the scope of the normal compiler. There
are several examples of powerful procedural macro libraries in Rust already. Two
prominent examples are:

• diesel [1], an ORM and query builder for Rust, has a macro which for generating
a type-safe DSL (at compile time) for communicating with an SQL database, by
inspecting said database.

• vulkano [8], whichwraps the Vulkan graphics API, can compile graphics shaders
at Rust compile time.

1.1.5 Cargo

Cargo is the package manager and build tool for the Rust ecosystem. While not a
part of the Rust programming language itself, it is provided alongside the compiler in
every normal installation. Cargo makes it easy to create new packages – “crates” in
Rust terminology – build them, and manage other crates as dependencies.

While users of some programming languages may be accustomed to build systems
with good dependency management this is not the case for users of the traditional
systems level languages, C and C++. The part of json_typegen that comes closest to
working like a type provider is a library the user adds a dependency to their project.
Thanks to the availability of Cargo, this is an almost insignificant barrier for potential
users of the project.

For a perspective on the difference in the development experience it is useful to look
at how the experience of going from nothing to a minimal project with a dependency
is in Rust and C++.

In appendix D I have included a comparison of setting up a project using both Cargo
and what I currently consider to be the best alternative in the C++ ecosystem. While
the specifics are not important, suffice to say that setting up a project and adding
dependencies in Rust using Cargo is significantly easier and more easily reproducible
than the equivalent scenario using C++.
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1.2 JSON

JSON is a text-based data format for structured data. It is very commonly used as
a data interchange format in modern HTTP-based architectures, but also in various
other use cases like configuration files. JSON was originally based on a subset of the
JavaScript programming language, but is designed to be language-independent and
is now used in the interaction between applications written in practically all program-
ming languages.

value ::= object | array | number | string | true | false | null
object ::= { [ string : value *( , string : value ) ] }

array ::= [ [ value *( , value ) ] ]

number ::= [ - ] int [ frac ] [ exp ]

string ::= " *char "

Listing 5: The JSON grammar from RFC 7159. It is somewhat simplified as the actual
specification is very precise. See the full specification for the exact definitions of int,
frac, exp and char.

The format as described by the two official JSON specifications – IETF RFC 7159 [9]
and ECMA 404 [19] – is intended to be very simple to write and to parse. As can be
seen from the grammar in Listing 5 a JSON value can only be an object, array, number
or string, or one of the literals true, false and null. In addition, there is no way to
define new types, references or to specify external resources or definitions.

A JSON object is a collection of mappings from keys (that are JSON strings) to JSON
values. As this closely corresponds to what is usually referred to as a map or a dic-
tionary in most programming languages, the term object may seem like a bit of a
misnomer here, arising from JSONs background as a subset of JavaScript. Whether
or not the fields of an object are ordered is explicitly unspecified by RFC 7159, but
it states [9, p. 6] that “implementations whose behavior does not depend on mem-
ber ordering will be interoperable in the sense that they will not be affected by these
differences.”
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A JSON array is an ordered collection of JSON values. It is worth noting that JSON
places no restriction on the types of the values of the array, and as such, it can some-
times be a heterogeneous collection.

{
"name": "Bob",
"age": 24,
"phoneNumbers": [
{

"areaCode": 456,
"number": 80931

}
]

}
Listing 6: An example JSON object

Listing 6 shows a basic example of a JSON object. Since JSON objects and arrays
can themselves contain objects and arrays, data serialized as JSON can be arbitrarily
deeply nested, but as mentioned JSON itself has no support for any kind of references,
so there is no possibility of loops or infinite types.

In RFC 7159 it is stated that “the representation of numbers is similar to that used in
most programming languages.” However, there are some very significant differences
to the most normal number types in most programming languages. A number in JSON
can be arbitrarily large, and arbitrarily precise. The only actual rule for a number to be
valid JSON is that it satisfies the grammar given in the specifications. As this shows,
while the specifications are quite simple, this simplicity leads to some complications
and pitfalls.

A JSON string resembles string literals in many programming languages, with charac-
ters and escape sequences, like \n or \u000a, enclosed in quotation marks. As seen
from the grammar, strings serve double duty in JSON as both object keys and general
values. This means that many possible JSON keys can be quite challenging to map to
valid identifiers in a programming language. It is for example perfectly valid to have
an object with the keys "", " " and "µ".



1.2 JSON 9

1.2.1 Reading JSON in dynamically typed languages

var parsed = JSON.parse(jsonString);
console.log(parsed.phoneNumbers[0].areaCode);

Listing 7: Printing the first areaCode in JavaScript

parsed = json.loads(jsonString)
print(parsed["phoneNumbers"][0]["areaCode"])

Listing 8: Printing the first areaCode in Python

In dynamically typed programming languages reading data from deserialized JSON is
relatively straightforward, as seen in Listings 7 and 8, showing parsing and reading in
JavaScript and Python3 respectively. The code in these Listings can, however, fail at
runtime with exceptions or errors if the deserialized data does not match expectations,
e.g. if the field "phoneNumbers" is missing, or contains a number instead of an array.
So in many real world use cases the code will be a bit more complex, to deal with such
problems without crashing.

1.2.2 Reading JSON in statically typed languages

In statically typed programming languages reading data from deserialized JSON of-
ten requires a bit more effort. There are several possible (and relatively common)
approaches.

For my examples I will use Rust, but first I need to introduce Serde:

Serde

Serde [5] is a Rust framework for serialization and deserialization. The core of the
framework is independent of the source/target data format, and the input/output of
specific data formats is provided by separate crates.

3It is also possible in Python to get the JSON deserialized into such forms that its syntax become
more like the direct field access of JavaScript, but the code shown uses the default behaviour.
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Serde works by providing two traits, Serialize and Deserialize, that Rust types
can implement. The core library has already implemented these traits for the most
common data types like i64, String, Vec and HashMap. In addition, the crate
serde_derive provides code for deriving Serialize and Deserialize for custom –
i.e. your own – types.

Once a Rust type implements the necessary trait, data can be converted with the
various format specific crates, that provide implementations for one or both of the
traits Serializer and Deserializer. serde_json [6] provides implementations of these
types for JSON. It also provides some other functionality that is useful for workingwith
JSON, such as helper functions, a macro for creating arbitrary JSON, and a catchall
type for JSON values.

Catchall types

enum Value {
Null,
Bool(bool),
Number(Number),
String(String),
Array(Vec<Value>),
Object(Map<String, Value>),

}
Listing 9: An enumerated type in Rust for JSON values

Listing 9 shows the enumerated type Value from the library serde_json, which is this
catchall type. In other words can any legal JSON value can be represented by this
single type. Similar types can be created in most statically typed programming lan-
guages. However, working with such types in a type-safe manner can be both tedious
and error-prone, when trying to get some specific data. The code in Listing 10 does
approximately the same thing as the code in Listings 7 and 8, using pattern match-
ing4. While the code is type-safe and will not fail at runtime, and the code verifies our
assumptions about the structure of the data while unwrapping, it is not particularly
convenient to write.

4And for now, ignoring the helper functions provided by serde_json
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let parsed: Value = serde_json::from_str(json_str)?;

use Value::*;
if let Object(map) = parsed {

if let Some(Array(vec)) = map.get("phoneNumbers") {
if let Some(Object(map)) = vec.get(0) {

if let Some(Number(num)) = map.get("areaCode") {
println!("{}", num);

}
}

}
}

Listing 10: Printing the first areaCode in Rust using pattern matching

More weakly typed approaches

One way to make the catchall types easier to work with is to create helpers that essen-
tially skips individual checking of each field access. Listing 11 shows two alternative
ways to read from the parsed data.

let parsed: Value = serde_json::from_str(json_str)?;

println!("{}", parsed["phoneNumbers"][0]["areaCode"]);

if let Some(num) = parsed.pointer("/phoneNumbers/0/areaCode") {
println!("{}", num);

}
Listing 11: Printing the first areaCode in Rust using indexing expressions and JSON
pointers

The first way shows how it is possible to use indexing syntax – container[index] –
with the Value type, due to the fact that it implements the Index trait. In other words,
very similarly to the syntax one would use with e.g. the default Python solution.
While index expressions in Rust can panic, the shown expression will actually not do
so, as the Value implementation of the Index trait instead returns Value::Null if
indexing fails. This does, however, conflate when indexing fails, or even makes no
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sense at all, and when the data contains an actual Null value. E.g. trying to read the
fourth element of false would return Null, behavior that is not normally expected
in a strongly typed language.

The second approach shown instead uses a string, which encodes a path5, to combine
multiple get() calls into a single function call. This call returns an Option to distin-
guish between Null values and lookup failure, but is otherwise quite similar to the
indexing method.

Neither of these approaches, nor the first approach with the individual get() calls
actually gives us a number in the form of a Rust integer (i64), though. What we ac-
tually get is6 a Value::Number(Number { ... }) which means that if we wanted
to do something else than just printing it, our code would still have some unwrapping
to do. And with all this, if we misspell a field, we may not even know that the code
failed at runtime because of a typo and not some problem with the data7.

Custom types

What we actually want are custom types, that accurately reflects the actual data. This
way, any mismatches between our assumptions and the actual structure of the data is
revealed at the time of JSON parsing, and any misspelling of field names is discovered
at program compile time.

Listing 12 shows an example of using such custom data types with the serde frame-
work. However, even for this small example this approach required 9 significant lines
of code for the types. And with real-world data sources, actual JSON data can be
significantly larger and more complex. So while custom types are preferable once
written, actually writing them can often be a significant hurdle.

5The path is encoded as a JSON Pointer. We will come back to JSON Pointers in more detail in
section 2.6.3.

6Assuming the input was actually the string in Listing 6.
7This encoding of data access in strings rather than in the type system, leads some to jokingly refer

to this as a “stringly” typed, rather than a strongly typed, approach.
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#[derive(Deserialize)]
struct Person {

name: String,
age: i64,
phoneNumbers: Vec<PhoneNumber>,

}

#[derive(Deserialize)]
struct PhoneNumber {

areaCode: i64,
number: i64,

}

let parsed: Person = serde_json::from_str(json_str)?;

println!("{}", parsed.phoneNumbers[0].areaCode);
Listing 12: Printing the first areaCode in Rust using custom types

1.3 Type providers

Solving the problem of convenient, type-safe access to external resources is of course
something that has been thought about before this thesis. F# is an open source,
functional programming language for the Common Language Runtime. Like Rust it
is statically typed, and draws inspiration from the ML-family of languages. In version
3.0 of F# a concept called “type providers” was introduced.

As the name suggests the type provider “provides” the necessary custom types to the
compiler, letting the programmer access the resource without having to spell out the
type information manually.

Listing 13 shows an example of a type provider, JsonProvider, in use. The type
provider is given a static parameter, in this case a string of JSON. A type is generated
from this sample at compile time, and the type is then used to parse another instance,
with the same structure, at runtime. The parsed object is then available to be used in
a type-safe manner, just like any other instance of a custom type.
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open FSharp.Data

type Simple = JsonProvider<""" { "name":"John", "age":94 } """>

[<EntryPoint>]
let main argv =

let simple = Simple.Parse(""" { "name":"Jane", "age":4 } """)
printfn "%s %d" simple.Name simple.Age
// prints "Jane 4"
0

Listing 13: Minimal example of the use of a type provider in F#

To reiterate: the expression JsonProvider<...> is evaluated at compile time and
provides a type to the compiler. This lets the compiler know the type of, and type
check, expressions like simple.Age, even though the type, or even the existence,
of the field Age is not visible anywhere in the actual F# code. This is somewhat
reminiscent of how type inference lets the compiler lets the compiler know the type
of a variable like name in an expression like let name = "Bob", even if the type is
not visible in code.

The particular type provider shown, JsonProvider, comes from the library F# Data
[2], which has type providers for multiple formats, and the example is adapted from
its documentation8. Both the sample string and the string providing the instance could
have been replaced by paths to either local or remote resources:

type Simple = JsonProvider<"http://example.com/person.json">
type Simple = JsonProvider<"samples/person.json">

The compiler also provides functionality that makes it easy for implementors of ed-
itors to provide autocomplete and similar functionality for types generated by type
providers. Thus, when writing code that talks to a JSON based API, it is often possible
to just point the type provider to an endpoint or a sample from some documentation,
and get the types one needs to start working. Possibly even without looking at the
JSON, and instead using autocomplete to explore the data.

8http://fsharp.github.io/FSharp.Data/library/JsonProvider.html

http://fsharp.github.io/FSharp.Data/library/JsonProvider.html
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1.3.1 Type providers from an implementation stand-
point

So what is a type provider? How do they work? From an implementation standpoint,
support for type providers can be boiled down to two features [18]:

• Compile-time metaprogramming with access to side effects9, with the expres-
siveness of a full programming language.

• Support for thunks, i.e. lazy or delayed evaluation, of at least parts of the
representation of these types, and letting such thunks be made by compile-time
metaprogramming.

