
Partially Ordered Sets with
Interfaces: A Novel Algebraic

Approach for Concurrency

Thesis submitted in partial fulfillment of the requirements
for the degree of

Master of Computer Science
to The Faculty of Mathematics and Natural Sciences,

at the University of Oslo.

Ratan Bahadur Thapa
Reliable systems group

Department of Informatics, University of Oslo

Supervisor:
Christian Johansen, University of Oslo

Co-supervisors:
Martin Steffen, University of Oslo

Uli Fahrenberg, Ecole Polytechnique, France

May 15, 2019

http://www.mn.uio.no/english/
http://www.uio.no
http://www.mn.uio.no/ifi/forskning/grupper/pma/
http://www.uio.ifi.no
http://www.uio.no
http://folk.uio.no/cristi/master_topics_prisacariu.php
http://heim.ifi.uio.no/~msteffen/
http://heim.ifi.uio.no/~msteffen/




i

Abstract

A partially ordered set, or poset for short, is a set (of events) together with a
partial order on it. Formally, a poset P is defined as an ordered pair (EP,�),
where EP is called the ground set of P and � is the partial order on EP. A
poset of events can be used to model both sequential and parallel behaviour.
For instance, we can represent two events that can execute in parallel by a
two-element poset with no order between the two events and their sequential
execution by a two-element poset with the two events ordered. The series-
parallel posets are restricted class of posets that are generated from single
event posets by a finite number of sequential and parallel compositions. The
isomorphic class of Σ-labelled series-parallel posets over a finite alphabet Σ
have been extensively studied as an algebraic model of concurrency.

We investigate posets with interfaces, or iposets for short, as a concurrency
model, and explore their language theoretic properties. In this model, an in-
terface is defined as the image of a monomorphism on the minimal and max-
imal events of the poset. Compared to series-parallel posets, iposets admit
richer algebraic properties. Further, we define axioms of domain operations
for iposet languages, which lead to a simple and natural algebraic approach
to modal logic based on equational reasoning. Such algebraic approaches
to modal operators are known to be suitable for automated reasoning, for
example, using tools like Isabelle.
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Chapter 1

Introduction

Pomsets [13] are a widely studied model of true concurrency. Pomset labels
the vertices of an underlying poset by letters to capture actions taking place
at particular events. A pomset over an alphabet Σ is defined as an isomor-
phic class of Σ-labelled posets, and those defined by single vertex posets are
called singleton pomsets. Pomsets are generalisation of words over an alpha-
bet in that letters may be partially ordered rather than totally ordered. This
generalisation of pomsets produces two kinds of words, linear words and
commutative words. Linear words can be generated from singleton pomsets
by using a finite number of non-commutative sequential operations whereas
commutative words by using a finite number of commutative parallel oper-
ations. This behavioural justification for the linear and parallel compositions
of actions based on sequential and parallel operations project pomsets a nat-
ural model of concurrency.

Pomset languages are sets of pomsets, and the class of pomset languages
generated by a finite number of sequential and parallel operations over sin-
gleton pomsets are called series-parallel (SP) or N-free pomsets [13, 32]. SP
pomsets have been extensively studied in the literature [1, 3, 17, 23, 24, 25]
for a language-theoretic model of concurrency. A pomset with a four element
set {a, b, c, d} defined by the following

a � c, a � d and b � d

non-trivial partial order relation is called a N-pomset as shown in Figure 1.1.
By definition, N-pomset does not belong to the class of SP pomsets. However,
N-pomset is not free in the broader spectrum of concurrency problems. It has
a natural appearance in various graph structures such as zigzag posets [35]

a b

c d

FIGURE 1.1: N-pomset
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and concurrency problems such as the bounded-buffer problem [22] as shown
in the Figure 1.2. The algebraic treatment of such N-pomset and their graph
structures [11] which are natural in concurrency modelling and computa-
tional science [2, 5] is the primary goal of this thesis.

a d f k

b c e j

Bounded-buffer

a f h

b e g k

Zigzag poset

FIGURE 1.2: Graphs that contain N-pomset structures

Furthermore, subsets of SP pomsets that are closed under Gischer’s sub-
sumption order [13] are called downward-closed SP pomsets. The downward-
closed SP pomsets generate a free language model of Concurrent Kleene Al-
gebra [17, 24] and confirm that the original axioms of Concurrent Kleene
algebra [14] are complete for the verification task of concurrent programs.
Moreover, the modal operators [8] derived from domain definitions of the
language model [7, 9] asymmetrically support computer-enhanced automated
verification of programs. Therefore, we are concerned with the domain def-
initions of such language model of Concurrent Kleene algebra that produce
an algebraic approach to modal operators, which is the second goal of the
thesis.

To address these stated goals, we present a language-theoretic model of posets
with interfaces, named iposets. Interfaces are an image of monomorphisms
on minimal and maximal events of posets. The image of monomorphisms
on minimal events of posets define the source interfaces of iposets. Similarly,
the image of monomorphisms on maximal events of posets define the tar-
get interfaces of iposets. This definition of interfaces surprisingly generates
a rich series-parallel compositionality of iposets compared to SP posets. The
languages of iposets support definition of domain operations based on the
relational semantics of their source and target interfaces.

We now outline the remainder of this chapter. We shortly state our moti-
vation for posets with interfaces and summarise the chapter by presenting
contributions and the organisation of the thesis.

1.1 Motivation for the posets with interfaces

We propose a language-theoretic model of posets with interfaces for mod-
elling concurrency inspired by Pratt’s [32, 33] and Gischer’s [13] founda-
tional work on partially ordered multisets, pomsets. Our motivation for the
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language-theoretic model of iposets lies in the following facts.

1.1.1 Partial order

Pratt [32, Theorem 1] advocates our motivation for partial orders. The par-
tially ordered sets can be expressed as a set of its linearizations. The lineariz-
ability of partially ordered sets implies that the existing linear order model
of computation can be extended to the partial orders by a adding shuffle
operator in their associated language theory as shown by Gischer [13]. Lin-
earization gives partial orders the same representational ability as those of
linear orders with concurrency.

Further, partial order models of concurrency confer partial orders as a subset
of linear orders that adopts the causal structure of events in an interval order
rather than a complete linear order of time. The interval order representa-
tion of events implies that partial orders are more natural to concurrency
modelling compared to the linear order model of computation. For instance,
take an example of orthocurrence [34] composition of pomsets which clearly
break downs the linear order compositionality of computation. A similar ar-
gument can be made for an interleaving model of pomsets unless pomsets
are a singleton.

1.1.2 Domain

The domain operations [7, 9] on language semirings produce a straightfor-
ward algebraic approach to modal logic that enables computer enhanced
automated analysis and verification of programs [8]. The Boolean algebra
extensions of language semirings which model guards in the language def-
inition such as Kleene Algebra with tests [21], Synchronous Kleene algebra
(with tests) [36] and Concurrent Kleene algebra with tests [15] are not effi-
cient for automated reasoning compared to the domain operations on lan-
guage semirings. Therefore, we are concerned with such domain definitions
of language models that enables automated verification of concurrent pro-
grams.

1.2 The contributions of this thesis

Chapter 2 of the thesis is dedicated to an overview of Kleene Algebra [19].
We focus on domain operations [7, 9] of language semirings for modal logic
extensions based on the equational theory of Kleene algebra.

The contribution of the thesis starts with the presentation of posets with in-
terfaces in Chapter 3. We define posets with interfaces including their series
and parallel compositions in Section 3.3. The main contributions of the thesis
are presented in Chapter 4. We present algebraic results of iposets theory that
include an equational theory of iposets language and their structured the-
ory under subsumption order. Further, we axiomatise domain operations for
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iposets languages and derive the corresponding modal operators in Chap-
ter 5. We give concluding remarks on iposets theory in Chapter 6.

1.3 The organisation of this thesis

Readers may notice that the thesis presents specialised literature in algebra
and order theory inclined towards an algebraic approach to modal logics for
automated verification of programs. We expect that the readers are famil-
iar with the basics of order theory and Kleene algebra. Therefore, we will
keep the rest of the chapters carefully brief with precise technical details and
theoretical presentation.

Chapter 2 presents Kleene algebra and its language theoretic model. We
begin with a complete set of Kleene algebra axioms and brief remarks on
Kleene algebra completeness of language models. Further, it presents axioms
of Kleene algebra with domain [9] based on language semirings.

Chapter 3 presents definition of posets with interfaces and their series and
parallel compositions. We begin with the definition of posets, and their se-
quential and parallel compositions. The subsequent section presents a basic
categorical [26] overview of morphisms theory along with the horizontal and
vertical compositions corresponding to the series and parallel compositions
of posets.

Chapter 4 presents an algebraic theory of iposets that includes axioms of
iposets algebra and languages including the order structure of iposets under
subsumption.

Chapter 5 presents axioms of domain operations for iposet languages and
their algebraic approach to the modal operators.

Chapter 6 presents concluding remarks on the iposets theory.
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Chapter 2

Background

In this chapter, we present theoretical results of Kleene algebra [19] and con-
struction of its language theoretic models. In remark, we will show how
a Kleene algebra completeness result for a language model can be derived.
Here, we use some examples to illustrate applications of Kleene algebra. The
brief exposition of Kleene language semirings and their domains axioms pre-
sented in this chapter serve as cornerstone for an understanding of develop-
ment in language theory in Chapter 4 and their domain axiomatization in
Chapter 5.

2.1 Kleene algebra

Definition 1. A semiring is a structure (S,+, ·, 0, 1) such that (S,+, 0) is a com-
mutative monoid, (S, ·, 1) is a monoid and these two monoids communicate through
distributive law i.e. multiplication is left and right distributive with respect to addi-
tion, for all a, b, c ∈ S;

a(b + c) = ab + ac and (a + b)c = ac + bc.

Zero 0 is an annihilator with respect to multiplication.

a0 = 0 = 0a.

If 0 = 1 then a = a1 = a0 = 0 for all a ∈ S, i.e., semiring S is trivial. Therefore,
we always assume 0 6= 1.

Definition 2. A semiring S is idempotent iff addition a + a = a holds for all
a ∈ S. A dioid is an idempotent semiring.