Additionally, for a type provider to make sense, the language has to be statically typed.
In a dynamically typed language, the types are associated with the runtime instances
of values, so providing extra type information before runtime does not provide much
benefit. Since type providers can create a large number of types it is also benefi-
cial if the language has type inference so the actual names of the sub-types are less
significant.

As we looked at in section 1.1.4, Rust does have compile-time metaprogramming with
the flexibility of a full programming language, in the form of procedural macros. It is
also a statically typed language with type inference. Rust does however not have any
ability for procedural macros to let parts of the generated code be created lazily.

In F# type provider implementations it is possible to add type members as thunks,
which are then only evaluated as required by the compiler. This makes it possible for
type providers to provide access to data which whose type spaces would otherwise
be too large to create custom types for. Just like lazy evaluation makes infinite lists
possible, and practical, in languages like Haskell, thunks as parts of the generated
types makes arbitrary large or infinite type hierarchies possible, and practical, in F#.

A good example of a type provider which makes use of this functionality is the World-
Bank type provider in F# Data. As the name suggests, it provides access to the World

9The paper Dependent Type Providers [12], which shows the use of dependent types in the Idris
programming language to create type providers, shows that “compile-time metaprogramming with
access to side effects” could possibly be replaced with “type creation abilities with side effects”.
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Figure 1.1: Autocomplete from the WorldBank type provider

Bank data catalog via its web API. Figure 1.1 shows a screenshot of the kind of au-
tocomplete that is available when using the type provider. Having such functionality
makes it quick and easy to dive into the data, and it would be very hard, or impossible,
to replicate without some sort of strategy for only generating what is necessary.

While thunks as parts of generated types is clearly a very powerful feature, many of
F#s type providers are not reliant on it. If it is feasible to have all the necessary data
available at once, and the generated type is not too large, delayed production of the
code is not required. For example the JsonProvider from F# Data which creates a
single type hierarchy from a limited set of samples, does not need thunks. In other
words, something like JsonProvider should be possible in Rust. In chapter 2 I will
show how I have attempted to achieve this, but let us first look at the advantages and
disadvantages of the type providers it is inspired by.

1.3.2 Advantages of F#s type providers

The most significant benefit of type providers is that they enable type-safe access to
external resources, significantly improving type checking for sections of code using
data from a type provider.

As mentioned, such type-safe access can also be achieved by manually writing the
custom types, but the ease of use of a type provider makes it very easy to add a
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new external resource and start experimenting. Not only is the barrier of having to
write boilerplate code reduced or removed, but type information gleaned through e.g.
autocomplete facilitates exploration of the resource.

When working with external data, the code we write encode our assumptions about
the data we are working with. E.g. if I have parsed some data into a variable p
and I write code like let real_name: String = p.name, the code encodes my
assumptions that the data has a field with the name name, and that said field is a
string. When the types are in sync with the external data the type checking will thus
check that our assumptions match the actual structure of the data. Additionally, the
type checking will only check the assumptions we state through our use of the data,
which are likely to be the ones we care about.

Since these assumptions are re-checked when we re-compile this can help us not just
when our assumptions change, but also when the things we are making assumptions
about change. In this way a type provider like JsonProvider can help alert us about
changes to remote resources while we are developing or in a continuous integration
setting.

Themost advanced type providers can thanks to the delayed evaluation of AST encode
information that would otherwise be entirely impractical to otherwise encode in the
type system. We will be hard pressed to recreate this in Rust since we will not have
access to delayed evaluation, but there may be other ways that we may be able to
make different trade-offs and thus explore new possibilities.

1.3.3 Disadvantages of F#s type providers

While F#s type providers have significant advantages, they also have some disadvan-
tages. Type providers are essentially a code generation tool. However, type providers
do not give the user access to the generated code. For type providers that use thunks,
it is of course not a real option to generate the full code to be able to show it, as
the “full” code could in fact be infinite. And if you just show the code that is already
forced by the program usage, no new information is provided.

Since the difference between type providers that use delayed evaluation and those
that don’t is completely abstracted away from the users of the type providers, this
means that there is no option to look at the generated code to understand what is
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going on and to inspect the structure of the parsed data. While some of the same
understanding can be achieved by looking at the autocomplete suggestions it is often
easier to understand the structure by looking at the actual types.

No access to the generated code also causes a certain amount of lock-in. Without
access to the code, trying to migrate a project using type providers to manually written
types forces a complete rewrite of the types provided by the type provider. In the case
of parsing JSON and generating types from it there are many trade-offs that have to
be made, and thus there might be reasons for such a migration as a project develops.
I will come back to these trade-offs in section 2.6.

A completely different issue with certain type providers is that they provide the great-
est benefit with concern to the type checking when verifying the use of an exter-
nal resource. However, if access to this external resource requires network access,
this causes the compilation of the program to require network access for every build.
Sometimes requiring network access to build is not a big concern, but other times it
can be a big annoyance or even be completely out of the question.

Another concern many people have with type providers is that since the type checking
checks if the code matches the data, the build can break if the structure of the data
changes. In other words, the advantage of having our assumptions checked by the
type checking also means that the build can break without any changes to the things
we manage with version control. Such breakage runs contrary to the concept of repro-
ducible builds which is a very common goal for build systems. One may counter that
an external data source like an API is part of the system when it is used in a program,
and as such a build failure is the correct behavior, but it is nevertheless a contentious
issue.

While these very real concerns are not something that dissuade us from pursuing the
significant benefits that type providers can give us, we should at the same time keep
them in mind as we go forward.



Chapter 2

Presentation of the project

Type providers have significant benefits that are worth exploring in other program-
ming languages like Rust. Inspired by F# Data I have created a project, json_typegen,
that aims to approximate the benefits of type providers in Rust. In particular I have
focused on F# Datas type provider for JSON, JsonProvider.

The json_typegen project is divided into five crates, as well as a crate demonstrating
the use of the main crate. Most important of these are one library – a procedural
macro – and two binaries – a command-line interface and a web interface. Figure 2.1
shows how the crates depend on each other.

json_typegen_demo

json_typegen

json_typegen_derive

json_typegen_shared

json_typegen_clijson_typegen_web

Figure 2.1: Internal dependencies in the project

19
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2.1 The procedural macro

The crate json_typegen provides a procedural macro of the same name, json_type-
gen. This macro provides an interface very similar to F# Datas JsonProvider.

#[macro_use]
extern crate json_typegen;
extern crate serde_json;

json_typegen!("Point", r#"{ "x": 1, "y": 2 }"#);

fn main() {
let mut p: Point =

serde_json::from_str(r#"{ "x": 3, "y": 5 }"#).unwrap();
println!("deserialized = {:?}", p);
p.x = 4;
let serialized = serde_json::to_string(&p).unwrap();
println!("serialized = {}", serialized);

}
Listing 14: Usage of the procedural macro

In Listing 14 a minimal example of usage of the procedural macro json_typegen
is shown. This example is provided in the project source as a demo crate, json_type-
gen_demo. It is worth noting that the calls to unwrap unwraps result values assuming
success, and will crash the program in the event of a serialization or deserialization
failure. In a real world use case, we would replace these calls with error handling
code.

As can be seen in the example, the procedural macro defines a type – Point – which
is then available to be used by the programmer as any other type. The type gives
type-safe access to its fields, in the example p.x. Attempts to access an invalid field
– e.g. p.z – would be a type error and thus be caught at compile time.

Like JsonProvider, the procedural macro supports inline samples as shown, samples
stored as local files and URLs that point to remote samples:

json_typegen!("Point", "http://example.com/point.json");
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json_typegen!("Point", "samples/point.json");

Invocation of procedural macro:
json_typegen!("Point", r#"{ "x": 1, "y": 2 }"#);

Generated code:
#[derive(Default, Debug, Clone, PartialEq,

Serialize, Deserialize)]
struct Point {

x: i64,
y: i64,

}
Listing 15: The code generated by a macro invocation

Based on the JSON samples, types are inferred and Rust code with type declarations
is generated. Listing 15 shows the code generated by the macro shown in the example
in Listing 14. Further examples of the resulting generated code from different JSON
inputs can be seen in appendix C.

The types generated by json_typegen are all built up either by other generated types,
or from a small set Rust types we will refer to as our base types:

• Vec<T>, growable arrays, and Option<T>, optional values, with the type pa-
rameter T always being either another of our base types or an earlier generated
type.

• i64, 64-bit integers, and f64, 64-bit floating point numbers

• String, heap-allocated strings

• bool, boolean values

• serde_json::Value, serde_jsons catchall type, as a fallback when the infer-
ence gets either not enough or conflicting information

In chapter 3 we will look in more detail at how these types are inferred and how the
types are generated.
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2.1.1 Limitations compared to JsonProvider

While the procedural macro looks syntactically similar to, and in many ways works
like JsonProvider, there are some significant differences in actual use. For some
features, further support from the compiler and the tooling would be necessary.

At the moment there is no tooling solution for Rust that provides autocomplete for
types generated by procedural macros. There is however, no fundamental limitation
at play here, and is more likely connected to how young the Rust ecosystem is. As
such, there is reason to believe that this may change in the future. However, how
long it may be until such a tooling solution exists is mostly guesswork at this point.

Procedural macro hack

Another limitation of the current implementation is that the macro can only be used
once per scope. This is a consequence of the fact that, at the time of writing, function-
like procedural macros are currently not enabled on the stable version of the Rust
compiler.

To work around the fact that function-like procedural macros are not yet fully en-
abled json_typegen is actually a normal pattern-based macro. The invocation of
this macro expands to the declaration of a dummy type that uses a custom derive that
is implemented in json_typegen_derive1. Due to a limitation in current pattern-based
macros the macro is unable to create new names for each dummy type. Because of
this two invocations of the macro would create two (unused) types with the same
name, which would result in a compilation error.

In my testing thus far I have not encountered a use case where I needed to work
around this limitation. If necessary the easiest way to work around is to wrap the
macro invocation in module scopes, as shown in Listing 16, and if desired import
the created types. Another workaround is to write the code the pattern-based macro
expands to, and use json_typegen_derive directly. However, in the near future, no
hack should be needed at all as function-like procedural macros become available

1This hack is demonstrated in isolation, and described in more detail at https://github.com/
dtolnay/proc-macro-hack

https://github.com/dtolnay/proc-macro-hack
https://github.com/dtolnay/proc-macro-hack
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mod point {
json_typegen!("pub Point", "point_sample.json");

}

mod vector {
json_typegen!("pub Vector", "vector_sample.json");

}

use point::*;
use vector::*;
Listing 16: Workaround for the single use limitation imposed by the procedural
macro hack

on the stable compiler2. For users of json_typegen this change will most likely be
unnoticeable, with no change to the exposed API.

2.2 The command-line interface

Invocation of procedural macro:
json_typegen!("Point", r#"{ "x": 1, "y": 2 }"#);

Equivalent run of the CLI:
json_typegen -n Point '{ "x": 1, "y": 2 }'

Listing 17: Equivalent uses of CLI and macro

While the code generation in JsonProvider and the other type providers in F# Data
is only available as a type provider, I have chosen to explore the opportunity multi-
ple interfaces to the json_typegen project. The crate json_typegen_cli provides a binary,
json_typegen, which is a command-line interface (CLI) to the same code generation
that is used by the procedural macro. In other words, running the binary json_type-
gen and invoking the macro json_typegen will output the same code if the same
input sample and options are given.

2Tracking issue for procedural macros: https://github.com/rust-lang/rust/issues/38356

https://github.com/rust-lang/rust/issues/38356
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Like the macro, the CLI accepts either a sample directly as a command-line argument,
as a path to a remote source or a local file:

json_typegen -n Point 'http://example.com/point.json'
json_typegen -n Point samples/point.json

2.3 The web interface

Figure 2.2: Screenshot of the web interface

The third interface I have made to json_typegen is a web interface. The crate json_type-
gen_web provides a binary that both provides a web API for the code generation, as
well as hosting the static HTML/JavaScript files providing a frontend to this API3. This
interface is currently deployed and available at http://vestera.as/json_typegen/.

The procedural macro and the command line interface both require the user to down-
load and compile a somewhat significant amount of code. In small projects where the

3In a sense, this is means that this is actually two interfaces, but as the web API is not intended for
public consumption, I generally only count them as one.

http://vestera.as/json_typegen/


2.4 Shared code 25

sample can be assumed not to change, this initial cost may for a lot of users seem to
outweigh the benefits of the code generation.

The web interface provides a convenient way to do quick one-time generation of types
from samples, or for new users to test the project before potentially deciding to use
one of the other interfaces.

Having a web interface also provides some nice user experience benefits. A web form
has good potential for making visible the various configuration options for the code
generation, and quickly testing them out. It can also provide documentation for each
feature directly inline, e.g. by using descriptive labels and placeholders.