A partial ordering relation≤ over a dioid S forms a semilattice with 0 as least
element and addition as join,

a ≤ b⇔ a + b = b
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for all a, b ∈ S. A addition and multiplication are monotonic with respect to
the partial order ≤.

Definition 3. An elements of a dioid S are called subidentities if

a ≤ 1, for any a ∈ S.

Let sid(S) be the set of subidentities of dioid S. The subidentities of a dioid
forms a dioid where multiplication produce a lower bound operation. For
example, for any a, b ∈ sid(S) then ab forms a lower bound of a and b

a = a1 ≥ ab ≤ 1b = b.

Multiplicative idempotent sid(S) of a dioid S form a bounded distributive
lattice. For example, for any a, b, c ∈ sid(S) with c ≤ a and c ≤ b then
c = cc ≤ ab where ab forms greatest lower bound of a and b. Similarly,

a(b + c) = ab + ac
a + bc = (a + b)(a + c)

holds by the dioid distributive law.

Definition 4 (Kleene algebra). A Kleene algebra is a structure (K,+·, ∗, 0, 1),
dioid expanded by a star operation such that (K,+, ·, 0, 1) is a dioid and, for all
a, b ∈ K satisfies following equations and equational implications

1 + aa∗ ≤ a∗ (2.1)
1 + a∗a ≤ a∗ (2.2)
b + ax ≤ x → a∗b ≤ x (2.3)
b + xa ≤ x → ba∗ ≤ x (2.4)

Axioms (2.5)-(2.6) are equivalent to the star induction axioms (2.3)-(2.4). They
explain that the ∗ behaves similar to asterate operator of formal language theory.

ab ≤ b→ a∗b ≤ b (2.5)
ba ≤ b→ b∗a ≤ b (2.6)

The≤ refers to partial order on K, and + operation forms a lower bound with respect
to the partial order ≤ on K

a ≤ b↔ a + b = b.

Remark 1. All the operators of Kleene algebra are monotone with respect to ≤, i.e.,
if a ≤ b then ac ≤ bc, a + c ≤ b + c and a∗ ≤ b∗ for any a, b, c ∈ K.

Axioms (2.1)-(2.4) model the ∗ operation similar to the reflexive transitive
closure operator of relational algebra. Axioms (2.1)-(2.2) and (2.3)-(2.4) are ∗
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unfold and induction axioms. The implications (2.3)-(2.4) denote left-hand
substitution of a∗b and ba∗ for x, i.e., a∗b and ba∗ are the least pre-fixed point
of the following monotone functional map,

x 7→ b + ax and x 7→ b + xa.

A Kleene algebra is * -continuous if it satisfies the infinitary condition

ab∗c =
⋃

n≥0
abnc (2.7)

where,

b0 def
= 1

bn+1 def
= bbn.

Equation (2.7) is conjunction of infinitely many equational axioms

abnc ≤ ab∗c, n ≥ 0

and infinitary Horn formula
∧

n≥0
abnc ≤ x → ab∗c ≤ x. (2.8)

The ∗-continuity (2.7) implies (2.3)-(2.6) in the presence of other axioms above,
and strictly strong in the sense that there exist Kleene algebras that are not
∗-continuous [20]. The rest important theorems of kleene algebra are

(ab)∗a = a(ba)∗ (2.9)
ax = bx → a∗x = xb∗ (2.10)
(a + b)∗ = a∗(ba∗)∗ (2.11)

a−1b∗a = (a−1ba)∗ iff a ∈ K with a−1. (2.12)

Remark 2 (Kleene algebra completeness of a language model).

Let Σ∗ be the set of finite words over finite alphabet Σ. Then, the structure

LAN(Σ) = (2Σ∗ ,∪, ., ∅, {ε})
where

2Σ∗ denotes the set of languages over Σ,
∪ denotes set union,
uv denotes concatenation of u and v such that L1.L2 = {uv | u ∈ L1 ∧ v ∈ L2},
∅ denotes the empty language, and
ε denotes the empty word.
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LAN(Σ) is a language dioid. The language dioid LAN(Σ) can be extended to
Kleene algebra by

L∗ = {w1w2.....wn | n ≥ 0∧ wi ∈ L},

called Kleene algebra over Σ. The set that can be obtained from finite subsets
of Σ∗ by a finite number of regular operations (∪, ., ∗) are regular events of Σ∗.
The equational theory of regular subsets is called algebra of regular events of
Σ∗. Let T be the finitely generated term algebra from the generator Σ∪{0, 1}.
The syntactic terms t of T can be generated by the following grammar, for
a ∈ Σ

t ::= a | 0 | 1 | t + t | t.t | t∗.

The natural homomorphism h from term algebra s, t ∈ T over the Kleene
algebra generated by Σ onto the algebra of regular events over Σ∗ is given by

h(a) ={a}
h(1) = 1h iff {1h = {ε}}
h(0) = ∅

h(s + t) = h(s) ∪ h(t)
h(s.t) = h(s).h(t)

h(s∗) =
⋃

n≥0
h(s)n.

A subset L of Σ∗ is a rational language if L = h(t) for some Kleene algebra
term t. The subalgebra hΣ = {h(t) : t ∈ T(Σ)} is the algebra of rational
languages, and hΣ is isomorphic to the free Kleene algebra over Σ.

Remark 3 (Regular languages).

A subset L of Σ∗ is a regular language if it is accepted by a finite automaton,
and the Kleene theorem states that a subsets of Σ∗ is a rational language iff
it is a regular language. A subset L of Σ∗ is a recognizable language if it is
recognized by a finite-index congruence algebra [27], and the Myhill-Nerode
theorem states that a language is regular iff it is recognizable.

Now, we present some examples of Kleene algebra.

Example 1. Consider the structure over a set Σ

R(Σ) = (2Σ×Σ,∪, ◦, ∅, i),
where

2Σ×Σ denotes the set of binary relationR over Σ,
◦ denotes relational product,
∅ denotes the empty relation, and
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i denotes the identity relation i = {(a, a)|a ∈ Σ}.

R(Σ) is called a relational dioid over Σ. The R(Σ) relational dioid can be
extended to a Kleene algebra over Σ by defining R∗ for all relations R ∈
R(Σ)

R∗ =
⋃

x≥0
Rx withR0 = i andRx+1 = R ◦Rx.

Example 2. Let Σ be a set of vertices of a graph. Then, subsets of Σ∗ can be
seen as the set of possible paths in graph, and ε as the empty path in graph.
The fusion of two paths can be defined as, for u, v ∈ Σ∗ and x, y ∈ Σ

(u.x)} (y.v) =

{
u.x.v if x = y
undefined otherwise

describing the gluing of paths at a common end points. This gluing } oper-
ation can be extended to the subsets of Σ∗ by

U } V = {u } v|u ∈ U ∧ v ∈ V and u } v defined}.

The structure P(Σ) = (2Σ∗ ,∪,}, Σ ∪ {ε}) defines a dioid, called path dioid.
The path diod P(Σ) can be extended to a Kleene algebra by a following pro-
cedure like relation dioid in Example 2.

2.2 Kleene algebra with tests

Definition 5 (Test semiring). A test semiring is a dioid S in which a boolean
algebra B is embedded by a map h : B→ S such that, for any a, b ∈ S

h(0) = 0
h(1) = 1

h(a t b) = h(a) + h(b)
h(a u b) = h(a).h(b)

where the operators +, ., 0 and 1 of the dioid S defines join, meet, falsity and truth
on the element of B.

Definition 6 (KAT). A Kleene algebra with tests (KAT) is a Kleene algebra with
an embedded Boolean subalgebra. It is a two-sorted structure

(K, B,+, ·, ∗,−, 0, 1)

where − is a unary operator defined only on element of B, such that

B ⊆ K,
(K,+, ·, ∗, 0, 1) is a Kleene algebra, and
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(B,+, ·,−, 0, 1) is a Boolean subalgebra.

The other operators +, ., 0 and 1 in the KAT structure play two different roles;
they refers to choice, composition, fail and skip when applied to arbitrary el-
ement of K and give meaning of join, meet, falsity and truth on the element
of B as described in the Definition 5 above.

Definition 7 (Boolean algebra). Boolean algebra B admits a boolean negation op-
erator ¯ defined on the element of B and satisfies following axioms in addition to the
Kleene algebra axioms, for any b, c ∈ B

b ≤ 1 (2.13)

b + b̄ = 1 (2.14)

bb̄ = 0 (2.15)
bc = cb (2.16)

The meet operator · acts as conjunction when applied to elements of B whereas
join operator + acts as disjunction. Conjunction implies a test ab succeeds iff
both a and b succeed. Similarly, disjunction implies a test a + b succeeds iff
either one of a and b succeeds.

The axiom b ≤ 1 for all b ∈ B, intuitively implies that the test semiring can
be obtained from Kleene algebra semiring K [6] by test(K) of sid(K) with
greatest element 1 and least element 0 such that

test(K) = {b ∈ K|b ≤ 1}. (2.17)

Although test(K) in Equation (2.17) over Klene semiring K seems plausible in
relational algebra, test(K) is not always extendable to a Boolean algebra [21,
Theorem 4]. For instance, modelling of identity relation corresponding to the
pre-post or input-out conditions where complement of such identity relation
will be undecidable is a counterexample to Cohen’s construction of Boolean
algebras [6]. Therefore, elements of boolean algebra in KAT, i.e. {0, 1}, are
explicitly defined to be a simple predicate that are easily decidable.

2.2.1 Language model of Kleene algebra with tests

KAT is defined over a free Kleene algebra K on generator Σ with an embed-
ded Boolean subalgebra B. The Σ and B are finite disjoint set of actions and
tests.

Let TΣ,B denote the set of all terms over Σ ∪ B. Similarly, TΣ denotes all K
terms over Σ that represent actions and TB denotes all Boolean term over B
that represent tests. The language theoretic model of KAT is based on the
idea of guarded terms TΣ,B that can be obtained by inserting terms TB among
the terms TΣ.
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Definition 8 (Guarded string). A guarded string (GS) over αi ∈ B and pi ∈ Σ
can be expressed by (1GΣ)∗1G such as

{α0p1α1p2...pnαn ≥ 0} = (Σ ∪ B)∗,

where 1G denotes the multiplicative identity over TB. If U, V ⊆ GS then

U } V
def
= {u } v|u ∈ U, v ∈ V},

where the partial binary operation } on GS can be defined as

(ux)} (yv) =

{
uxv if x = y
undefined otherwise.

The operation } is similar to string concatenation except that two interme-
diate atoms are glued into one if the terminal atoms of the first string is the
same as the initial atom of the second string. The identity of glued product
is 1G.

Now, we present remarks on KAT language model and their completeness
result.

Remark 4. Consider the structure over Σ and B

AΣ,B = (2GS, 21G ,∪,},−, ∅, 1G)

where,
Σ and B are finite disjoint sets of actions and tests,

21G is a set-theoretic Boolean algebra.

The structure AΣ,B can be extended to free ∗-continuous Kleene algebra with
tests by defining ∗ (infinite union) over GS. The infinite union over U, V, S ∈
GS can be expressed as

U } S∗ } V =U } (
⋃

n≥0
Sn)} V

⋃

n≥0
U } Sn } V.

Let A be subalgebra of AΣ,B generated by following GS element

{αpβ | α, β ∈ 1G}, p ∈ Σ
{α ∈ 1G | α ≤ b}, b ∈ B.

Then,A is the smallest subalgebra of AΣ,B containing set Σ and B, and closed
under operations of AΣ,B.
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Remark 5. The Kleene algebra with tests over actions Σ and tests B is the
homomorphic mapping onto guarded terms TΣ,B generated by Σ ∪ B. The
homomorphism

h : TΣ,B −→ AΣ,B

can be defined inductively as follows,

h(p) = {αpβ | α, β ∈ 1G}, p ∈ Σ
h(b) = {α ∈ 1G | α ≤ b}, b ∈ B

h(p + q) = h(p) ∪ h(q)
h(pq) = h(p)} h(q)

h(1) = 1G

h(0) = ∅

h(b) = 1G − h(b)
h(p∗) = h(p)∗.

A subset L of (Σ ∪ B)∗ is a rational guarded language if L = h(t) for some
guarded term t ∈ TΣ,B. The subalgebra hΣ,B = {h(t) : t ∈ TΣ,B} is the
the algebra of rational guarded languages, and hΣ,B is isomorphic to the free
Kleene algebra with tests over Σ ∪ B.

Example 3 (KAT over relational structure).

Consider a relational structure over set Σ ∪ B where Σ and B denote set of
actions and tests as given in Definition 8 above

RΣ,B = (2GS×GS, 21G ,∪, ◦, ∅, 1G)

where,

2GS×GS denotes the set of binary relationR over GS,
◦ denotes relational product,
∅ denotes the empty relation,

1G denotes the identity relation, and

(21G ,∪, ◦, ∅, 1G) substructure is a Boolean algebra of subsets of 1G.

The relational dioid RΣ,B can be extended to Kleene algebra by defining R∗
for all relationsR ∈ RΣ,B. Therefore, all RΣ,B relational algebra with tests are
free Kleene algebra with tests over Σ ∪ B.

2.3 Kleene algebra with domain

KAT subsumes propositional Hoare logic. However, it is not rich enough
to admit the structure theory of modalities that occurs in popular formalism
such as dynamic and temporal logic. Kleene algebra with domain (KAD)
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close this gap between KAT including Kleene algebra and various modal log-
ics by defining an algebraic approach to the modal logics based on equational
reasoning. KAD generates modal operators based on the axioms of domain
operations and provides partial correctness semantics of programs [29] in wp
style and encodings of Hoare logic.

Definition 9 (Test semiring). A test semiring is a composite structure (S, B),
where B is a Boolean algebra embedded into a dioid S such that join and meet op-
erations correspond to addition and multiplication. The B contains only a subset
of elements in S that are below 1, and the Boolean operations are restrictions of the
semiring operations to B. Since the elements of B defines tests on S, they can be
expressed as test(S). Similarly, a test semiring is a KAT if the semirings is also a
Kleene algebra, where all tests p ∈ B satisfy p∗ = 1.

The domain 1 of an action denotes the set of states from which action can ex-
ecute. The domain operations in KAD are initially axiomatised based on test
semiring [7] instead dioid [9] because of its simplicity and naturalness. One
reason is the domain elements in test semirings essentially possess a boolean
structure that gratifies multiplicative idempotent property of least left pre-
servers and greatest left annihilator, which is not straightforward in the dioid
without a test. Another reason is an algebraic extension of domain based on
the dioid such as quantiles and relation algebras are not language equiva-
lence to the KAT. The test semirings in KAT is entirely focused on first-order
approach which is essential and straightforward for modelling the usual con-
structs of sequential programming.

Definition 10 (Domain over test semiring). The domain operation d : S → B
over test semiring (S, B) satisfies following axioms, for all x, y ∈ S and p ∈ B

x ≤ d(x)x (2.18)
d(px) ≤ p (2.19)

d(xd(y)) ≤ d(xy) (2.20)

It is clear that these axioms force the embedded Boolean algebra B to be max-
imal, i.e., the complemented subidentity of S must be in B. The Boolean al-
gebra B in this definition of the domain is not free, B is embedded into S

1 Let h be a function from X to Y, then the inverse image of a set Z ⊆ Y under h is the
subset of X defined by

h−1(Z) = {x ∈ X | h(x) ∈ Z}
The inverse image of y ∈ Y, denoted by h−1(y), is called the fiber over y. Lifting definition
of inverse image to binary mapping h : 2Σ → 2Σ for Z ⊆ Σ over the power set of Boolean
algebra 2Σ, where Σ = {x, y, ...} represent a finite set of states. h−1(z) represent the set of
states which are connected to Z by h, called the domain of h over Z. Similarly, an antidomain
of h over Z defined by

h̄−1(Z) = {x ∈ Σ | h(x) /∈ Z}
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forming a subalgebra which yields a domain operation of type d : S→ B.

Corollary 1. Let S be a dioid and B is a Boolean algebra. Then d(S) contains the
greatest Boolean subalgebra of S bounded by 0 and 1, i.e., B ⊆ d(S).

However, the property "x is a domain element" can be expressed internally in
the language of semirings as observed by Cohen [6]. The Cohen observation
implies that the domain elements can be expressed internally without typ-
ing constrained. The following example explains the internal [9] definition
of domain element without the typing constrained.

Example 4. The domain d(R) of a binary relation R ⊆ K× K is an endomor-
phism on the relation semiring 2K×K given by

d(R) = {(a, a) ∈ K× K : (a, b) ∈ R for some b ∈ K}.

Here d(R) encodes a subset of the identity relation on K, more explicitly it
can be defined as

d(R) = R ◦U ∩ IK,

where U and IK denotes the universal and identity relation over K. R ◦ U
models all the inputs-outputs relation R over K, and an intersection with IK
projects R ◦U to the set of pairs (a, a) with (a, b) ∈ R. Further, this observa-
tion can be simplified over P ⊆ 2K under R ⊆ K × K in relation semirings
by

〈R〉P = {(a, a) ∈ K× K : (a, b) ∈ R for some b ∈ P}
= d(R ◦ P).

The structure (IK, (〈R〉 : R ⊆ K× K)) with endomorphism 〈R〉 : IK → IK on
the identity relation IK over K forms a Boolean algebra similar to Jonsson and
Tarski [16], and supports standard modal semantics based on kripke frames
and labelled transition system. Logically, d(R ◦ P) demonstrate a mapping
d : K → 2B analogous to KAT but without typing constraints, where B is a
Boolean algebra. To be precise, the set d(R ◦ P) is an inverse image of P under
R.

Definition 11 (Domain over dioid). The domain operation d : S→ S over a dioid
S satisfies following axioms, for all x, y ∈ S

d(0) = 0 (2.21)
d(x) + 1 = 1 (2.22)

x + d(x)x = d(x)x (2.23)
d(xy) = d(xd(y)) (2.24)

d(x + y) = d(x) + d(y) (2.25)
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By Axiom 2.21 domain is strict, Axiom 2.22 domain elements are subidenti-
ties, by Axiom 2.23 and Axiom 2.24 domain elements are left preservers and
local, and by Axiom 2.25 domain is additive. By duality, it requires that the
opposite of all these axioms of domain semirings should hold in codomain
semirings [7].

The elements x, y ∈ d(S) of some domain semiring d(S) are called Boolean
elements if they meet these three conditions

x + y = 1,
xy = 0 and
yx = 0.

These axioms implies x and y are complement of each other. Let BS denote
the set of all complemented elements in S, then by definition (BS,+, ., 0, 1)
forms a Boolean semiring correspond to dioid S. By duality, this result of
domain semirings can be translated into codomain semirings. However, this
duality does not hold in the domain definition over dioid due to the absence
of Boolean complements as pointed out by Kozen and Smith [21], conse-
quently, that leads to the failure of Galois connection [29]. Thus, antidomain
is introduced [9] in order to reconcile a notion of complements in domain
definitions over diod .

Definition 12 (Antidomain). The antidomain operation a : S → S over a dioid S
satisfies following axioms, for all x, y ∈ S

a(x) ≤ 1 (2.26)
a(x)x = 0 (2.27)

a(0) = 1 (2.28)
a(xy) = a(xd(y)) (2.29)

a(x + y) = a(x)a(y) (2.30)

Antidomain of an action denotes the set of states from which it cannot exe-
cute, and naturally produce the complement of domain operations. Axioms
of antidomain can be obtained by complimenting domain axioms.