2.4 Shared code

As seen in Figure 2.1 the macro, web interface and CLI all depend on a common crate,
json_typegen_shared. This crate contains the actual inference and code generation
logic. The following general data flow is common to all three interfaces:

1. Retrieve an actual JSON sample, based on the input

2. Parse the JSON text into JSON values

3. Infer type shapes from the JSON values

4. Generate Rust code from the type shapes

In the CLI and the web interface, there is additionally a phase of formatting the gen-
erated code before the code is output to the user.

A simple heuristic is used to decide how the JSON sample should be retrieved: If the
input starts with "http://" or "https://" it is interpreted as a remote sample. If
it starts with "[" or "{" it is interpreted as an inline sample. If neither of these apply,
it will be attempted used as a local path.

The JSON text is parsed using serde_json into the catchall type serde_json::Value,
which is then used as the input for the inference and code generation. We will look
at these last two steps in detail in chapter 3.
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As mentioned in section 1.1.4 procedural macros are TokenStream → TokenStream
functions. However, a TokenStream can both be parsed from a string, and written
into a string. In other words, we have access to both a String → TokenStream and
a TokenStream → String function.

The different interfaces we want to provide place some requirements on what signa-
tures we need to be able to use our code with. As mentioned, procedural macros need
to have the signature TokenStream → TokenStream. A web API, on the other hand,
must at least externally have an interface that boils down to String → String. That
leaves us with two alternatives, (using→ for a conversion and⇒ for the transforma-
tion):

String → TokenStream ⇒ TokenStream → String web

TokenStream ⇒ TokenStream macro

String ⇒ String web

TokenStream → String ⇒ String → TokenStream macro

At the time of writing, TokenStream is a mostly opaque type, and we are thus forced
to choose the second alternative, but this may change in the future. In the real project
things are a bit more complicated, as more types are involved, but the central point
that we can consolidate different interfaces to a shared core that does the actual trans-
formation thanks to conversion methods still stands.

2.5 Synergy

Having these different interfaces provides us with some benefits that would be very
difficult or impossible to achieve with only a single one, i.e. some emergent synergy.

With the three interfaces, there is a clear migration path for most use cases. Users can
start with the web interface to test the code generation and see if the results fit their
use case. Since it is just a normal website they can do this without having to install
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anything or add any dependencies, but just copy and paste the output given by the
web interface.

If the code generation is suitable for their use case, and the code generation is fre-
quently used, copying and pasting from a website can get tedious. The convenience
of automatic code generation combined with the additional benefits with regards to
verification will hopefully lead people to try the procedural macro.

As mentioned in section 2.1.1, the procedural macro does have some limitations, and
as mentioned in section 1.3.3 even the original type providers have their disadvan-
tages. With a combination of the interfaces in this project, some interesting solutions
or workarounds for several of these issues are possible.

Perhaps most obviously, we now have a way, several in fact, to see the code the pro-
cedural macro expands to. The two additional interfaces in json_typegen both make it
easy to see this generated code. On nightly versions of Rust it is in fact also possible to
see the resulting code after macro expansion without any additional tools. However,
since this code is fully expanded4 it is primarily useful for debugging purposes. Usu-
ally, a user only wants a single “step” of expansion, e.g. only to see what json_typegen
itself does.

The two additional interfaces also make lock-in almost a non-issue. If a user wants
to stop using json_typegen entirely, they can just do a final one-time generation of the
code. They can do this using either the web or command line interface, and replace
the macro invocation with the generated code.

One reason why someone might not want to use the procedural macro at the moment
is the current lack of autocomplete. However, switching from the procedural macro
to manually generated code means abandoning the verification against the external
resource that the procedural macro gives.

2.5.1 Conditional compilation

To make the generated source available to editors while still keeping the benefits
of the procedural macro it is possible to use conditional compilation. Conditional

4Fully expanded, in the sense that every file in the crate has been inlined, every derive implemen-
tation has been made, and every println invocation has been expanded.
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compilation is the concept of automatically removing parts of the source code before
the main compilation, depending on some condition. E.g. removingWindows-specific
code when compiling on Linux and vice versa.

In the source code:
#[cfg(not(feature = "online-samples"))]
#[derive(Default, Debug, Clone, Serialize, Deserialize)]
struct Point {

x: i64,
y: i64,

}

#[cfg(feature = "online-samples")]
json_typegen!("Point", "http://example.com/point.json");

Normal build:
$ cargo build

Type checking against online samples:
$ cargo check --features "online-samples"

Listing 18: Conditional compilation

In Rust conditional compilation is possible with annotations like #[cfg(condition)].
Listing 18 shows an example where a feature flag "online-samples" is used to en-
able use of the procedural macro. In the default build the pre-generated type is used,
but if the feature flag is enabled, the pre-generated type is ignored and the procedural
macro used instead.

Since this method makes the types available to the editor, autocomplete based on the
types is now more easily possible. Figure 2.3 shows autocomplete results that are
based on conditionally compiled types in the IntelliJ IDE with the IntelliJ Rust plugin.
The JSON sample and generated types for this example can be found in appendix C.3.

Using conditional compilation in this way also lets us get around the issue of requiring
network access to build. If network access is the only issue we care about we don’t
even need to pre-generate the code, and can instead use two macro invocations – one
with a local or inline sample and one with the remote one – as our two options.
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Figure 2.3: Autocomplete from generated types in IntelliJ Rust

Since the normal build in such a setup does not rely on an external resource we also
get reproducible builds this way. Even if the external resource changes, it will still
be possible to check out an old version of our source code and compile it. This can
actually be very useful e.g. for tracking down bugs with tools like git bisect.

2.6 Configurability

There is one final problem that does not just apply to type provider like tools, but
to code generation in general: Code generation almost always has to make some as-
sumptions, and is as such hard pressed to cover every use case and every requirement
a programmer might have.

Listing 19 shows a simple example of a case where the inferred type falls short of what
the programmer would write by hand. There is no Date type in the Rust standard
library, and as such, even with inspection of the String, it would not be natural for
the code generation to infer a Date type by default. While the Date type specifically
may conceivably be added to the standard library in the future, the same example
could apply to all manner of domain-specific types.
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Sample:
{
"registered": "2016-08-19",
"..."

}

Inferred type:
#[derive(...)]
struct Order {

registered: String,
...

}

Desired type:
#[derive(...)]
struct Order {

registered: Date,
...

}
Listing 19: A simple example of how generated code can fall short

In such cases where the generated code falls short the programmer has a few alterna-
tives:

• They can simply use the generated code as is, and convert from String to Date
as necessary. If the suboptimal type is used frequently in the code though, lit-
tering the code with snippets like Date::from(order.registered) becomes
frustrating pretty fast.

• They can customize the generated code by hand, and reapply the customiza-
tions whenever the code has to be generated again. Since this requires access
to the generated code this alternative means abandoning any procedural macro
or type provider. As it also makes the customized code incompatible with the
generated code, conditional compilation will not help here either.

• Finally, they can customize the generated code by hand, and completely aban-
don the code generation tool.
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All of these alternatives have significant downsides, so if configuration of the code
generation is possible, and does not come with significant downsides of its own it
would in most cases be clearly preferable.

While it is clear that json_typegen should have at least some configuration options, it
is not obvious to what extent. It is probably not a good idea to try to cover every edge
case, as such a goal could quickly lead the code to become too complex to maintain
and expand. We can, however, make an effort to cover the most common cases, and
thus increase the usefulness of the project for most people.

In the next sections, I will discuss the configuration options that currently available in
json_typegen and some proposals for future expansions of these options. For a quick
overview of the implementation state of these, and other features of json_typegen, see
section 4.1.

2.6.1 Visibility

Perhaps the simplest configuration option in json_typegen is type visibility. By default,
the generated types have no visibility specification. In Rust this means that the types
are private, i.e. only accessible from themodule5 they are defined in, and anymodules
it may contain.

Private visibility for types from json_typegen was chosen as the default because of
the inherent volatility of generating types from external resources and the fact that
any change to a public type is considered a breaking API change. Thus, if the types
were public by default, any change in an external sample would cause a breaking API
change in users crates. If this is what the users desire, they should be free to choose
so, but it is not something that should happen by accident.

To set amore public visibility for the generated types, a visibility specifier may be given
along with the name for the root type. E.g. json_typegen!("pub Point", ...)
would create the type Point as a public type, and if the type name "pub(crate)
Point" was given, it would be created as a type visible within the current crate.

By default in json_typegen struct fields “inherit” the visibility specifier (if any) of the
containing struct. This should usually be the desired behavior, but if not it can be

5A file in Rust is itself a module
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overridden with a visibility specifier set using the option field_visibility.

2.6.2 Derive list

As explained in section 1.1.3 common behavior is specified in traits, andmany of these
traits can be derived – automatically implemented – by annotating the type with a list
of traits to derive.

By default json_typegen annotates each generated type with the following derive list:

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]

In other words will every type generated by json_typegen implement every trait in this
list. The derive list can be overridden with the derives option. None of the traits are
mandatory, but a generated type with an empty derive list would be close to useless.
Since each trait has a significant effect we will look at each of the default derived
traits separately. Additionally, we will look at some further traits that can be derived
that a user might want to add for different use cases.

Any unused traits and the accompanying code is eliminated by compiler optimizations
when doing release builds, and so do not contribute anything to binary size. The
added code generation of unused traits added very slightly to compile time in my
testing, but not enough so as to be noticeable.

Since the cost for additional derived traits is so small, all the traits that are imple-
mented for our base types6 are in our default list.

Serialize, Deserialize

Serialize and Deserialize are as explained in section 1.2.2 the traits that let
serde-compatible libraries convert to and from their various formats. It may seem
like you would always want these traits, as creating types that can be serialized and
deserialized is the primary purpose of json_typegen. Indeed, one would almost always

6As a reminder, our base types are Vec<T>, Option<T> i64, f64, String, bool and
serde_json::Value, hereafter referred to as Value.
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want to have at least one of these traits, and sometimes both, depending on the use
case. As such, in the default list both are included, but when customizing, often one
can eliminate one of them.

Default, Debug, Clone

The Default trait provides a no-argument constructor, creating the default value for
the type. Deriving this trait creates the no-argument constructor filling in the field
values with their respective default values.

This trait is in the default list mostly because it is useful for quick testing and for
examples, and as such is a good aid in explorative programming. For handwritten
types, it usually makes more sense to manually set the default values.

Implementing the Debug trait makes the type printable via the ? and #? debug
format specifiers. E.g. an instance v of a type that implements the Debug trait is a
valid argument in a statement like println!("{:?}", v);. Without implementing
this trait, instances of a type can not be directly printed.

The Clone trait makes it possible to make a copy of an instance of the type by calling
the clone method. For the generated types the derived implementation will result
in a deep copy, which relatively speaking will be expensive. This should usually be
avoided in high-performance code, but is sometimes unavoidable. In quick testing
and explorative programming, however, it can often be quicker and easier to clone
rather than try to satisfy Rusts borrow checker.

Eq, PartialEq

Eq and PartialEq provide methods for comparisons that are, respectively, full and
partial equivalence relations. Implementing PartialEq makes it possible to use the
== and != operators. Eq provides no additional functionality, and is just a marker
trait declaring the relation to be a full equivalence relation.

PartialEq is implemented for all of our base types, and is as such included in the
default derive list. Eq, on the other hand, is not implemented for f64, floating point
numbers, and Value, as they themselves can contain floating point numbers.



34 2.6 Configurability

f64 does not implement Eq because one of the requirements of a full equivalence
relation is that it is reflexive, i.e. that every value is equal to itself. The possibility of
NaN values makes f64 not satisfy this property, as NaN != NaN.

While f64 should not be Eq, JSON numbers are actually not allowed to be NaN or
Infinity according to RFC 7159 [9, p. 7]. This means that if we could guarantee that
only values from JSON data are stored in any fields that are inferred as f64 we could
safely make them Eq. Unfortunately, this is not something we can guarantee in Rust
as immutability is a property of variable bindings, and not on fields.

Value actually enforces that its numbers don’t contain Infinite or NaN and thus
could be Eq.

Users that know they won’t have any floats or inference issues that lead to Value
values can add Eq to the derive list. If they have floats or Value values, but are sure
that any floats will come from JSON, an Eq implementation can be manually added
with a single line – impl Eq for TheType {} – for each generated type. If this
is something many people would do, generating these lines is something that could
somewhat easily be added to json_typegen.

Hash

The Hash trait provides the methods necessary for producing hashcodes for a type.
Like with Eq, Hash is implemented for all of our base types except f64 and Value.
The problem here again is NaN, but it is not as clear cut as with Eq. There are several
reasonable, but no perfect solution to how floats should be hashable, so the Rust
standard library provides no Hash implementation for f64. Unfortunately, this leaves
us with users only being able to add Hash manually to the derive list when they have
no floats or Value values (or implementing Hash manually).

Some of the collections in the standard library depend on types implementing Hash
and Eq. The fact that our default generated types lack implementations for these traits
means that they can not be entered into any HashSet and can only be used as values,
not keys, in a HashMap.
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Ord, PartialOrd

Ord and PartialOrd implement methods for comparisons on types that form a total
and partial order respectively. Like HashMap and HashSet depend on Hash and Eq,
BTreeMap, BTreeSet and BinaryHeap depend on Ord.