Definition 13 (Boolean semiring). A dioid S is a Boolean semiring iff it can be
extended by a domain and an antidomain operation a : S→ S that satisfies

d(x) + a(x) = 1

d(x) = a2(x) and
d(x)a(x) = 0

These axioms of Boolean semiring state that domain semirings including
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Boolean semirings, are entirely recoverable from the definition of antido-
mains over dioid by stipulating domain and antidomain elements comple-
ment of each other. This definition of antidomains a(S) over dioid S defines
KAD as a composite structure (S, a(S)), where a(s) defines test(S) on dioid
S equivalent to the domain operations over test semiring in Definition 10 but
without the typing constraints.
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Chapter 3

Posets with interfaces

In this chapter, we begin with a brief exposition of partial order relations
and partially ordered sets, posets. We explain posets and their structure with
some examples and remarks including definitions for their series and paral-
lel compositions. In subsequent section, we shortly present categorical the-
ory of morphisms and 2-category with vertical and horizontal compositions
defining interchange law. We keep exposition brief and precise, unless we
introduce some non-standard notions or the new definitions, for a good un-
derstanding of development in the succeeding Section 3.3.

3.1 Posets

Definition 14 (Relations). Let P be a finite set of vertices. If R ⊆ P× P then R
is a binary relation on P, denoted by (u, v) ∈ R. R is a preorder or quasi-order
relation if it is reflexive and transitive. R is an equivalence relation if it is reflex-
ive, symmetric, and transitive. R is a partial order relation, denoted by �, if it is
reflexive, anti-symmetric, and transitive. Similarly, R is a linearly order relation if
it is reflexive, anti-symmetric, transitive and comparable, i.e., a partial order relation
with requirement that each u, v in P with u 6= v, either (u, v) ∈ R or (v, u) ∈ R.

Example 5 (Binary Relation). Let have a look at binary relations R ⊆ P× P
in Figure 3.1. We can find four different ways to express R : as a set, as a
bipartite graph, as a directed graph and as an incidence matrix. Each of them
have a different context, and yet are completely equivalent. For instance,
the bipartite view is appropriate when we are interested in matching and
incidence matrix is useful when we are interested in translating one context
into another.

Let ∼ be an equivalence relation on finite set P defined by rule such that
u ∼ v iff (u, v), (v, u) ∈ R. Moreover, if u ∼ u′ and v ∼ v′ then (u, v) ∈ R iff
(u′, v′) ∈ R. Equivalence relations ∼ on a set P generate a quotient set P/∼
defined by

P/∼ = {[u] ∼ v ∈ P}
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a b c( )a 1 1 0
b 0 0 1
c 0 0 1

{(a, a), (a, b), (b, c), (c, c)}

b

a c

a a

bb

c c

FIGURE 3.1: Different representation of binary relations

where P/∼ denotes set of equivalent classes and [u] is the equivalence class
of u in P. It explains that every equivalence relations yield partitions, and
every partition yields an equivalence relation in a set.

Example 6 (Equivalence relation and partition). Let h : P→ Q be a function,
and f denotes the collection of fibers of h which can be defined as follows

f = {h−1({h(x)}) | x ∈ P}.

In short, f is the collection of inverse image of elements of the range of h.

P Q

p

q

r

s

a

b

c

FIGURE 3.2: Partition

Suppose, h : {p, q, r, s} → {a, b, c} such that h(p) = h(q) = a and h(r) =
h(r) = b. Then, h−1{h(p)} = h−1{h(q)} = h−1({a}) = {p, q} and h−1{h(r)} =
h−1{h(s)} = h−1({b}) = {r, s}. So, f = {{p, q}, {r, s}} is a partition of
P = {p, q, r, s}. It is immediate that every equivalence relation yields a parti-
tion and every partition yields an equivalence relation.
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Now, we can define the equivalence classes u ∼ v as follows

[u]∼ = {v ∈ P | v ∼ u} = {v ∈ P | h(v) = h(u)} = h−1({h(u)}),

where [u]∼ denotes an equivalence class in P, i.e., the set of all the elements
of P that are related to u. This implies that fibers of h are precisely ∼ equiva-
lence classes.

Remark 6 (Partial order relation). P/∼ over a finite set P are order isomor-
phic class of preorders. Preorders are more general than equivalence rela-
tions and (non-strict) partial orders, both of which are special cases of a pre-
order. An anti-symmetric preorder is a partial order and a symmetric pre-
order is an equivalence relation. This shows how ’preorder or quasi-order’
generalised; it can be made into a partial order by taking a quotient of equiv-
alent relations. For example, if R is a quasi-order relation on a set P then
the ∼ equivalence relation on P, which is a canonical quotient P/∼ of P, de-
scends R to a partial order relation on P/∼.

Definition 15 (Poset). A poset P is a finite set of vertices EP, whose elements are
called event, together with a partial order relation �⊆ EP × EP.

Definition 16 (Parallel product). Given two posets P = (EP,�P) and Q =
(EQ,�Q) such that |EP| ∩ |EQ| = ∅, their parallel product ⊗ is the poset

P⊗Q = (EP t EQ,�P⊗Q)

where u, v ∈ (EP t EQ) such that

u �P⊗Q v iff u �P v or u �Q v.

Here, t denotes the disjoint union (or coproduct) of sets. Every discrete poset
[n] is parallel product of singleton posets

[n] = [n− 1]⊗ [1],

where posets with single vertex |EP| = 1 are called singleton posets. Note
that the parallel product of isomorphic posets are isomorphic, and that [n +
m] is isomorphic to [n] ⊗ [m]. For each n, m, we introduce a (“standard”)
isomorphism φn,m : [n + m]→ [n]⊗ [m] given by the equation

φn,m(i) =

{
i[n] if i ≤ n ,
(i− n)[m] if i > n .

(3.1)

Definition 17 (Sequential product). Given two posets P = (EP,�P) and Q =
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(EQ,�Q) such that |EP| ∩ |EQ| = ∅, their sequential (or concatenation) prod-
uct is the poset

PQ = (EP t EQ,�PQ)

where u, v ∈ (EP t EQ) such that

u �PQ v iff u �P v or u �Q v or u ∈ EP and v ∈ EQ.

Definition 18. An element u of a poset P = (EP,�P) is called maximal event iff
@v ∈ EP such that u �P v,

{u ∈ EP | u �P v such that @v ∈ EP}.

The u is called top or maximum element of P if v �P u for all v ∈ EP. Dually, u is
minimal event iff @v ∈ EP such that v �P u,

{u ∈ EP | v �P u such that @v ∈ EP}.

The u is called the bottom or minimum element of P if u �P v for all v ∈ EP.

It is possible that a poset might have one or more or no maximal event at all.
A empty poset has no maximal event. However, a non-empty finite poset
always at has at least one maximal element that can be found by choosing
any element u in set and replacing it by an element v iff u � v, and repeating
until u � v. The process terminates after a finite step due to irreflexive and
transitive laws. Dually, minimal elements.

Example 7. Figure 3.3 illustrates the structure of poset P, Q and R. By Def-
inition 18, the set of vertices (a, b) ∈ P and (a, b) ∈ Q denote minimal and
(c, d) ∈ P and (a, c) ∈ Q denote maximal events. However, (a, b) ∈ R denote
both minimal and maximal events. R is a discrete poset by definition given
by Equation (3.1).

a b

c d

P

a b

c

Q

a b

R

FIGURE 3.3: Poset

Remark 7. Here, one should clearly distinguish between the concept of max-
imum (resp. minimum) and maximal (resp. minimal) events in a poset.
Consider a poset P with a set of events {a, b, c, d} with ordering relation
a ≺ c, a ≺ d, b ≺ c and b ≺ d that consists of maximal (resp. minimal)
events but no maximum (resp. minimum) event.
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{}

{b}{a} {c}

{a, c}{a, b} {b, c}

{a, b, c}

FIGURE 3.4: Chains and antichains

For any events u, v in a poset (EP,�P) are called comparable events iff there
exists u �P v or v �P u, else incomparable i.e., neither u �P v nor v �P u.
Chains in poset (EP,�P) are subsets Q of P in which each pair of events are
comparable, i.e., Q are totally ordered subset of P. Similarly, antichains in P
are subsets Q of P in which each pair of events are incomparable, i.e., there
is no order relation between each pair of events in Q. Now, it is immediate
that a poset P can be expressed as a set of subsets Q of P based on chains and
antichains. The depth of a poset is the largest cardinality of the chains, and
width is the largest cardinality of the antichains.

Example 8. Illustrated by Figure 3.2, horizontal collection of set of events
such as {{a}, {b}, {c}} and {{a, b}, {a, c}, {b, c}} produce a set of antichains
whereas the vertical collection of set of events such as {{a}, {a, b}, {a, b, c}}
and {{a}, {a, c}, {a, b, c}} produce a set of chains.

Definition 19 (Pomset). A poset P = (EP,�P) with a labeling l : EP → Σ, is
called a Σ-labelled poset. A morphism h : P→ Q of Σ-labelled posets is a function
which preserves the ordering and labelling, i.e., for all u, v ∈ EP

u �P v implies h(lu) �Q h(lv).

Similarly, an isomorphism h : P → Q of Σ-labelled posets is a bijective morphism
h : EP → EQ such that, for all u, v ∈ EP

u �P v iff h(lu) �Q h(lv) and lP(u) = h−1(lQ(u)).

A pomset over Σ is an isomorphic class of Σ-labelled posets.
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Remark 8 (Isomorphism). A bijective morphism in totally ordered set defines
an isomorphism, however, this is not true in poset. For example, consider
two posets P and Q with following order structures

u �P v, u �Q u and v �Q v

then mapping h : EQ → EP defines bijective morphism but not an iso-
morphism. Here, one should make a clear distinction between the concept
of bijective morphism and isomorphism in posets. The bijective morphism
h : EQ → EP says that Q subsumes P, denoted by P 6 Q, whereas iso-
morphism Q = P says that the Q and P are equivalent posets i.e., P ≡ Q.
Therefore, a bijective morphism in posets is an isomorphism if and only if its
inverse is also a morphism.

3.2 Category theory

A category X represents a class of objects [26]. Each disjoint pair of objects
(x, y) in X can be expressed as set X(x, y) of morphisms. Morphisms can be
defined as a function f : x → y with an arrow connecting source x and target
y. Similarly, composition of morphisms is given by

X(x, y)× X(y, z) = X(x, z)
〈g, f 〉 = g. f

The composition of morphisms is defined to be associative. The unique mor-
phism 1x : x → x known as identity morphisms are units with respect to the
composition

X[x, x]× X[x, y] = X[x, y].