An implementation for PartialOrd is missing for Value and Ord is missing for
both f64 and Value. Again, this means that by default the types can not be used
in BTreeSet and BinaryHeap, and only as values in BTreeMap.

It may be tempting to add these derives based on the fields of the types we generated,
but this could easily lead to some annoying and confusing situations for users. E.g.
having working code, without any configuration, break because a field that is not even
used is added to the sample. While the limitations on the default generated types is
unfortunate, adding potential for such unpredictable breakage is in my opinion even
worse.

New

In addition to the derives provided the standard library and serde (which we already
assume as a peer dependency) there are other custom derive libraries that can be
used to add functionality to the generated types from json_typegen. One simple such
example is the derive-new crate, which derives a new constructor for the type with all
fields as arguments. To add this functionality to all the generated types, all a user
of json_typegen has to do is to add derive-new as a dependency, and add New to the
derive list.

Frunk: Generic, LabelledGeneric

I won’t go into detail on all the different functionality that can be added by custom
derives, but one library that is of particular interest to us is frunk [3]. frunk is a library
for doing functional generic programming in Rust. Among the things that it provides
are two traits with accompanying derive code: Generic and LabelledGeneric.

Rust is a nominally typed programming language. This means that if we create types
that have the same shape, but different names, they can not be used in place of each
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other, and converting between them must be done by mapping each field from one
type to its corresponding field in the other. While we will look at other ways around
this issue as well, Generic and LabelledGeneric provide a way to get a semblance
of structural typing in Rust.

Types that implement the Generic trait from frunk can be converted between each
other if they are structurally the same, i.e. if the types have the same number of fields,
with the same types, in the same order. LabelledGeneric will additionally require
the fields to have the same names to allow the conversion.

2.6.3 JSON Pointers

While some configuration options like type visibility and the derive list make sense
to specify globally, for the whole JSON document at once, a lot of what would be
beneficial to configure has to be done on a much more granular level.

The initial case in Listing 19, where we would want the type of a specific field to be
Date rather than the inferred String is an example of where we would need such
granularity.

In the example, we would want to target “the field registered of the root object”.
In our original JSON example of section 1.2, we extracted “the field areaCode of
the first element of the phoneNumbers field of the root object”. One of the ways we
did this was with the pointer method from serde_json which takes as an argument
something called a JSON Pointer.

The JSON Pointer specification [11] was originally developed along with the specifica-
tion for JSON Patch [10] for the HTTP PATCHmethod, which needed a way to specify
specific elements of a JSON document. A JSON Pointer is simply a string consisting
of “reference tokens” each prefixed with a forward slash (to separate the tokens). A
reference token is interpreted as either a field name or an array index, depending on
whether an object or an array is encountered. So to specify “the field registered of
the root object” we would write the JSON Pointer "/registered". And the JSON
Pointer we used in section 1.2 to extract “the field areaCode of the first element of
the phoneNumbers field of the root object” was "/phoneNumbers/0/areaCode".

Since JSON Pointers are representable as simple strings they are easy to use as argu-
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ments to both macros or in command line invocations. Since they are already used by
serde_json it also makes sense to use JSON Pointers rather than introduce a completely
new way to reference data originating from JSON. Many of the alternatives are also
unnecessarily complex for our use case.

json_typegen!("Order", "samples/order.json", {
"/registered": {

use_type: "Date",
},

});
Listing 20: Macro invocation with JSON Pointer configuration

Listing 20 shows how amacro invocation with an option specified with a JSON Pointer
could look. Some examples of possible options that could be specified via JSON Point-
ers are:

• use_type Specifies a type for the code generation to use, with varying levels
of specificity. E.g. as shown in Listing 20.

• same_as Specifies that the type of one part of a JSON document should be
inferred (and if necessary, coerced) to the same type as another part. E.g.
"/a/b": { same_as: "/c/d" }.

• type_name Gives a type name for the code generation to use when generat-
ing the types. Useful when the field name would not reflect the type. E.g.
"/top_left": { type_name: "Point" }

In section 3.4.3 we will look at how the addition of these options, and JSON Pointers
in general, affect the logic behind the code generation.

As JSON Pointers are a “stringly” typed way to specify paths, it may seem strange
to suggest the use of them in a project that is so focused on type safety. There is,
however, a significant distinction in using such code at compile time and at runtime.
The criticism of “stringly” typed code in a strongly typed language is that it ends up
reverting the programming to a state where errors are discovered at runtime instead
of at compile time. If configuration for json_typegen specified through a JSON Pointer
does not apply to any of the sample, this can be known when generating code, i.e. at
compile time for the user, and a warning or an error can be shown at that point in
time.
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Due to the original use case the JSON Pointer specification was developed for, the
specification only specifies how to target single elements in JSON documents. There
is no wildcard for e.g. specifying every field in an object, or every element in an
array. While wildcards adds some complexity to implementation, it is still something
that can be quite useful for our use case. For arrays7 wildcards may not be needed,
as any option applied to one element, should, due to how the inference works, be
applied to all of them.

JSON Pointer does however have syntax for “the (nonexistant) member after the last
array element”, "-", which I propose as a simple solution for an explicit wildcard for
array indexes and map keys.

2.6.4 Cost of configurability

While extensive configurability has significant benefits, there are also significant costs.
Every configuration option a project adds increases its exposed API surface. The more
exposed API surface we have, the more difficult maintenance and continued develop-
ment becomes with making breaking changes.

With multiple interfaces, each added configuration option in the shared code also
needs to be exposed and handled multiple times. E.g. for just the web interface, each
option needs to be added to the HTML form, added to the communication with the
backend and be handled by the backend. Then similar work has to be done for the
command line interface and the procedural macro.

A lot of this code is, however, the same for each option of the same type. It is as such
possible that code generation could be used to minimize the additional work asso-
ciated with the additional interfaces. Internally, json_typegen uses a struct Options
which groups all configuration options. It is not implausible that it would be practical
to write code generation, that took such a struct as input and created interface code.
This would in itself be a useful project, and there is in fact a relatively new project,
structopt [7], which attempts to do this for command line parsing.

7And with extensions, other collections.
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2.7 Improving the synergy

While the synergy between the different interfaces is already quite good there are
ways in which it could be improved.

Since many of the use cases involve moving between the interfaces, making the tran-
sition between them as smooth as possible is an important part of the total user expe-
rience of the project.

While the ”native” user experiences of the interfaces are quite different, with different
strengths and weaknesses, the central functionality they provide, including configura-
bility, should be the same. However, if a user has taken extensive advantage of this
configurability, having to replicate the same configuration settings from one interface
in another can erase the convenience the other interface would provide.

For example is one of the use cases for the web interface to easily be able to see the
generated code when using the procedural macro. However, an option in the macro
is expressed as code, while the natural interface for the website is a form. For this
specific use case, it would be much nicer to just be able to copy the macro invocation
as text and get the output without having to use the form. In other words, it would
be convenient if the web interface was able to read the macro syntax as an additional
input format. Use cases for the CLI would benefit much the same way if a macro
invocation could be used directly to generate code. What I propose is essentially to
use the macro syntax as an ad hoc configuration interchange format.

If the web interface additionally can output in themacro syntax we get easy transitions
that cover what I think are the most likely user stories:

• Just discovered the project, and having tested in the web interface, want to start
using the macro: web → macro.

• Using the macro, but want to see the generated code for quick debugging:
macro → web.

• Using the macro, but want to use CLI for autocomplete or other reasons for
conditional compilation: macro → CLI.

The way I’ve described how the procedural macros work in section 2.4 it may seem like
we could get at least parsing of the macro “for free”. Unfortunately, this is currently
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CLI macro

web

Figure 2.4: Transitions enabled by the CLI and the web interface being able to read,
and web interface being able to write, macro syntax. The dashed lines show transi-
tions that require the use of the macro syntax as the configuration format, and not
just as the interchange format.

not the case. Since the current macro is not a procedural macro, we do not ever use the
macro code itself as input, but rather what it expands to. However, any parsing code
written for configuration interchange may very well be directly usable once normal
procedural macros are available on the stable compiler and it is time to transition the
json_typegen macro.8

Due to how beneficial conditional compilation currently is, it could also be quite use-
ful if the code required for using conditional compilation could also be generated
automatically. If the code generation was able to output macro syntax, this should be
quite easily implementable.

2.8 Editor plugins

One thought I have had while working on this project is to what extent it matters that
it is actually the compiler, and not something else, that actually inserts the provided
types into the code of the program. To explore this idea I have created a prototype
plugin9 for the Atom editor, which expands a macro invocation to the resulting code

8I am also considering a refactor of the macro part of the project before then, which might enable
the use of the macro input more directly by itself.

9https://github.com/evestera/atom-json-typegen

https://github.com/evestera/atom-json-typegen
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inside the editor. The plugin just comments out the macro invocation, sends it to the
web interface backend, and inserts the result into the buffer. The generated code can
be hidden with code folding, so that the macro invocation is the only thing visible, if
so desired. Since this process is entirely outside the compiler, no dependencies are
added to the project.

Since the generated code is available to the editor, just like it would be if the user had
used the command line interface, the editor can use the code for code completion etc.
While the plugin is very rudimentary, it illustrates how simple of a concept tooling
support for procedural macros could be. If the code did not have to be inserted into
the buffer for the editor to be aware of it, such a plugin could just provide what was
necessary for full editor support for the procedural macro. Full tooling support for
macros, procedural or otherwise, just depends on being able to expand macros to the
resulting code, and making this expanded code available to the editor.





Chapter 3

Code generation

Once a JSON sample has been retrieved and parsed using serde_json into the catchall
type serde_json::Value, json_typegen is ready to begin inference and code gener-
ation. In this chapter we will look at the details of these three stages:

• First, a generalized “shape” is inferred from the JSON values.

• Then this inference is enhanced in intermediary passes.

• Finally, Rust code is generated based on the inferred shapes.

To begin with I will present a basic version of the inference algorithm and code gen-
eration, before looking at how this system can be extended in various ways.

3.1 Shape inference

The shape inference is based on the algorithms used in F# Data as presented in the
paper Types from Data: Making Structured Data First-class Citizens in F# [17]. As
done in this paper I will use the term shape for the intermediate representation of the
inference data, to avoid confusion with actual programming language types.

The goal of the shape inference is to infer generalized shapes from the samples which
can then later be used for generating code. These shapes are intended to be gen-
eral enough to not be tied to inference from JSON – F# Data also does inference for

43
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CSV and XML – and not tied to the generation of any particular type of program-
ming language. Rust code for the basic version of the shape inference can be seen in
appendix A.

3.1.1 Values and shapes

The inference thus works with two types. The JSON sample, in our case parsed into a
serde_json::Value – as was shown in Listing 9 – and the shape type. An abstract
version of serde_json::Value, with value variables ω, and our shape type, with
shape variables σ, can be written as follows:

ω ::= Null | Bool(b) | Number(n) | String(s)
| Array([ω1, · · · , ωn]) | Object({k1 : ω1, · · · , kn : ωn})

σ ::= any | ⊥ | bool | string | int | float
| optional(σ) | JσK | {{k1 : σ1, · · · , kn : σn}}

To be clear about how notation is disambiguated: [a, b, c] is an actual sequence of
items, while JaK is the shape representing a sequence/list.1 Likewise {k1 : v1, · · · , kn :
vn} is a map-like collection, while {{k1 : σ1, · · · , kn : σn}} is the shape representing
a record/object/struct.

For an intuitive understanding of the more abstract shapes it is helpful to think of
what kind of knowledge each shape represents. ⊥ (read as “bottom”) represents
the complete lack of knowledge about what type should be inferred. optional(σ)
represents the knowledge that a type may sometimes be null or a field may not
always be there, i.e. that it is nullable or optional. So optional(⊥) tells us that a
type is optional, but that we know nothing else of about its type. The any shape, on
the other hand, represents conflicting information. If we end up with the any shape it
means that the information we have received is not representable by any of the other
alternatives. E.g. a type that can be both a string and an int.

1In Types from Data the notation JaK is used for a different purpose in a section of the paper we will
not look at here.
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Unlike in Types from Data, to preserve information and let any choice be made in the
code generation step, lists2 are not considered nullable. In other words, the inference
can infer the shape optional(JσK), but it is up to the code generation to decide how
to handle the shape. In the default code generation, Option<Vec<T>> will not be
generated, but this can be enabled by configuration.

With this change, a separate null shape, which the original algorithm has, is no
longer necessary. Instead, ⊥ is not considered nullable either, and optional(⊥)
serves the purpose of null.

3.1.2 From values to shapes

vts(Null) = optional(⊥)

vts(Bool(b)) = bool

vts(Number(n)) =

{
int if n ∈ Z
float otherwise

vts(String(s)) = string

vts(Array([ω1, · · · , ωn])) = Jfold(csh,⊥, [vts(ω1), · · · , vts(ωn)])K
vts(Object({k1 : ω1, · · · , kn : ωn})) = {{k1 : vts(ω1), · · · , kn : vts(ωn)}}

Figure 3.1: vts(ω), the function converting JSON values to shapes

The main inference function vts(ω), shown in Figure 3.1 takes as its input a value
and produces a shape. Values containing other values are converted by applying vts
recursively.

fold(function, base, sequence) is the fold operator [15], common in functional pro-
gramming (and available on iterators in Rust). In this case, it reduces a sequence
of shapes to a single shape by finding a common shape with the csh(σ1, σ2) function,

2… and with extensions, other collections.
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which we will look at in the next section. The initial shape is⊥, which means that an
empty Array will be represented as the shape J⊥K.

3.1.3 Finding common shapes

csh(σ, σ) = σ (eq)

csh(σ,⊥) = σ (bottom)

csh(int, float) = float (num)

csh(σ1, optional(σ2)) = opt(csh(σ1, σ2)) (opt)

csh(Jσ1K, Jσ2K) = Jcsh(σ1, σ2)K (arr)

csh(σ1 = {{· · ·}}, σ2 = {{· · ·}}) = cfs(σ1, σ2) (obj)

csh(σ1, σ2) = any (any)

Figure 3.2: csh(σ1, σ2), the common shape function

Sometimes multiple elements must be represented by the same shape, e.g. a sin-
gle shape representing all the elements of an array. Figure 3.2 shows the function
csh(σ1, σ2) which for two shapes finds a common shape which can represent them
both. Order of arguments does not matter, so for every rule csh(a, b) the rule csh(b, a)
is the same.

csh(σ1, σ2) defines a partial order for the set of shapes, where if csh(σ1, σ2) ` σ3,
σ1 v σ3 and σ2 v σ3. The relation v can be understood as the “can be represented
by”-relation. E.g. float 6v int, but int v float (and also int v int).

Figure 3.3 shows an incomplete Hasse diagram for the partially ordered set given by
v on the set of shapes. The internal ordering of list and record shapes, JσK and {{· · ·}},
is not shown.

When we are working with optional shapes, we want optionality to be a boolean prop-
erty, i.e. either something is optional, or it is not. For any shape σ that already encodes
the possibility of values that are missing or null, opt(σ), as shown in Figure 3.4, is
simply a no-op.
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⊥

⊥?

int

int?

float

float?

bool

bool?

string

string?

JσK

JσK?

{{· · ·}}

{{· · ·}}?

any

Figure 3.3: Hasse diagram for the partial order. For compactness σ? is used for
optional(σ). Dashed lines have the same meaning as solid lines, and are only used
for visual clarity.

opt(any) = any

opt(optional(σ)) = optional(σ)

opt(σ) = optional(σ)

Figure 3.4: opt(σ), the function ensuring optionality/nullability of shapes

Figure 3.5 shows how the common shape of two record shapes is found by finding
the common shapes of its fields. For keys that are not present in both records, the
shape that is present is optional/nullable. Note that in Types from Data, records have
row variables [20] so that all records can be considered to have the same keys. To
minimize the number of new concepts needed to understand the basic algorithm I
have chosen this slightly less elegant notation in Figure 3.5 instead. Informally, every
key present in either of the input record shapes will be present in the output record
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cfs(σ1 = {{k1 : v1, · · · , kn : vn}}, σ2 = {{k1 : v′1, · · · , kn : v′n}}) ={{
∀ kn ∈ σ1 ∪ σ2. kn :


csh(vn, v

′
n) if kn ∈ σ1 ∩ σ2

opt(vn) if kn /∈ σ2

opt(v′n) if kn /∈ σ1

}}

Figure 3.5: cfs(σ1, σ2), the function for finding the common shape of two records

shape. For every field, if the field is found in both record shapes, the shape of the
field in the output is the common shape of the shapes for the corresponding fields in
the input. If the field is found in only one of the input shapes, the corresponding field
in the output shape must be optional.

3.2 Intermediary passes

In the basic version of the algorithm, there are no intermediary passes. These passes
are mainly a result of extensions of the algorithm. The extensions come about for two
main reasons: Improving the code to more closely resemble hand-written code, and
adding configurability of the inference and code generation.

We will look at these extensions and their consequences for the algorithm in sec-
tion 3.4.

3.3 Generating Rust types

Once a shape tree has been inferred from the sample and intermediate passes have
been run to improve the inferred shapes, the shape tree is used to generate Rust code.
The code generation is a simple recursive procedure.

The main function takes as its input some path information, used for naming any gen-
erated types, and a shape. The function pattern matches on the shape and produces
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as its output a tuple: The name of the type representing the shape, and potentially
some code generated to declare the returned type.

Appendix B contains a (very) naive implementation of this algorithm. Among other
things, this implementation is not configurable and assumes all fields names can be
used as Rust field names and Rust type names if the first letter is uppercased. Except
for such simplifications, the implementation is similar to the actual code generation
in json_typegen.

In the actual implementation, code is generated via quasiquotation, using a macro
quote! from the quote [4] library. This is quite similar to the use of format strings in
the naive implementation, except that the code to generate code is simpler, and that
it generates tokens, rather than strings. For our use case, this is actually not entirely
positive. When working with just tokens, there is no need to format the code nicely,
so when the tokens from quote is output as a string, it becomes just one long line. For
this reason, a separate formatting step is done, if the code is to be shown to a user.
In the future it may be better to choose a simple, custom solution for the equivalent
role of quote, as json_typegen generates a rather small subset of Rust.

3.3.1 Type and field names

Up to the point of code generation, JSON field names have been preserved as they
were in the original JSON. These field names are used to create both field names
for the generated types, as well as type names for any nested types. However, as
mentioned in section 1.2, the JSON field names can be completely arbitrary strings,
while the field names and type names we generated must conform to Rust rules and
conventions for identifiers.

The generated names are restricted to consist of “words” of alphanumeric ASCII char-
acters, and the complete namemust start with a letter. Type names are “PascalCased”,
i.e. concatenated, with the first letter of each word upper-cased, and field names are
“snake_cased”, i.e. all lower case, with words separated by an underscore. For some
fields, nothing of the original name remains after restrictions are applied, and we have
to resort to fallback names like GeneratedType.

Additionally the generated types cannot collide with Rust keywords or each other.
Collisions with keywords are solved by appending a word describing its use, like
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Sample:
{
"one two": { " ": 5, "?": 2 }

}

Generated types:
struct Root {

#[serde(rename = "one two")]
one_two: OneTwo,

}

struct OneTwo {
#[serde(rename = " ")]
field: i64,
#[serde(rename = "?")]
field2: i64,

}
Listing 21: Field and type renaming

field, so the field "type" becomes type_field. Collisions between generated
names are solved by adding an incrementing counter to the name.

For field names, if the Rust field name does not match the JSON field name an an-
notation to relay this information to Serde is added to the field. Listing 21 shows an
example with several of these issues at once.

3.3.2 Generation of a runnable program

In addition to just generating the types themselves, the code generation can also gen-
erate a complete, runnable Rust program. In addition to the generated types, the
runnable program contains the necessary imports and a main function showing how
to use serde_json to deserialize and serialize into the generated types.

The generation of a full program is mainly for documentation and demonstration
purposes in the web interface. Using a button in the web interface the generated code
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can be directly compiled and run in the online Rust playground.

3.3.3 Use of derivable traits

As outlined in section 2.6.2 a lot of the functionality of json_typegen is founded on
the fact that many traits can be derived – i.e. that they can be implemented by just
adding their name to a list – and that this works even for complex generated types.

The fact that this is possible relies on two important preconditions:

1. That our generated types are composed of either our base types, or other gen-
erated types. I.e. that every leaf in our generated type tree is one of our base
types.

2. That every trait in our derive list is derivable and implemented for each of our
base types.

Both of these preconditions can be broken by the user if the right configuration option
is provided. As explained in section 2.6.2, the derive list can be overridden. This can
obviously break our second precondition, either if a trait is not implemented for one of
our base types, or for that matter if the trait is not derivable at all. There are also ways
configuration can introduce new, essentially opaque, types into the code generation.
These new types essentially become new base types, and as such can easily break our
first precondition.

If a user breaks our preconditions in this way and this leads to a compiler error. The
messages when a derive fails are clear and should make it quite obvious to the user
what the problem is. With this in mind, I think letting the user break these precondi-
tions is an acceptable trade-off for the benefit these configurations provide.

While letting the user break these preconditions is acceptable, care has to be taken to
preserve these preconditions when extending the basic system. To make the source of
any errors obvious, no derive errors should be possible that does not directly mention
a trait or type explicitly specified by the user. E.g. if the system is extended with sets,
enabling this extension should not be possible without explicitly choosing a target
type if doing so breaks the preconditions.
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3.3.4 Strictness of deserialization

While the types we generate should match the samples they are generated from, and
any JSON text that matches their structure, there is always the possibility that the
actual JSON we encounter at runtime does not perfectly match what we inferred.

Mismatched field types

If a field has entirely the wrong type, e.g. an object where we expect a number,
deserialization has to fail with an error, as discovering such type issues as early as
possible is a big part of the reason to deserialize to strong types. There are, however,
some types we could conceivably coerce between. E.g. the string value "3.5" could
be parsed and coerced into a f64 field. While I have some ideas for extensions for
specific instances like strings to number, I have no plans for supporting coercing data
at runtime in an ad-hoc fashion.

When it comes to how we handle fields that are either missing, or that were never
observed during inference, there are some choices to be made.

Missing fields

In the inference we detect potentially missing fields and encode this information into
the shapes. By default, the code generation maps optional(σ) to Option<T>, and if
any field that was not inferred to be optional is missing, deserialization fails. However,
another way to handle missing fields that Serde supports is to use the default value
provided by an implementation of the Default trait. I.e. if a string is missing, use the
empty string, if an integer is missing use 0, and so on. By enabling this functionality
for every field a user could make sure deserialization never fails due to a missing field.

Additional fields

By default, if Serde tries to deserialize and the data has an additional field that the
target type does not have, the additional field is just ignored. This matches well
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with our intent with type providers, in that we only want to check the assumptions
we actually make. However, it is also possible to make such additional fields cause
deserialization to fail, which is behavior users of json_typegen can enable through
configuration.

3.4 Extensions

As have been mentioned earlier, there are several ways to extend this basic setup to
better align with what handwritten code would look like. We will now look at a few
such extensions. For the sake of simplicity, we will mostly not go into the details of
how these extensions interact or the complete extended algorithms, focusing instead
on each extension by itself.

3.4.1 Tagged any shapes

In addition to the basic inference algorithm described in section 3.1, Types From Data
[17] also describes an extension it calls “labelled top shapes” for providing a better
fallback than the general any shape.

In the basic algorithm, if the least upper bound given by csh(σ1, σ2) is any, we throw
away the information we have about why we had to use any, i.e. σ1 and σ2. The
basic concept of this extension is to instead incorporate this information into a top
shape anyof(σ1, · · ·, σn). This can then be used in the code generation to e.g. create
enumerated types with custom types inside.

This extension is absolutely vital for making the algorithm work well with XML and
HTML. In these formats heterogeneous collections with easily disambiguated types
are abundant. For json_typegen, the extension would still be useful, but not essential,
as serde_json::Value provides a decent fallback type as long as json_typegen is
specific to JSON.
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3.4.2 Detecting distinct object shapes

One of the reasons why tagged any shapes are not as useful for JSON as for e.g. XML
and HTML is, as mentioned in the previous section, that JSON provides no directly
obvious way of disambiguating objects representing different types. There are, how-
ever, ways we could infer that two different JSON objects should be interpreted as
having different types.

Intersection of keys

One indicator that two objects may represent different types is if they have no fields in
common, i.e. if the intersection of the sets of keys of two objects is empty. Listing 22
shows how two such objects, with no fields in common could be represented as an
enumerated type rather than a struct, if tagged any shapes were also implemented.

JSON sample input:
[
{ "a": 1 },
{ "b": 1 }

]

Two alternative representations:
struct S {

a: Option<i32>,
b: Option<i32>,

}

enum E {
Variant1 { a: i32 },
Variant2 { b: i32 },

}
Listing 22: Two ways of representing objects with no overlap

This does, however, have the potential to make the inference less intuitive, as different
order of objects in an array can lead to completely different inferred types.
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Take for instance the JSON array [{ "a": 1 }, { "b": 1 }, { "a": 1, "b":
1 }. If the array is folded from left to right, i.e. the single-field objects are combined
first, there is no intersection of keys, and one might infer a shape corresponding to an
enumerated type. It is not obvious how one should proceed after this either, as the
two-field object matches both of the existing alternatives equally well. If the array is
instead folded from right to left, or the array is re-ordered, a shape corresponding to
the struct in Listing 22 would be inferred.

Discriminators

Another way object types can be disambiguated is if one of the fields acts as a dis-
criminator field or type tag. This is a relatively common pattern in real-world JSON,
but neither the existence of a discriminator field, nor the placement nor name of such
a field is something one can rely on for inference. The use of a discriminator is thus
something that would have to rely on configuration through JSON Pointers.