The types of f : x → y morphisms are defined as follows

Definition 20 (Isomorphism). f is an isomorphism if there is a morphism g :
y→ x such that g. f = 1x and f .g = 1y.

An isomorphism f is also called an invertible morphism and morphism g of
the definition is called the inverse, denoted as f−1. The set of invertible ele-
ments x ∈ X of morphism X(x, x) forms a group under composition, and the
group is called the automorphism group of x ∈ X. Therefore, a groupoid is a
category where every morphism is an isomorphism.

Definition 21 (Monomorphism). f is a monomorphism if there are morphisms
g : z→ x and h : z→ x such that ∀g, h : f .h = f .g =⇒ g = h.

z x y
g

h

f
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Definition 22 (Epimorphism). f is a epimorphism if there are morphisms g :
y→ z and h : y→ z such that ∀g, h : h. f = g. f =⇒ g = h.

x y z
f g

h

An object s of category X is called an initial iff for each x ∈ X there exist a
unique morphism m : s → x. Dually, an object t of category X is called a ter-
minal if for each x ∈ X there exist a unique morphism m : x → t. Similarly,
if s and s′ (respectively t and t′) are both initial (resp. terminal) objects, then
there is exist a unique isomorphsim i : s→ s′ (resp. i : t→ t′). In category of
groups, a singleton group is both initial and terminal. All objects in singleton
groups are groups and morphism f : x → y is group homomorphism. If
a category has two initial (resp. terminal) objects then these are necessarily
isomorphic.

Definition 23 (Opposite category). Given a category X, the opposite category
Xop is the category with same objects and identities as satisfying morphisms Xop(y, x) =
X(x, y) and composition Xop〈g. f 〉 = X〈 f .g〉 being reversed to X.

Definition 24 (Subcategory). A subcategory of a category X is a category X′

whose objects and morphisms form subsets of the objects and morphisms of X such
that source and target of composition in X′ agree with those in X.

X′ is defined to be full subcategory of X if X(x, y) = X′(x, y) for all x, y ∈ X,
and strictly full subcategory of X if it is a full subcategory such that given
x ∈ X there exist isomorphic x ∈ X′ (i.e. X′ ⊂ X where inclusion functor is
fully faithful X′ ⊆ X).

Definition 25 (Functor). A functor F : X → Y between two category X and Y, for
all x, y ∈ X, is given by

F : X(x, y)→ Y(F(x), F(y))

Functore should be compatible with composition F(g. f ) = F(g).F( f ) for a compos-
able morphism pairs 〈g, f 〉 of X and F(1x) = 1F(x). F is faithful if for any x, y ∈ X
the map F : X(x, y) → Y(F(x), F(y)) is injective, fully faithful if these map are
all bijective and surjecitve, i.e., if for any y ∈ Y there exist an x ∈ X such that F(x)
is isomorphic to y ∈ Y.

Definition 26 (2-category). A 2-category [4] X consist of X(x, y) such that f :
x → y and g : x → y are called horizontal morphisms, and morphisms between
horizontal morphisms u : f → g are called vertical-morphims in X(x, y). I( f )
denotes identity morphisms I : f → f in X(x, y).
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Here, v ◦ u : f → g defines vertical composition on vertical morphisms

u : f → h and v : h→ g in X(x, y).

x y

f

h

u ◦ x y

h

g

v = x y

f

g

v◦u

FIGURE 3.5: Vertical composition

Similarly, v.u : f ′. f → g′.g in X(x, z) defines horizontal composition on ver-
tical morphisms u : f → g in X(x, y) and v : f ′ → g′ in X(y, z).

x y

f

g

u . y z

f ′

g′

v = x z

f ′ . f

g′ .g

v.u

FIGURE 3.6: Horizontal composition

A 2-category can be expressed by triple such as

c = (u, f , g)

Here f and g are horizontal morphisms and u represents veritcal morphism
f → g in X(x, y). Then,

(u, f , g) . (v, f ′, g′) = (v.u, f ′. f , g′.g)

construct the horizontal composition shown in Figure3.6 where (u, f , g) :
x → y and (v, f ′, g′) : y→ z. Similarly,

(u, f , h) ◦ (v, h, g) = (u ◦ v, f , g)

construct the composition shown in the Figure 3.5 on the vertical morphisms
where (u, f , h) and (v, h, g) are vertical morphisms in X(x, y). Identity hor-
izontal morphisms f : x → x correspond to identity vertical morphism
I f : f → f . This means when morphisms f : n → X and vertical morphism
(u, h, g) : X → Y, then f .u is vertical mapping such that

I f .u : h. f → g. f
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Definition 27 (Interchange law). If u : f → h and v : h → g are vertical
morphisms in X(x, y), and simirlarly, r : f ′ → h′ and s : h′ → g′ in X(y, z), then

(s ◦ r) . (v ◦ u) = (s.v) ◦ (r.u) (3.2)

x y

f

g

v◦u . y z

f ′

g′

s◦r = x z

f ′ . f

h′ .h

r.u ◦ x z

h′ .h

g′ .g

s.v

FIGURE 3.7: Interchange law

defines interchange law. Moreover, for f ′ : y → z in Y(y, z), and u : f → g in
X(x, y) such that f : x → y and g : x → y

I f .I′f = I f ′. f (3.3)

I(1x).u = u (3.4)
u.I(1y) = u (3.5)

Remark 9. The interchange Equation (3.2) becomes inequality over weak class of
languages, known as weak exchange law.

3.3 Posets with interfaces

Definition 28 (Span). A span between objects x and y in any category X is defined
by a diagram of type

x
g←− z

f−→ y

for some z ∈ X. A span is a generalization of the notion of relation between two
objects of a category. The defined span is just a morphism f : x → y if g = 1 or
g : y→ x if f = 1. A span in the opposite category Xop is called a cospan in X.

Definition 29 (Cospan). A cospan between objects x and y in any category X is
defined by a diagram of type

x
g−→ z

f←− y

for some z ∈ X.

Definition 30 (iposet). A poset with interfaces (iposet) is a cospan

s : [n]→ (P,�)← [m] : t
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of monomorphisms s, t on poset P such that s[n] is the set of minimal and t[m]
is the set of maximal events in P. Monomorphims s, t on poset P are categorical
generalization of injective mappings with n, m ∈ N such that s : [n] → (P,�)
defines the source and t : [m]→ (P,�) defines the target of morphisms (s, P, t) .

The Definition 30 defines iposet as a set of morphisms (s, P, t) on poset P. We
use notation

(s, P, t) : n→ m

to denote an iposet on poset P. The isomorphisms f : P → P′ between
iposets such that

(s, P, t) : n→ m and (s′, P′, t′) : n→ m

is defined iff there exists

f ◦ P = P′, f ◦ s = s′ and f ◦ t = t′

as illustrated by Figure 3.8. Isomorphic iposets define the equivalence class
of iposets. The isomorphic iposets respect the order isomorphism over equiv-
alence class. This definition of isomorphisms can be lifted to the level of sets
of iposets. We allow more varieties in our iposets theory by clearly detaching
isomorphic iposets raised from symmetry over an iposet.

P

f

��

[n]
�.

s
>>

� o

s′   

[m]
P0

t
``

N n

t′~~

P′

FIGURE 3.8: Isomorphic iposets

Definition 31. An event x ∈ P in an iposet such that (s, P, t) : m→ n is called

external iff x ∈ s([m]) ∪ t([n]) , otherwise internal .

Definition 32 (Identity iposet). The (s, [n], t) : n → n morphisms on discrete
poset [n] defines an identity iposet. Similarly, (s, [n], t) : 0 → n defines left sided
identity iposet and (s, [n], t) : n → 0 defines right sided identity iposet depending
on the interfaces of a discrete iposet.

Example 9. Let P = (EP,�P, lP) be a labelled poset given by following set of
actions

EP = {a, b, c, d, e, f , g, h, i}
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with temporal precedence �P

a < c < e, b < c, b < d, g < h.

Consider an iposet (s, P, t) : 3→ 3 on poset P such that

s1 = a, s2 = f , s3 = g and t1 = e, t2 = d, t3 = i

denote the source and target interfaces illustrated by Figure 3.9.

s1

s2

s3

a c e

f b d

g h i

t1

t2

t3

FIGURE 3.9: An iposet

The nodes with a directed arrow represent events and their temporal prece-
dence from left to right in the iposet. The node inside the circle denotes the
external events and without circle denotes the internal events in the iposet.
The image of the source (resp. target) interfaces of iposet are illustrated by
arrows pointing external events in iposet. The si with i ≤ 3 and ti with i ≤ 3
are monotonic function with i increasing from top to bottom; denote par-
ticular ith monotone mapping on the external events of P. The morphisms
(s, P, t) : 3 → 3 on poset P denotes a set of iposets shown in Figure 3.10 and
3.9. We see them as variety of iposets (s, P, t) : 3 → 3 instead equivalent
symmetries.

Symmetry shuffles the events of underlying iposets along with their interface
injections, which is contrary to the definition of an iposet. It is clear that
interfaces of an iposet are an image of injective and monotonic mappings on
the external events of poset, in an increasing order from top to bottom, as
presented in Figure 3.9. It defines interfaces as tuples denoting a sequence of
events.

s1

s2

s3

a c e

f b d

g h i

t1

t2

t3

s1

s2

s3

a c e

f b d

g h i

t1

t2

t3

s1

s2

s3

a c e

f b d

g h i

t1

t2

t3

FIGURE 3.10: Symmetries of labelled iposet from Figure 3.9

Therefore, if we reset the interfaces of an iposet in Figure 3.10 according to
the definition of iposets, they produce a set of labelled iposets given in Fig-
ure 3.11.
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FIGURE 3.11: Iposets

Remark 10 (Variety of iposet). The iposets (s, P, t) : n → m on poset P of
Example 9 generate following class of labelled iposets listed below. Suppose,
Pn = {a, b, f , g, i} and Pm = {e, d, f , h, i} denote set of minimal and maximal
events of P. Then,

• (s, P, t) : 0 → 0 denotes an unique class of iposets with zero source
and target interface. The s : 0 → Pn and t : 0 → Pm denote zero
monomorphism on set Pn and Pm of P. The iposets with zero source
and target interface denote class of standard posets [13].