When discriminator fields are available they provide a reliable way to figure out which
objects should correspond to which variants, even if instances of a variant do not
have the exact same fields. Additionally, they provide an intuitive way to name each
variant, providing good usability for the eventually generated types.

3.4.3 JSON pointer hints and configuration

As outlined in section 2.6.3 it would be beneficial if we could use JSON pointers to
specify configuration options and hints (hereafter referred to as just options) to the
inference and code generation.

Actually applying these options require some modifications to the basic version of the
algorithm. However, the options are not all applied the same way or at the same
time. Some have to be applied during inference, some are best applied as interme-
diate transformations between inference and code generation, and some have to be
applied during the code generation. This means that while we start with a simple
list of options, we have to do some pre-processing of the options before running the
algorithm with them.
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JSON sample with discriminators:
[
{
"type": "foo",
"a": 1

},
{
"type": "bar",
"b": 1

}
]

Enumerated type using discriminator values:
enum E {

Foo { a: i32 },
Bar { b: i32 },

}
Listing 23: Enumerated type created from sample with discriminator field/type tags

The pointer options must then be threaded through our inference and code generation
functions, and applied as they match.

A pointer option is a 3-tuple of a pointer, an option name, and an option value. For
applying the option we transform the pointer into a list of tokens. E.g. the pointer
"/field1/field2" is converted to the list of tokens ["field1", "field2"]. For
each recursive call of e.g. the vts function, the first token of each pointer is removed
and tested on e.g. the field name to see if the hint should be carried on to the inner
call. If a list of keys is empty, then the hint applies to the current value.

For a perspective of how handling of such pointer options can quickly become complex
we will look briefly at the three examples in section 2.6.3: use_type, same_as and
type_name.

On the surface, use_type seems very simple. The user specifies a type, and the code
generation outputs the type for a field. Looking closer, there are actually several
possibilities which all have to be handled:

• The specified type may be a recognized shape, like number, map or tuple. In
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this case the information is relevant to the inference, and may lead to some
specific behavior therein.

• The specified type can be a concrete type, which also corresponds to a shape (or
for that matter, a shape with inner shapes). E.g. VecDeque, which corresponds
to the JσK shape. Now, the shape information must be used in the inference,
but the specific type information must be used in code generation.

• Finally, the specified typemay be something the inference knows nothing about,
an opaque type. In this case it may be best to infer as normal, but then ignore the
inferred shape in code generation, but log or insert it into a generated comment
for debugging purposes.

For same_as, handling the simple case may actually be quite straightforward. As an
intermediate phase, extract two shapes, find a common shape using csh(σ1, σ2), an-
notate the result in some way so that the code generation knows to only create one
type, and write the result, or some kind of reference back to the original locations.
But what happens if there are two or more same_as declarations? Now, any poten-
tial overlap must be correctly handled. And if wildcards are supported even a single
same_as is no longer so simple.

type_name seems perhaps simplest of all. Just a type name that should be used in
code generation. There is, however, some hidden complexity here as well. Consider
the possibility of two pointer options assigning the same name. Perhaps it should
be considered an error, but it could also be interpreted as a declaration that the two
shapes pointed to should be the same, which brings us back to the complexity of
same_as.

3.4.4 More number types

By default, our code generation only uses i64 for integers and f64 for floating point
numbers. While these are good defaults, there are several other number types that
could be used. In particular, the Rust standard library provides types for unsigned
numbers, e.g. u64, and smaller numbers, e.g. i8 and f32. While rare in practice,
JSON numbers can also be arbitrarily large and precise, so it is also worth considering
support for big integers and arbitrary precision floats.
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Adding support for just unsigned numbers could be done by adding another shape un-
signed to our set of shapes, changing the rule for vts(Number(n)) to use unsigned
if possible and adding some rules to csh(σ1, σ2). However, extending the inference
in this fashion scales very poorly. For n number shapes, we would need n! rules in
csh(σ1, σ2).

What I propose instead is to replace int and float with a single number shape,
number(m,n, f), which tracks three properties:

• The minimum observed value, m

• The maximum observed value, n

• Whether any of the observed values was floating point, f

The rules for float and int in vts and csh and can then be replacedwith the following
rules:

vts(Number(n)) = number(n, n, n ∈ Z)

csh(number(m1, n1, f1), number(m2, n2, f2)) =

number(min(m1,m2),max(n1, n2), f1 ∨ f2)

If it is desirable to infer arbitrary precision floats one should also track the maxi-
mum observed precision. And while in theory, the shape and rules as outlined above
could work for arbitrarily large integers this is not something that can be easily im-
plemented in json_typegen. The reason for this is that the Value type from serde_json
currently only supports numbers that can be represented with the base rust types. In
other words, to add support for detecting such numbers, we would have to replace
serde_json with our own parser.

While arbitrary precision is out of the question to begin with, the extension should
be sufficient for all the number types in the Rust standard library. By default we
should still only generate i64 and f64, though. The primary benefit of unsigned
numbers is to disallow negative values (the slightly extended positive range is usually
a secondary concern), but while it is common to write floating point numbers with
the decimal point even when the value is an integer, there is no such hint for numbers



3.4 Extensions 59

which may be negative. As such the risk/reward is just not good enough to justify
it as a default. In the same way, using i8 instead of i64 only restricts the possible
values, and e.g. documentation samples can often have artificially small numbers, so
the risk of assuming small ranges from limited samples should not be the default.

While unsigned and smaller numbers are not enabled by default, like optional(JσK),
a flexible number shape just preserves additional information that can be used if en-
abled through configuration.

3.4.5 Maps

One common issue with JSON is that its simplicity means that some common data
structures are missing. This drives people to use the same data structures with dif-
ferent intentions as different ad-hoc data structures. Perhaps the most common such
pattern is the use of JSON objects as maps.

While JSON has no concept of a map, maps with strings as keys can be encoded in
JSON as objects, and there is no loss of fidelity inherent in this encoding. The only
issue for us is that there is no good way to infer the difference between an object
used to encode a structure that will persist across e.g. API calls, and an object used
to encode a mapping from arbitrary keys to values.

While the intention that an object is used as a map can not be directly inferred from
just a sample, with inference hints from the user, code using maps can still be inferred
and generated.

vts(Object({k1 : ω1, · · · , kn : ωn}), [· · · , [] use_type map, · · · ]) =
map( fold(csh,⊥, [vts(ω1), · · · , vts(ωn)]))

vts(ω, [· · · , [] use_type map, · · · ]) = error!

Figure 3.6: Extending the hinted vts to support maps

To be able to infer maps we would first need to add map(σ) as an alternative to our
set of possible shapes. In the notation I have not included the key type, as JSON only
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csh(map(σ1), map(σ2)) = map( csh(σ1, σ2)) (map)

Figure 3.7: Extending csh to support maps

supports string keys for object fields, and as such to assume strings as map keys in
the generated code should suffice. Figure 3.6 shows how the function vts already
extended with hints could be extended to infer maps. The shown rules should take
priority over the existing rule matching on Object.

csh can be extended by adding a simple rule shown in Figure 3.7 before the existing
rule (any). One may argue that map values are already nullable, since map.get()
or any equivalent will return some nullable type, and that we should thus take care to
not infer a shape for the map values which could be lowered to a non-nullable shape
(or rather, to lower such types when we infer them).

However, the only nullable shape we currently have that can be lowered to something
else is optional(a), which can be lowered to its wrapped shape a. The only way for
the algorithm to infer map values that are optional(a) is if the map sample contains
explicit Null values. For a map to contain such values would be quite rare, and if it
were to happen, those null values are likely to carry meaning. With these things in
mind, I consider the best option to be to not lower the map value shapes.

In most programming languages there is also the consideration of which map type to
use. The Rust standard library provides two map types, HashMap and BTreeMap. In
addition to these alternatives there are various map types in published in crates in the
Rust ecosystem. As an example, json_typegen itself uses a LinkedHashMap internally.
From the perspective of a user, giving a hint use_type t should work with any of the
types mentioned above for t, as well as just map, letting json_typegen choose the map
type.

For the default map type, whatever we choose ends up as essentially a new base type.
Both HashMap and BTreeMap are good candidates, but as the default I have chosen
HashMap, as it is the recommendation for general maps [13, std::collections]. As
mentioned, we assume strings as keys, so the full new base type is HashMap<String,
T. With String fixed as the key type, HashMap implements all the traits in our derive
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list and can thus be safely added to our set of base types.

3.4.6 Tuple types

Another common pattern of data structure adaption in real world JSON is the use
of arrays as tuples. E.g. serializing the tuple ("a", 1) as the JSON text ["a", 1].
Unfortunately, this does not interact very well with the basic algorithm. The JSON text
["a", 1] would be inferred as the shape JanyK. Rust does, however, have tuples,
and could represent the type as (String, i64), so if it is possible to do so without
breaking the original algorithm it makes sense to try to infer tuples.

vts(Array([ω1, · · · , ωn])) ={
〈〈vts(ω1), · · · , vts(ωn), 1〉〉 if 1 < n ≤ tmax

Jfold(csh,⊥, [vts(ω1), · · · , vts(ωn)])K otherwise

Figure 3.8: vts(ω), rule modification for tuples

To be able to infer tuples we add the tuple shape 〈〈σ1, · · · , σn, κ〉〉 to our set of shapes,
where σ1, · · · , σn are field shapes and κ is the count of samples this shape is based
on. Figure 3.8 shows how vts(ω) can be modified to infer tuples. The shown rule
replaces the original rule for Array.

A tuple automatically implements all the traits in our default derive list if all the types
inside it does [13, primitive std::tuple], and so can be safely added to our set of base
types. This derive-like functionality only works for tuples with at most 12 fields, so
the max inferred tuple arity – tmax – should never be set higher than this. In my own
opinion, anything beyond 2-tuples and 3-tuples should not be automatically inferred.

Figure 3.9 shows how csh(σ1, σ2) can be extended to accommodate for tuples. The
two rules are pure additions, and none of the original rules are affected.

When we add tuples to the inference, while some tuples can be inferred automatically,
our code generation should not be too eager to use tuples. We do not want every short
list in our samples to be interpreted as a tuple. Figure 3.10 shows how tuple shapes
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csh(〈〈σ1, · · · , σn, κ1〉〉, 〈〈σ′
1, · · · , σ′

m, κ2〉〉) ={
〈〈csh(σ1, σ

′
1), · · · , csh(σn, σ

′
m), κ1 + κ2〉〉 if n = m

Jcsh(fold(csh,⊥, [σ1, · · · , σn]), fold(csh,⊥, [σ1, · · · , σn]))K otherwise

csh(〈〈σ1, · · · , σn, κ〉〉, JσmK) =
Jcsh(fold(csh,⊥, [σ1, · · · , σn]), σm)K

Figure 3.9: csh(σ1, σ2), rule additions for tuples

tolist(〈〈σ1, · · · , σn, κ〉〉) = Jfold(csh,⊥, [σ1, · · · , σn])K

test(σt = 〈〈σ1, · · · , σn, κ〉〉) =
κ ≥ tsamplemin ∨ ((∃σ ∈ [σ1, · · · , σn].σ 6= any) ∧ tolist(σt) = JanyK)

Figure 3.10: Removal of tuple shapes

can be converted to lists, and the test for whether a tuple shape should be used or
converted to a list shape. Intuitively, a tuple shape should only be used if we have
either seen enough instances to believe it is not just a short list, or if the use of a tuple
type will prevent us from combining shapes into the fallback shape any. Note that the
clause (∃σ ∈ [σ1, · · · , σn].σ 6= any) will be redundant if we consider 2 to be enough
samples to use a tuple.

If automatic inference of tuples is disabled, tuple shapes can still be created, and every
tuple shape encountered in code generation can be converted to a list unless locally
enabled by pointer configuration.
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3.4.7 Combining identical subtypes

When we generate types with the basic inference and generation, we can end up with
many types with exactly the same fields. In appendix C.2 we can see a real world
example of such identical types3. As mentioned in section 2.6.2, one of the problems
with this is that nominally different types can’t be used interchangeably, but it also
makes the types harder to understand, and contributes to code bloat.

One way to combine identical shapes to a single type is to let the user specify with
JSON Pointer options, if two parts of the sample should correspond to the same type.
However, for trivially equal shapes, this is something we should be able to do auto-
matically.

Finding identical subtypes is the task of finding identical subtrees in our shape tree.
A naive approach needs

(
n
2

)
= n(n−1)

2
∈ O(n2) comparisons, where n is the number

of nodes in the tree, so care must be taken on implementation. The shape tree can be
considered to be a rooted unordered labelled tree. Unordered, as we want types with
the same fields in different order to be considered to be the same. An optimal algo-
rithm for finding identical subtrees of such a tree can be implemented with complexity
O(n) [14].

For considering whether two shapes represent the same field type, the default derived
equality operator should not be used. For instance should the shapes J⊥K and JintK
be considered equal.