• (s, P, t) : 1→ 1 generates 25 variety of an iposet. For instance, (s, P, t) :
1→ 1 with s1 = a and t1 = e denotes an iposet which is different from
(s, P, t) : 1→ 1 with s1 = b and t1 = f .

• Similarly, (s, P, t) : 2 → 2, (s, P, t) : 3 → 3, (s, P, t) : 4 → 4 and (s, P, t) :
5→ 5 denote different classes or types of iposets.

Remark 11. The set of iposets (s, P, t) : n → m over poset P given in Re-
mark 10 can be generalized as a set of subtyped iposets generated from poset
P. For example, (s, P, t) : 1 → 1 represents a subtype of typed P, i.e.,
(s, P, t) : n → m. Typed P means typed with set of source and target in-
terfaces. The (1, P, 1) with s1 = a and t1 = e represents a particular subtype
of P. In this blend, iposets can be defined as a classification of categorically
typed poset.

Definition 33 (Concatenation). The concatenation B of iposets P and Q such
that

sP : [n]→ (EP,�P)← [m] : tP and sQ : [m]→ (EQ,�Q)← [k] : tQ

is an iposet
P B Q := sP : [n]→ (EPBQ,�PBQ)← [k] : tQ,

where

EPBQ =(EP t EQ)/tP(i)=sQ(i)

�PBQ= �P ∪ �Q ∪(EP \ tP × EQ \ sQ).

We defined concatenation of iposets whose interfaces agree. The identities
(id, [n], id) : n → n define a (small) category with objects n ∈ N and mor-
phisms [n] : n→ n. We will denote identity iposet by idn.
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Remark 12. The notation t denotes disjoint union. We interpret the disjoint
union in the definition of B composition as a quotient union of iposets. We
take the quotient union of two iposets by quotienting equivalent events de-
fined by their interface agreement.

Example 10 (Sequential composition of iposets). Figure 3.12 explains con-
catenation of two iposets. The bullets represent events of iposet. The black
bullets denote internal events whereas the empty bullets denote external
events. The arrows illustrate temporal precedence of events in the iposet
from left to right. The B composition is illustrated by interfaces agreement
between first and second iposet. Square bullets represent gluing points in
resulting iposet, and additional arrows denote the temporal precedence in-
duced by B composition.

B =

FIGURE 3.12: Concatenation

Definition 34 (Parallel). The parallel composition of iposets P and Q such that

sP : [n]→ (EP,�P)← [m] : tP and sQ : [m]→ (EQ,�Q)← [k] : tQ

is an iposet

P⊗Q := s : [n + m]→ (EP⊗Q,�P⊗Q)← [m + k] : t,

where

EP⊗Q =EP t EQ

�P⊗Q= �P ∪ �Q .

The source sP⊗Q = (sP ⊗ sQ) ◦ φn,m and target tP⊗Q = (tP ⊗ tQ) ◦ φm,k interface
injections mapping are given by the Equation (3.1) are

sP⊗Q(i) =

{
sP(i) if i ≤ n
sQ(i− n) if i > n

tP⊗Q(i) =

{
tP(i) if i ≤ m
sQ(i−m) if i > m.

The order relation �P⊗Q is union of order relation in �P and �Q. The source
(sP⊗ sQ) ◦φn,m and target (tP⊗ tQ) ◦φm,k interface are the union of the source
and target interfaces of P and Q respectively. By the definition, interfaces
are monotone and injective on the external events of individual iposets, they
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remain monotone and injective over corresponding parallel composition as
well.

The concatenation of iposets (s, P, t) : n → m and (s, Q, t) : m → k is defined
iff their interfaces agree in the order of B composition. This explains that
target interface tP of P must agree to the source interface sQ of Q. Further,
the composition P B Q of iposets

(s, P, t) : n→ 0 and (s, Q, t) : 0→ m

with zero target tP = 0 and source tQ = 0 interfaces corresponds to the stan-
dard sequential composition of posets [13]. The ordering relation on PB Q is
obtained from that of P⊗Q with the additional requirement that every event
in EP must precede every event in EQ \ sQ.

Remark 13. The parallel composition P⊗Q of two iposets (s, EP, t) : n→ m
and (s, EQ, t) : m → k yields an iposet (s, EP t EQ, t) : (n + m) → (m + k)
such that

x �P⊗Q y iff either x �P y or x �Q y

Similarly, P B Q yields an iposet (s, EPBQ, t) : n → k such that x �PBQ y if
and only if

x �P y or x �Q y or there exist

x ∈ EP such that x /∈ tP and y ∈ EQ such that y /∈ sQ.

3.3.1 Pomsets with interfaces

Let Σ be a fixed finite set of alphabet. A pomset over Σ consists of a poset
(EP,�P) and a labeling l : EP → Σ. We call a pomset discrete if its underlying
poset is discrete. A morphism

h : (EP,�P, lP)→ (EQ,�Q, lQ)

is a function h : EP → EQ which preserves the ordering and the labeling such
that x �P y implies h(x) �Q h(y) and lQ ◦ h = lP. Everything we have said
about iposet carries over to ipomset.

Definition 35 (Ipomset). A pomset with interfaces (ipomset) is an iposet

s : [n]→ (EP,�P)← [m] : t

together with a labeling function

l : EP → Σ

where Σ denotes a finite set of alphabets.
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We define concatenation of ipomsets whose interfaces agree.
Definition 36 (Concatenation). The concatenation B of ipomsets P and Q such
that

sP : [n]→ (EP,�P, lP)← [m] : tP and sQ : [m]→ (EQ,�Q, lQ)← [k] : tQ

is an ipomset

P B Q := sP : [n]→ (EPBQ,�PBQ, lPBQ)← [k] : tQ

iff
lP(tP(i)) = lQ(sQ(i)) for all i ∈ [m],

where

EPBQ = (EP t EQ)/tP(i)=sQ(i) , lPBQ(x) =

{
lP(x) if x ∈ EP

lQ(x) if x ∈ EQ

and �PBQ=�P ∪ �Q ∪(EP \ tP × EQ \ sQ).

The condition lP(tP(i)) = lQ(sQ(i)) above demands commutativity of the
square in the following diagram:

[n]

sP
��

[m]

tP
��

sQ
  

[k]

tQ��

P

lP   

Q

lQ~~

Σ

When this condition is satisfied, we say that the ipomsets in question are
composable.

Definition 37 (Parallel). The parallel product of ipomsets P and Q such that

sP : [n]→ (EP,�P, lP)← [m] : tP and sQ : [m]→ (EQ,�Q, lQ)← [k] : tQ

is an ipomset

P⊗Q := s : [n + m]→ (EP⊗Q,�P⊗Q, lP⊗Q)← [m + k] : t

such that

EP⊗Q =EP t EQ

�P⊗Q= �P ∪ �Q .
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The labelling on the underlying carrier sets EP⊗Q is given by the function lP⊗Q

lP⊗Q(x) =

{
lP(x) if x ∈ EP

lQ(x) if x ∈ EQ.

Similarly, the source sP⊗Q and target tP⊗Q interfaces given by the Equation (3.1)
are

sP⊗Q(i) =

{
sP(i) if i ≤ n
sQ(i− n) if i > n

tP⊗Q(i) =

{
tP(i) if i ≤ m
sQ(i−m) if i > m

Note 1. The ordering relation in �PBQ can be obtained from that of �P⊗Q by
requiring that every actions in lP must precede every actions in lQ \ sQ .

3.4 Summary

In this chapter, we have presented a preorder relation on a finite set and
showed how it can be made into a partial ordered relation by taking the
quotient of equivalent relations. We presented properties of posets includ-
ing their series and parallel compositions. We introduced a new definition
for the parallel composition of isomorphic posets in Equation (3.1). Further,
we took brief note of categorical theory of morphisms in Section 3.3. We ex-
plained the construction of interchange law based on horizontal and vertical
compositions in Definition 27 followed by an illustration in Figure 3.7.

In Section 3.3, we defined iposet in Definition 30 along with their concate-
nation and parallel compositions in Definition 33 and 34 respectively. We
explained construction of iposets in Remarks 10 and 11 followed by Exam-
ple 9, thereby, we have shown that the definition of iposets generate more
varieties in iposets theory. We summarized the section by defining ipomset
along with their sequential and parallel compositions in the Definition 35, 36
and 37 respectively.
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Chapter 4

Iposets theory

In this chapter, we present the main results of the thesis. We state and prove
algebraic property of iposets including the order structure of iposets under
subsumption. We investigate the equational theory of iposets close to the
algebraic results of Concurrent Kleene Algebra [14].

4.1 The equational theory of iposets algebra

Let P be the set of iposets.

Proposition 2. (P,B,⊗) forms an ordered bisemigroup that satisfies following ax-
ioms of concurrent semigroup [14, Definition 6.6], for P, P′, Q, Q′, R ∈ P

P B (Q B R) = (P B Q)B R (4.1)
P⊗ (Q⊗ R) = (P⊗Q)⊗ R (4.2)

(P⊗ P′)B (Q⊗Q′) ≤ (P B Q)⊗ (P′ B Q′) (4.3)

Proof. Let P, Q and R be iposets

P = (EP,�P, sP, tP), Q = (EQ,�Q, sQ, tQ) and R = (ER,�R, sR, tR)

To prove the equalities and inequalities of the proposition, we look into three
aspects of iposets: sets of interfaces, sets of underlying events and the order
relation on those sets of events.

I Proof for equation (4.1):

P B (Q B R) = (P B Q)B R.

We assume that the composition on both sides of the equation are defined,
otherwise the equation is trivially undefined. Therefore, we assume tP = sQ
and tQ = sR. Equality (4.1) holds iff there exists equality in all three aspects
of iposets on both sides of equation, i.e., the sets of events, sets of interfaces
and the order relations.
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First, we proceeds with sets of events present on the left-hand side EPB(QBR)

EPB(QBR) = (EP t (EQ B ER))/tP(i)=sQBR(i)

= (EP t (EQ t ER)/tQ(i)=sR(i))/tP(i)=sQBR(i)

I since sQBR = sQ

= (EP t (EQ t ER)/tQ(i)=sR(i))/tP(i)=sQ(i)

I combining quotients parts over union
= (EP t EQ t ER)/tQ(i)=sR(i)∧tP(i)=sQ(i)

which are equal to the events present on the right-hand side E(PBQ)BR given
by

E(PBQ)BR = ((EP B EQ) t ER)/tPBQ(i)=sR(i)

= ((EP t EQ)/tP(i)=sQ(i) t ER)/tPBQ(i)=sR(i)

I since tPBQ = tQ

= ((EP t EQ)/tP(i)=sQ(i) t ER)/tQ(i)=sR(i)

I we can move the quotients parts to obtain
= (EP t EQ t ER)/tP(i)=sQ(i)∧tQ(i)=sR(i)

= EPB(QBR)

We fixed notations sPB(QBR) and tPB(QBR) to denote the source and target
interfaces on left-hand side of the equality

sPB(QBR) = sP and tPB(QBR) = tQBR = tR

which are equal to the interfaces s(PBQ)BR and t(PBQ)BR on the right-hand
side given by

s(PBQ)BR = sPBQ = sP and t(PBQ)BR = tR

Now, we are left with the order relation �PB(QBR) = �(PBQ)BR part of the
equality. By the Definition 33 of B, we get following order relation on the
left-hand side

�PB(QBR)= �P ∪ �QBR ∪(EP \ tP × EQBR \ sQBR)

I since sQBR = sQ

= �P ∪ �QBR ∪(EP \ tP × EQBR \ sQ)

I We expand �QBR to obtain
= �P ∪(�Q ∪ �R ∪(EQ \ tQ × ER \ sR)) ∪ (EP \ tP × EQBR \ sQ)

= �P ∪ �Q ∪ �R ∪(EQ \ tQ × ER \ sR) ∪ (EP \ tP × EQBR \ sQ)

I We expand EQBR to obtain
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= �P ∪ �Q ∪ �R ∪(EQ \ tQ × ER \ sR)

∪ (EP \ tP × (EQ ∪ (ER \ sR)) \ sQ)

I since sQ /∈ ER

= �P ∪ �Q ∪ �R ∪(EQ \ tQ × ER \ sR)

∪ (EP \ tP × ((EQ \ sQ) ∪ (ER \ sR)))

= �P ∪ �Q ∪ �R ∪(EQ \ tQ × ER \ sR)

∪ (EP \ tP × EQ \ sQ) ∪ (EP \ tP × ER \ sR)

I Rewritting, we obtain
= �P ∪ �Q ∪ �R ∪(EP \ tP × EQ \ sQ)

∪ (EQ \ tQ × ER \ sR) ∪ (EP \ tP × ER \ sR)

which is equivalent to the order relation present on the right-hand side

�(PBQ)BR= �PBQ ∪ �R ∪(EPBQ \ tPBQ × ER \ sR)

I since tPBQ = tQ

=(�P ∪ �Q ∪(EP \ tP × EQ \ sQ))∪ �R ∪(EPBQ \ tQ × ER \ sR)

I We expand EPBQ to get
= �P ∪ �Q ∪(EP \ tP × EQ \ sQ)∪ �R

∪ (((EP \ tP) ∪ EQ) \ tQ)× ER \ sR)

I Since tQ /∈ EP, we obtain
= �P ∪ �Q ∪(EP \ tP × EQ \ sQ)∪ �R

∪ (((EP \ tP) ∪ (EQ \ tQ))× ER \ sR)

= �P ∪ �Q ∪(EP \ tP × EQ \ sQ)∪ �R

∪ (EP \ tP × ER \ sR) ∪ (EQ \ tQ × ER \ sR)

I We obtain
= �P ∪ �Q ∪ �R ∪(EP \ tP × EQ \ sQ)

∪ (EQ \ tQ × ER \ sR) ∪ (EP \ tP × ER \ sR)

= �PB(QBR)

The equality in all three aspects of iposets, above, proves P B (Q B R) =
(P B Q)B R.

I Proof of Equation (4.2):

P⊗ (Q⊗ R) = (P⊗Q)⊗ R.

First, we proceed with the sets of events present on both sides of the Equa-
tion (4.2). By Definition 34 of⊗, we get following set of events present on the
left-side EP⊗(Q⊗R)

EP⊗(Q⊗R) = EP⊗ (EQ⊗ER) = EP t (EQ ⊗ ER) = EP t (EQ t ER) = EPtEQtER
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which is equal to the set of events present at the right-side E(P⊗Q)⊗R

E(P⊗Q)⊗R = (EP⊗EQ)⊗ER = (EP⊗EQ)tER = (EPtEQ)tER = EPtEQtER.

We proceed with interfaces part of the equality on both side of Equation (4.2).
By definition 34⊗, the source sP⊗(Q⊗R) and target tP⊗(Q⊗R) interface present
on the left-hand side of equation are

sP⊗(Q⊗R) = sP t sQ⊗R = sP t (sQ t sR) = sP t sQ t sR

and
tP⊗(Q⊗R) = tP t tQ⊗R = tP t (tQ t tR) = tP t tQ t tR.

Notation t over interfaces denotes non-discriminated union. Similarly, the
source s(P⊗Q)⊗R and target t(P⊗Q)⊗R interfaces present on the right-hand side
of equation are

s(P⊗Q)⊗R = sP⊗Q t sR = (sP t sQ) t sR = sP t sQ t sR

and
t(P⊗Q)⊗R = tP⊗Q t tR = (tP t tQ) t tR = tP t tQ t tR,

which are equal to the source and target interfaces present on the left-hand
side of equation derived above. We now left with the order relations part
of the equality. The order relations present at the left hand side �P⊗(Q⊗R) is
given by

�P⊗(Q⊗R)=�P ∪(�Q⊗R) =�P ∪(�Q ∪ �R) =�P ∪ �Q ∪ �R

which is equal to the order relations present at the right-hand side �(P⊗Q)⊗R

�(P⊗Q)⊗R=�(P⊗Q) ∪ �R= (�P ∪ �Q)∪ �R=�P ∪ �Q ∪ �R

The equality in all three aspects of iposets, above , proves P ⊗ (Q ⊗ R) =
(P⊗Q)⊗ R.

I Proof of Equation (4.3):

(P⊗ P′)B (Q⊗Q′) ≤ (P B Q)⊗ (P′ B Q′).

Let P, P′, Q and Q′ be iposets

P = (EP,�P, sP, tP),

P′ = (EP′ ,�P′ , sP′ , tP′),
Q = (EQ,�Q, sQ, tQ) and

Q′ = (EQ′ ,�Q′ , sQ′ , tQ′).

We consider the compositions on both side of the inequality, given by Equa-
tion (4.3), are defined by iposets B and ⊗ definitions. We first look at the set
of interfaces present on the both side of the inequality. By the Definition 33
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and 34 of B and⊗, we get following set of source and target interfaces on the
left-hand side of inequality

s(P⊗P′)B(Q⊗Q′) = s(P⊗P′) = sP t s′P

t(P⊗P′)B(Q⊗Q′) = t(Q⊗Q′) = tQ t tQ′

which are equal to the

s(PBQ)⊗(P′BQ′) = sPBQ t sP′BQ′ = sP t sP′

t(PBQ)⊗(P′BQ′) = tPBQ t tP′BQ′ = tQ t tQ′

source and target interfaces at the right-hand side of inequality. We now
proceed for the sets of events present on both side of the inequality. The
events on left hand side E(P⊗P′)B(Q⊗Q′) is given by

E(P⊗P′)B(Q⊗Q′) = (EP⊗P′ t EQ⊗Q′)/tP⊗P′ (i)=sQ⊗Q′ (i)

= ((EP t EP′) t (EQ t EQ′))/tP⊗P′ (i)=sQ⊗Q′ (i)
.

Observing the quotient part of events tP⊗P′(i) = sQ⊗Q′(i), tP⊗P′(i) quotient
part denotes the parallel product of the quotient events of the set EP and EQ,
i.e., tP t tP′(i). Similarly, sQ⊗Q′(i) quotient part denotes the parallel product
of the quotient events of the set EQ and E′Q, i.e., sQ t sQ′(i).

E(P⊗P′)B(Q⊗Q′) = (EP t EP′ t EQ t EQ′)/tPttP′ (i)=sQtsQ′ (i)
.

If we look back, the composition on the both side of Inequality 4.3 is defined
if P B Q and P′ B Q′ are defined, i.e., if their interfaces agree. This leads
composition (P ⊗ P′) B (Q ⊗ Q′) on the left side is defined by tP = sQ in
parallel with tP′ = sQ′ . Then, rewriting quotient part of E(P⊗P′)B(Q⊗Q′)

E(P⊗P′)B(Q⊗Q′) = (P t P′ tQ tQ′)/tP(j)=sQ(j) and tP′ (k)=sQ′ (k)
,s.t. i = j + k,

which are equal to the set of events present on the right-hand side E(PBQ)⊗(P′BQ′)
of the inequality below.

E(PBQ)⊗(P′BQ′) =EPBQ t EP′BQ′

= (EP t EQ)/tP(j)=sQ j) t (EP′ t EQ′)/tP′ (k)=sQ′ (k)

I summing quotient part over union
= ((EP t EQ) t (EP′ t EQ′))/tP(j)=sQ(j) and tP′ (k)=sQ′ (k)

I using commutativity of set union
= (EP t EP′ t EQ t EQ′)/tP(i)=sQ(i) and tP′ (i)=sQ′ (i)

.

Now, we are left with the last part of the proof: the order relation present
on the both side of the inequality. The order relation on the left hands side
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�(P⊗P′)B(Q⊗Q′) of the inequality is given by

�(P⊗P′)B(Q⊗Q′) = �(P⊗P′) ∪ �(Q⊗Q′) ∪(EP⊗P′ \ t(P⊗P′) × EQ⊗Q′ \ s(Q⊗Q′)).