In addition to finding identical types for a single shape tree i.e. from a single sample,
it could also be useful if it was possible to combine identical types across several
samples. E.g. if a program interacts with an external API, the API may have several
endpoints with different requirements, but with reuse of types. As an example of this,
an API for web commerce might choose to inline product data both in search results
and in endpoints for order data.

As we saw in section 2.6.2 it is already possible to use the frunk crate to get a level of
structural typing and thus convert between types which are nominally different but

3In the example there are two sets of identical types: {Indexed, Start, Created, Deposited}
and {PublishedPrint, Start2, End, Issued}. Additionally, the shape of the second set can be con-
sidered to be covered by the shape of the first set. Handling such covered shapes automatically is not
discussed in this section.
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arose from identical shapes. This of course also applies between types generated from
different samples.

It is also possible to combine multiple samples into a single sample by wrapping them
in a JSON object with field names corresponding to the desired type names of the
root of each sample. This will, however, only work for inline samples if done by the
user. Thus, if such combining of identical subtypes is implemented, it would likely
also be useful if json_typegen provided a macro which could combine samples in this
manner internally, as this combining could then be done after parsing each sample
into a serde_json::Value.



Chapter 4

Conclusions and future work

In this final chapter, I will look at the state and future of json_typegen itself, as well
as how the ideas explored in this project can be continued further.

4.1 Implementation state

While the core of json_typegen – and several of the configuration options and ex-
tensions outlined in this thesis – can be considered complete, there is a tremendous
amount of features and extensions that could be implemented. As json_typegen is a
project I have use for myself, and I see (from the very limited logging on my server,
the statistics on the official crate repository1 and the direct feedback I have received)
that it is also of interest to others, I will continue to implement many of these features
and extensions to the project myself.2

The table included below shows the current state of the implementation. At its cur-
rent state it clearly shows the cost of multiple interfaces. Several extensions are im-
plemented, but are only available through direct invocation of the code generation,
as the necessary interface code is extensive and time consuming.

1https://crates.io
2Though I do hope this thesis may also be of use to any potential contributors in the future.
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Feature Relevant sections In
fe

re
nc

e

Cod
eg

en

M
ac

ro

CLI W
eb

Basic functionality 2 X X X X X

Type visibility 2.6.1 X X X X X

Field visibility 2.6.1 X X - - -

Derive list 2.6.2, 3.3.3 X - - X

Nullable collections 3.1.1 X - - -

Missing fields 3.3.4 X - - -

Unknown fields 3.3.4 X - - -

Tagged any types 3.4.1 - -

JSON Pointers 2.6.3, 3.4.3 X - - - -

use_type: u64, i8, etc. 3.4.4 - - - - -

use_type: shape 3.4.3 -

use_type: opaque 3.4.3 - -

use_type: map 3.4.5 X X

use_type: tuple 3.4.6 X X - - -

type_name 2.6.3 - -

same_as 2.6.3 - -

Detection of equal types 3.4.7 - -

Macro syntax input 2.7 - -

Macro syntax output 2.7 - -

Legend: Complete: X Missing: - Not applicable: (blank)

Despite how clear this cost is, I am convinced the benefits of having these interfaces
outweighs the cost, and that multiple interfaces is the strongest benefit json_typegen
has over a pure type-provider-like interface. Each interface is useful in itself even
without the synergy, and having to rewrite the (far from trivial) code generation for
each interface would make it all the more likely that an interface might not exist at
all.

As mentioned in section 2.6.4, it may be possible to generate interface implementa-
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tions, at least to a certain extent. If this is achieved, both extending json_typegen itself
and expanding to other formats beside JSON should be substantially easier.

4.2 Expanding to other formats

While JSON is perhaps the most popular serialization format at the moment, it is ob-
viously far from the only one. F# Data, which was the main inspiration for json_type-
gen, has type providers for XML, HTML and CSV in addition to JSON. These type
providers have a common core of inference and type generation logic. While some
of the choices and extensions of json_typegen are somewhat specific to JSON, like F#
Data, it should be possible to use the same core for multiple formats. For types that
have both a serde implementation and either a Value type of its own, or somehow
can map into serde_json::Value, adding basic support for the format should be
somewhat straight forward. For some formats it may however be better to create
entirely separate libraries, as not every format maps straightforwardly to the set of
shapes used by json_typegen.

4.3 JSON Schema

JSON itself is a simple, schemaless data format. There is however a separate schema
format – JSON Schema3 – that is in development (and has been for some years). It
is likely that similar code generation techniques to those used in this project could be
applied to JSON Schema, and it may seem like a natural progression from “types from
samples” is “types from schemas”. There are however some issues with JSON Schema
that make me a bit hesitant to start (or recommend) a code generation project for
JSON Schema:

• While it is only a personal observation, it seems to me as though a lot of the peo-
ple/websites actually using JSON Schema (often in Swagger/OpenAPI) don’t
actually use it according to the specification. As an example; many completely
omit the ”required” field that specify which fields of an object are not nullable.

3http://json-schema.org/

http://json-schema.org/
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In my opinion this defeats some of the point of a schema, as it leaves us unable
to generate code that is both safe and ergonomic without inspecting the data
itself and making assumptions based on it.

• JSON Schema also has some challenges for code generation in that it can easily
represent types which are very hard to represent with serde-compatible types, so
it may require actually writing the deserialization code more or less specifically
for any hypothetical JSON Schema library. The references in JSON Schema also
means that a simple, recursive tree walk is not enough to parse a schema into
shapes.

• The specification also lacks straightforward ways to represent usage patterns
that are already common in JSON, like objects as maps and arrays as tuples.

Another interesting possibility is the use of the inferred shapes of json_typegen to create
JSON schemas. While this would certainly be possible, I am a little skeptical of it’s
usefulness. However, as it should be a rather straightforward addition of another
output format to json_typegen, even it is only slightly useful, that may be enough for
someone to do it when the inference is already in place.

4.4 Towards a true type provider experi-
ence for Rust

In closing, I want to touch on the question of why languages with full support for
type providers are as rare as they are. As explained in section 1.3.1, support for type
providers is only two relatively simple to understand concepts: The ability to create
types based on some external resource, and the ability to delay the creation of parts
of these types via e.g. thunks.

While full procedural macros are not all that common, they are not exceedingly rare
either. A simple version of procedural macros can be implemented with a simple pre-
processing step. Especially if they are only to be used for basic type provider support.
For most type providers, a simple string or two is enough input to do something useful.
The fact that procedural macros are in a sense external to the core of a language is
also part of why tooling support for procedural macros lag behind. They have to be
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expanded, evaluated, eliminated, for tools to do their job.

Delayed evaluation of parts of types, however, is something that is much rarer, as this
concept has effects into how the very type system is evaluated inside a compiler. So,
would this even be possible in Rust? I’m not sure. If one were to explore this, a good
starting point would perhaps be to implement a toy language which does little more
than support thunks in types.

However, I believe both F# Data and json_typegen show that this second part of type
provider support is not essential to create something useful. And while it may not
be necessary to add a code generation tool onto every compiler, for a language such
as Rust, which have the necessary tools for basic type providers already available, a
future where projects that look like type providers are exceedingly common seems
almost inevitable. As soon as tooling catches up.





Appendix A

Rust implementation of inference
algorithm

extern crate linked_hash_map;
extern crate serde_json;

use linked_hash_map::LinkedHashMap;
use serde_json::{Value, Map};

#[derive(Debug, PartialEq, Clone)]
pub enum Shape {

Any,
Bottom,
Bool,
StringS,
Int,
Float,
List { elem_type: Box<Shape> },
Recd { fields: LinkedHashMap<String, Shape>, },
Optional(Box<Shape>),

}
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pub fn value_to_shape(value: &Value) -> Shape {
match *value {

Value::Null => Shape::Optional(Box::new(Shape::Bottom)),
Value::Bool(_) => Shape::Bool,
Value::Number(ref n) => {

if n.is_i64() {
Shape::Int

} else {
Shape::Float

}
}
Value::String(_) => Shape::StringS,
Value::Array(ref values) => array_to_shape(values),
Value::Object(ref map) => object_to_shape(map),

}
}

fn array_to_shape(values: &[Value]) -> Shape {
let inner =

values.iter().fold(Shape::Bottom, |shape, val| {
let shape2 = value_to_shape(val);
common_shape(shape, shape2)

});
Shape::List {

elem_type: Box::new(inner),
}

}

fn object_to_shape(map: &Map<String, Value>) -> Shape {
let inner = map.iter()

.map(|(name, value)| {
(name.clone(), value_to_shape(value))

})
.collect();

Shape::Recd { fields: inner }
}



73

fn common_shape(a: Shape, b: Shape) -> Shape {
if a == b {

return a;
}
use self::Shape::*;
match (a, b) {

(a, Bottom) | (Bottom, a) => a,
(Int, Float) | (Float, Int) => Float,
(a, Optional(b)) | (Optional(b), a) => make_optional(

common_shape(a, *b),
),
(List { elem_type: e1 }, List { elem_type: e2 }) => {

List {
elem_type: Box::new(common_shape(*e1, *e2)),

}
}
(Recd { fields: f1 }, Recd { fields: f2 }) => Recd {

fields: common_field_shapes(f1, f2),
},
_ => Any,

}
}

fn make_optional(a: Shape) -> Shape {
use self::Shape::*;
match a {

Any | Optional(_) => a,
non_nullable => Optional(Box::new(non_nullable)),

}
}
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fn common_field_shapes(
f1: LinkedHashMap<String, Shape>,
mut f2: LinkedHashMap<String, Shape>,

) -> LinkedHashMap<String, Shape> {
if f1 == f2 {

return f1;
}
let mut unified = LinkedHashMap::new();
for (key, val) in f1.into_iter() {

match f2.remove(&key) {
Some(val2) => {

unified.insert(key, common_shape(val, val2));
}
None => {

unified.insert(key, make_optional(val));
}

}
}
for (key, val) in f2.into_iter() {

unified.insert(key, make_optional(val));
}
unified

}
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Naive implementation of generation
of Rust types from shapes

pub fn shape_to_code(
name: &str,
shape: &Shape,

) -> (String, Option<String>) {
match *shape {

Shape::Any | Shape::Bottom => (
"::serde_json::Value".into(),
None,

),
Shape::Bool => ("bool".into(), None),
Shape::StringS => ("String".into(), None),
Shape::Int => ("i64".into(), None),
Shape::Float => ("f64".into(), None),
Shape::List { elem_type: ref e } => {

let (inner, inner_defs) = shape_to_code(name, e);
(format!("Vec<{}>", inner), inner_defs)

}

75



76

Shape::Recd { fields: ref map } => {
let type_name = uppercase_first_letter(name);
let mut inner_defs = String::new();

let mut struct_def =
format!("struct {} {{\n", type_name);

for (key, val) in map.iter() {
let (field_type, field_defs) =

shape_to_code(key, val);
if let Some(defs) = field_defs {

inner_defs += &defs;
}
struct_def +=

&format!(" {}: {}\n", key, field_type);
}
struct_def += "}}\n";

(type_name, Some(struct_def + &inner_defs))
}
Shape::Optional(ref e) => {

let (inner, inner_defs) = shape_to_code(name, e);
if **e == Shape::Bottom {

(inner, inner_defs)
} else {

(format!("Option<{}>", inner), inner_defs)
}

}
}

}

fn uppercase_first_letter(s: &str) -> String {
match s.chars().next() {

None => String::new(),
Some(c) => c.to_uppercase().to_string() + &s[1..],

}
}
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Examples of generated Rust types

This appendix contains examples of the result of using the code generation of json_typegen on
various real-world JSON samples.

The JSON shown may be abridged, where such changes do not affect the inference results. E.g.
an array with 50 elements may have been reduced to only 2 or 3.

C.1 Launch Library Launch List

API documentation: https://launchlibrary.net/1.2/docs/api.html
Sample source: https://launchlibrary.net/1.2/launch?next=2

JSON Sample

{
"total": 2,
"launches": [

{
"id": 1329,
"name": "Vega | OptSat 3000 & VENµS (VENUS)",
"net": "August 2, 2017 01:58:00 UTC",
"tbdtime": 0,
"tbddate": 0

},
{
"id": 1233,
"name": "Long March 3B/E | Alcomsat-1",
"net": "August 5, 2017 00:00:00 UTC",
"tbdtime": 1,
"tbddate": 1

}
],
"offset": 0,
"count": 2

}

Generated code

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct LaunchList {
total: i64,
launches: Vec<Launch>,
offset: i64,
count: i64,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Launch {
id: i64,
name: String,
net: String,
tbdtime: i64,
tbddate: i64,

}
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C.2 CrossRef DOI API

API documentation: https://github.com/CrossRef/rest-api-doc
Sample source: https://api.crossref.org/works/10.1145/2908080.2908115/

JSON Sample

{
"status": "ok",
"message-type": "work",
"message-version": "1.0.0",
"message": {
"indexed": { "date-parts": [[2017, 7, 25]],

"date-time": "2017-07-25T04:31:32Z",
"timestamp": 1500957092169 },

↪→
↪→

"publisher-location": "New York, New York, USA",
"reference-count": 26,
"publisher": "ACM Press",
"license": [
{
"URL":

"http://www.acm.org/publications/poli-
cies/copyright_policy#Background",

↪→
↪→

"start": { "date-parts": [[2016, 6, 13]],
"date-time": "2016-06-13T00:00:00Z",
"timestamp": 1465776000000 },

↪→
↪→

"delay-in-days": 164,
"content-version": "vor"

}
],
"content-domain": { "domain": [ ],

"crossmark-restriction": false },↪→
"short-container-title": [ ],
"published-print": { "date-parts": [[2016]] },
"DOI": "10.1145/2908080.2908115",
"type": "proceedings-article",
"created": { "date-parts": [[2016, 6, 2]],

"date-time": "2016-06-02T19:23:42Z",
"timestamp": 1464895422000 },

↪→
↪→

"source": "Crossref",
"is-referenced-by-count": 0,
"title": ["Types from data: making structured

data first-class citizens in F#"],↪→
"prefix": "10.1145",
"author": [
{ "given": "Tomas", "family": "Petricek",

"affiliation": [{ "name": "University of
Cambridge, UK" }] },

↪→
↪→

{ "given": "Gustavo", "family": "Guerra",
"affiliation": [{ "name": "Microsoft,
UK" }] },

↪→
↪→

{ "given": "Don", "family": "Syme",
"affiliation": [{ "name": "Microsoft
Research, UK" }] }

↪→
↪→

],
"member": "320",
"reference": [

{
"key": "key-10.1145/2908080.2908115-1",
"unstructured": "L. Cardelli and J. C.

Mitchell. Operations on Records. In
Mathematical Foundations of
Programming Semantics, pages
22&#8211;52. Springer, 1990.",

↪→
↪→
↪→
↪→

"DOI": "10.1007/BFb0040253",
"doi-asserted-by": "crossref"

},
{

"key": "key-10.1145/2908080.2908115-2",
"unstructured": "A. Chlipala. Ur:

Statically-typed Metaprogramming with
Type-level Record Computation. In ACM
SIGPLAN Notices, volume 45, pages
122&#8211;133. ACM, 2010."

↪→
↪→
↪→
↪→

}
],
"event": {
"name": "the 37th ACM SIGPLAN Conference",
"location": "Santa Barbara, CA, USA",
"sponsor": ["SIGPLAN, ACM Special Interest

Group on Programming Languages"],↪→
"acronym": "PLDI 2016",
"number": "37",
"start": { "date-parts": [[2016, 6, 13]] },
"end": { "date-parts": [[2016, 6, 17]] }

},
"container-title": [
"Proceedings of the 37th ACM SIGPLAN

Conference on Programming Language
Design and Implementation - PLDI 2016"

↪→
↪→

],
"original-title": [ ],
"deposited": { "date-parts": [[2017, 6, 24]],

"date-time": "2017-06-24T15:39:00Z",
"timestamp": 1498318740000 },

↪→
↪→

"score": 1,
"subtitle": [ ],
"short-title": [ ],
"issued": { "date-parts": [[2016]] },
"ISBN": ["9781450342612"],
"references-count": 26,
"URL":

"http://dx.doi.org/10.1145/2908080.2908115",↪→
"relation": { "cites": [ ] }

}
}

https://github.com/CrossRef/rest-api-doc
https://api.crossref.org/works/10.1145/2908080.2908115/
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Generated code

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct CrossRefMetadata {
status: String,
#[serde(rename = "message-type")]
message_type: String,
#[serde(rename = "message-version")]
message_version: String,
message: Message,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Message {
indexed: Indexed,
#[serde(rename = "publisher-location")]
publisher_location: String,
#[serde(rename = "reference-count")]
reference_count: i64,
publisher: String,
license: Vec<License>,
#[serde(rename = "content-domain")]
content_domain: ContentDomain,
#[serde(rename = "short-container-title")]
short_container_title: Vec<::serde_json::Value>,
#[serde(rename = "published-print")]
published_print: PublishedPrint,
#[serde(rename = "DOI")]
doi: String,
#[serde(rename = "type")]
type_field: String,
created: Created,
source: String,
#[serde(rename = "is-referenced-by-count")]
is_referenced_by_count: i64,
title: Vec<String>,
prefix: String,
author: Vec<Author>,
member: String,
reference: Vec<Reference>,
event: Event,
#[serde(rename = "container-title")]
container_title: Vec<String>,
#[serde(rename = "original-title")]
original_title: Vec<::serde_json::Value>,
deposited: Deposited,
score: i64,
subtitle: Vec<::serde_json::Value>,
#[serde(rename = "short-title")]
short_title: Vec<::serde_json::Value>,
issued: Issued,
#[serde(rename = "ISBN")]
isbn: Vec<String>,
#[serde(rename = "references-count")]
references_count: i64,
#[serde(rename = "URL")]
url: String,
relation: Relation,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Indexed {
#[serde(rename = "date-parts")]

date_parts: Vec<Vec<i64>>,
#[serde(rename = "date-time")]
date_time: String,
timestamp: i64,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct License {
#[serde(rename = "URL")]
url: String,
start: Start,
#[serde(rename = "delay-in-days")]
delay_in_days: i64,
#[serde(rename = "content-version")]
content_version: String,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Start {
#[serde(rename = "date-parts")]
date_parts: Vec<Vec<i64>>,
#[serde(rename = "date-time")]
date_time: String,
timestamp: i64,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct ContentDomain {
domain: Vec<::serde_json::Value>,
#[serde(rename = "crossmark-restriction")]
crossmark_restriction: bool,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct PublishedPrint {
#[serde(rename = "date-parts")]
date_parts: Vec<Vec<i64>>,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Created {
#[serde(rename = "date-parts")]
date_parts: Vec<Vec<i64>>,
#[serde(rename = "date-time")]
date_time: String,
timestamp: i64,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Author {
given: String,
family: String,
affiliation: Vec<Affiliation>,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Affiliation {
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name: String,
}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Reference {
key: String,
unstructured: String,
#[serde(rename = "DOI")]
doi: Option<String>,
#[serde(rename = "doi-asserted-by")]
doi_asserted_by: Option<String>,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Event {
name: String,
location: String,
sponsor: Vec<String>,
acronym: String,
number: String,
start: Start2,
end: End,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Start2 {
#[serde(rename = "date-parts")]
date_parts: Vec<Vec<i64>>,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct End {
#[serde(rename = "date-parts")]
date_parts: Vec<Vec<i64>>,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Deposited {
#[serde(rename = "date-parts")]
date_parts: Vec<Vec<i64>>,
#[serde(rename = "date-time")]
date_time: String,
timestamp: i64,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Issued {
#[serde(rename = "date-parts")]
date_parts: Vec<Vec<i64>>,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Relation {
cites: Vec<::serde_json::Value>,

}
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C.3 Steam Store News

API documentation: https://developer.valvesoftware.com/wiki/Steam_Web_API
Sample source: http://api.steampowered.com/ISteamNews/GetNewsForApp/v0002/?appid=
252950&count=2&maxlength=150

JSON Sample

{
"appnews": {

"appid": 252950,
"newsitems": [
{
"gid": "2079952210065770645",
"title": "DreamHack Atlanta Rocket League

Championship Preview",↪→
"url": "http://store.steampow-

ered.com/news/externalpost/steam_com-
munity_announce-
ments/2079952210065770645",

↪→
↪→
↪→

"is_external_url": true,
"author": "Dirkened",
"contents": "https://rocketleague.me-

dia.zestyio.com/DreamHack-
Atlanta.c6e1dc555a6eff57c623d9877706c9a5.jpg
With the conclusion of the FACEIT X
Games Rocket League ...",

↪→
↪→
↪→
↪→

"feedlabel": "Community Announcements",
"date": 1500498351,
"feedname": "steam_community_announcements",
"feed_type": 1,
"appid": 252950

},

{
"gid": "2472890725411073707",
"title": "RLCS Season 4 Kicks Off this

August",↪→
"url": "http://store.steampow-

ered.com/news/externalpost/steam_com-
munity_announce-
ments/2472890725411073707",

↪→
↪→
↪→

"is_external_url": true,
"author": "Dirkened",
"contents": "https://rocketleague.me-

dia.zestyio.com/rlcs_screen--1-
.c6e1dc555a6eff57c623d9877706c9a5.png
Just six weeks ago, we were
celebrating the Rocket League ...",

↪→
↪→
↪→
↪→

"feedlabel": "Community Announcements",
"date": 1500313284,
"feedname": "steam_community_announcements",
"feed_type": 1,
"appid": 252950

}
],
"count": 341

}
}

Generated code

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct SteamAppNews {
appnews: Appnews,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Appnews {
appid: i64,
newsitems: Vec<Newsitem>,
count: i64,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Newsitem {
gid: String,
title: String,
url: String,
is_external_url: bool,
author: String,
contents: String,
feedlabel: String,
date: i64,
feedname: String,
feed_type: i64,
appid: i64,

}

https://developer.valvesoftware.com/wiki/Steam_Web_API
http://api.steampowered.com/ISteamNews/GetNewsForApp/v0002/?appid=252950&count=2&maxlength=150
http://api.steampowered.com/ISteamNews/GetNewsForApp/v0002/?appid=252950&count=2&maxlength=150
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C.4 World Bank Indicator

API documentation: https://datahelpdesk.worldbank.org/knowledgebase/topics/125589
Sample source: http://api.worldbank.org/countries/no/indicators/NY.GDP.MKTP.CD?format=
json

JSON Sample

[
{ "page": 1, "pages": 2, "per_page": "50",

"total": 57 },↪→
[
{
"indicator": {
"id": "NY.GDP.MKTP.CD",
"value": "GDP (current US$)"

},
"country": { "id": "NO", "value": "Norway" },
"value": "386383919342.271",
"decimal": "0",
"date": "2009"

},
{
"indicator": {
"id": "NY.GDP.MKTP.CD",
"value": "GDP (current US$)"

},
"country": { "id": "NO", "value": "Norway" },
"value": "461946808510.638",
"decimal": "0",
"date": "2008"

},
{
"indicator": {
"id": "NY.GDP.MKTP.CD",
"value": "GDP (current US$)"

},
"country": { "id": "NO", "value": "Norway" },
"value": "400883873279.083",
"decimal": "0",
"date": "2007"

}
]

]

Generated code

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct WorldBankIndicator {
page: i64,
pages: i64,
per_page: String,
total: i64,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct WorldBankIndicator2 {
indicator: Indicator,
country: Country,
value: String,
decimal: String,
date: String,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Indicator {
id: String,
value: String,

}

#[derive(Default, Debug, Clone, PartialEq,
Serialize, Deserialize)]↪→

struct Country {
id: String,
value: String,

}

https://datahelpdesk.worldbank.org/knowledgebase/topics/125589
http://api.worldbank.org/countries/no/indicators/NY.GDP.MKTP.CD?format=json
http://api.worldbank.org/countries/no/indicators/NY.GDP.MKTP.CD?format=json
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Comparison of project setup with
dependencies in Rust and C++

Minimal project setup in Rust

1. Install the Rust toolchain:
curl https://sh.rustup.rs -sSf | sh

2. Create a new (binary) project:
cargo new --bin timer && cd timer

3. Add a dependency to the Cargo configuration file:
echo 'tokio-timer = "*"' >Cargo.toml

4. Write some actual Rust code:
$EDITOR src/main.rs

5. Build and run:
cargo run
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Minimal project setup in C++

1. Choose and install a C++ toolchain. What toolchains are available and how to
install them differs from platform to platform, and some may have a toolchain
installed. To keep things somewhat simple, installation is omitted here.

2. Choose and install a dependency manager. Throughout the years there have
been several C++ dependency manager projects that have come and gone, so
this choice is not entirely without risks. Without going into the details why, I
chose conan1. The rest of these steps are based on the conan “Getting started”-
guide2. Again installation depends somewhat on platform. For my part I in-
stalled it using homebrew3:
brew install conan

3. Choose and install a build tool. Since the conan guide uses CMake this is also
what we will use here. Again, installation method differs, but for my part:
brew install cmake

4. Make a project directory:
mkdir timer && cd timer

5. Make and write a conan configuration file:
$EDITOR conanfile.txt

6. Write some actual C++ code:
$EDITOR timer.cpp

7. Make and write a CMake configuration file:
$EDITOR CMakeLists.txt

8. Make a build directory:
mkdir build && cd build

9. Install dependencies:
conan install ..

1http://conan.io
2http://docs.conan.io/en/latest/getting_started.html
3Which itself would have to been installed if it was not so already.

http://conan.io
http://docs.conan.io/en/latest/getting_started.html
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10. Prepare build:
cmake ..

11. Build:
cmake --build .

12. Run the resulting program:
bin/timer
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