By using definition 4.12 of ⊗, the set-minus of the interfaces distributes over
the disjoint union of the parallel product

= �(P⊗P′) ∪ �(Q⊗Q′) ∪((EP t EP′) \ tP t tP′ × (EQ t EQ′) \ sQ t sQ′)

= �P ∪ �P′ ∪ �Q ∪ �Q′ ∪((EP \ tP ∪ EP′ \ tP′)× (EQ \ sQ ∪ EQ′ \ sQ′)).

Simplifying further,

= �P ∪ �P′ ∪ �Q ∪ �Q′ ∪(EP \ tP × EQ \ sQ) ∪ (EP \ tP × EQ′ \ sQ′)

∪ (EP′ \ tP′ × EQ \ sQ) ∪ (EP′ \ tP′ × EQ′ \ sQ′).

Similarly, the order relations present on the right-hand side �(PBQ)⊗(P′BQ′)
of the inequality is given by

�(PBQ)⊗(P′BQ′) = �(PBQ) ∪ �(P′BQ′)

= �P ∪ �Q ∪(EP \ tP × EQ \ sQ)∪ �P′ ∪ �Q′ ∪(EP′ \ tP′ × EQ′ \ sQ′).

Using commutative property of union,

= �P ∪ �P′ ∪ �Q ∪ �Q′ ∪(EP \ tP × EQ \ sQ) ∪ (EP′ \ tP′ × EQ′ \ sQ′)

Now comparing the order relations present on the left �L = �(P⊗P′)B(Q⊗Q′)
on the right-hand side �R = �(PBQ)⊗(P′BQ′) of the inequality.

�L= �A ∪(EP \ tP × EQ \ sQ) ∪ (EP \ tP × EQ′ \ sQ′) (4.4)
∪ (EP′ \ tP′ × EQ \ sQ) ∪ (EP′ \ tP′ × EQ′ \ sQ′)

�R= �A ∪(EP \ tP × EQ \ sQ) ∪ (EP′ \ tP′ × EQ′ \ sQ′) (4.5)

Here, we used the notation �A to denote �P ∪ �P′ ∪ �Q ∪ �Q′ part of
order relations. Observing the order relations given by the Equation (4.5), it
contains all the ordered pairs (e, f ) such that

e ∈ P \ tp ∧ f ∈ Q \ sQ and e ∈ P′ \ tp′ ∧ f ∈ Q′ \ sQ′ .

Similarly, observing the order relations given by the Equation (4.4), it con-
tains all the order pairs (e, f ) such that

e ∈ P \ tp ∧ f ∈ Q \ sQ and e ∈ P′ \ tp′ ∧ f ∈ Q′ \ sQ′ ,

including the additional pairs of orders such that

e ∈ P \ tp ∧ f ∈ Q′ \ sQ′ and e ∈ P′ \ tp′ ∧ f ∈ Q \ sQ

which are absent in Equation (4.5). This clearly shows that relations given by
Equation (4.5) on the right-hand side is contained in the relation given by the
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Equation (4.4) on the left hand side. This implies the order relation on the
right-hands side of the inequality is less restrictive than the left hand side,
thus preserves more parallel behaviour. The ordering relation supports the
inequality given by Equation (4.3) above.

Lemma 1. The ordered bisemigroup (P,B,⊗) entail the following identities

P B Q ≤ P⊗Q if tP = sQ = 0 (4.6)
(P⊗Q)B R ≤ P⊗ (Q B R) if tP = 0 (4.7)
P B (Q⊗ R) ≤ (P B Q)⊗ R if sR = 0 (4.8)

under the condition on interfaces showing that these laws do not imply the exchange
law stated in Equation (4.3).

Proof. Let P, Q and R be iposets

P = (EP,�P, sP, tP), Q = (EQ,�Q, sQ, tQ) and R = (ER,�R, sR, tR)

To prove the inequalities of proposition, we check the three aspects of iposets:
sets of interfaces, sets of underlying events and order relation on those sets
of events.

I Proof of Equation (4.6):

P B Q ≤ P⊗Q.

We assume the composition on the both side of inequality are defined, oth-
erwise the inequality is trivial undefined. Therefore, we assume tP = sQ. To
claim the inequality, we further assume tP = sQ = 0 to satisfy constrain im-
posed over interfaces by the definition 43. The Equation (4.6) holds iff there
exists equality in terms of sets of events, sets of interfaces and inequality in
terms of order relation present on the both side of the inequality.

First, we proceed with the sets of interfaces present on the both side of the
inequality. By the Definition 33 of B, we get following set of

SPBQ = sP and tPBQ = tQ

source and target interfaces on the left-hand side, which are equal to the
source and target interface present at the right-hand side given by the Defi-
nition 34 of ⊗

sP⊗Q = sP ⊗ sQ = sP ∪ sQ = sP ∪ 0 = sP

tP⊗Q = tP ⊗ tQ = tP ∪ tQ = 0∪ tQ = tQ.

Similarly, we proceed for sets of events. The sets of events present on the
left-hand side EPBQ

EPBQ = (EP t EQ)/tP(i)=sQ(i)
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I Since tP = sQ = 0, we get
= (EP t EQ)/0

= EP t EQ

are equal to the sets of events present on the right-hand side EP⊗Q

EP⊗Q = EP t EQ.

Now, we are left with the last part of the proof: the order relation. The order
relation present on the left hand side �PBQ is given by

�PBQ= �P ∪ �Q ∪(EP \ tP × EQ \ sQ)

I Since tP = sQ = 0, we get
= �P ∪ �Q ∪(EP \ 0× EQ \ 0)
= �P ∪ �Q ∪(EP × EQ)

Similarly, the order relation present at right-hand side�P⊗Q of the inequality
is given by

�P⊗Q = �P ∪ �Q

Observing the order relation �PBQ, it is clear that all the ordered pairs (e, f )
such that

e ∈ EP and f ∈ EQ

present on the left hand side, are absent on the right-hand side �P⊗Q. This
proves �P⊗Q is contained in the �PBQ, which implies that the order relation
at the right-hands side �P⊗Q is less restrictive than the order relation at the
left hand side �PBQ and thus preserves more parallel behaviour. The order-
ing relation supports the inquality given by Equation (4.6) above. I Proof
of Equation (4.7)

(P⊗Q)B R ≤ P⊗ (Q B R).

The composition on the both side of inequality are defined iff tQ = sR and
tP = 0. The tQ = sR defines (Q B R) which leads to the definedness of
P⊗ (Q B R) composition on the right-hand side. Similarly, tP = 0 together
with tQ = sR defines the (P⊗Q)BR composition on left-hand side. First, we
proceed with the sets of interfaces present on the both side of the inequality.
By definition of B and ⊗, we get following

S(P⊗Q)BR = sP⊗Q = sP ∪ sQ = 0∪ sQ = sQ and t(P⊗Q)BR = tR

source and target interfaces at the left-hand side which are equal to the source
and target interface present at the right-hand side

sP⊗(QBR) = sP ⊗ sQBR = sP ∪ sQ = 0∪ sQ = sQ and,

tP⊗(QBR) = tP ⊗ tQBR = tP ∪ tR = 0∪ tR = tR.
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Similarly, we proceed for the sets of events. The set of events present on the
left-hand side E(P⊗Q)BR

E(P⊗Q)BR = (EP⊗Q t ER)/tP⊗Q(i)=sR(i)

= ((EP t EQ) t ER)/tP⊗Q(i)=sR(i)

I By ⊗ def, tP⊗Q(i) denotes tP(j) t tQ(k) sets of events such that i = j + k
= ((EP t EQ) t ER)/(tP(j)ttQ(k))=sR(i)

I Since tP = 0, tP(j) t tQ(k) = tQ(k) = tQ(i) such that i = 0 + k = k
= ((EP t EQ) t ER)/tQ(i)=sR(i)

= (EP t EQ t ER)/tQ(i)=sR(i)

are equal to the set of events present on the right-hand side EP⊗(QBR)

EP⊗(QBR) = EP ⊗ EQBR

= EP t EQBR

= EP t (EQ t ER)/tQ(i)=sR(i)

= (EP t EQ t ER)/tQ(i)=sR(i).

We are now left with the last part of the proof: the order relation. The order
relation present on the left hand side (P⊗Q)B R is given by

�(P⊗Q)BR= �P⊗Q ∪ �R ∪(EP⊗Q \ tP⊗Q × ER \ sR)

= (�P ∪ �Q)∪ �R ∪((EP ∪ EQ) \ (tP t tQ)× ER \ sR)

I Since tP = 0, we get
= �P ∪ �Q ∪ �R ∪((EP ∪ EQ) \ tQ × ER \ sR)

I Since tQ /∈ EP, after proper distribution of tQ setminus over EP ∪ EQ

= �P ∪ �Q ∪ �R ∪((EP ∪ EQ \ tQ)× ER \ sR)

= �P ∪ �Q ∪ �R ∪(EP × ER \ sR) ∪ ( EQ \ tQ × ER \ sR).

Similarly, the order relation present on the right-hand side of the inequality
is given by

�P⊗(QBR)= �P ∪ �QBR

= �P ∪ �Q ∪ �R ∪( EQ \ tQ × ER \ sR)

Observing the order relation �(P⊗Q)BR, it is clear that all the ordered pairs
(e, f ) such that

e ∈ EP and f ∈ ER \ sR

present on the left hand side, are absent �P⊗(QBR) on the right-hand side.
This witness�P⊗(QBR) is contained in�(P⊗Q)BR which implies that the order
relation at the right-hands side �P⊗(QBR) is less restrictive than the order
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relation at the left hand side �(P⊗Q)BR. The ordering relation supports the
Equation (4.7) above.

I Proof of Equation (4.8):

P B (Q⊗ R) ≤ (P B Q)⊗ R.

The composition on the both side of inequality is defined iff tP = sQ and
sR = 0. Therefore, we assume tP = sQ and sR = 0. The tP = sQ defines
(P B Q) which leads to the definedness of (P B Q)⊗ R composition on the
right-hand side. Similarly, sR = 0 together with tP = sQ defines the (P ⊗
Q)B R composition on left hand side.

First, we proceed with the sets of interfaces present on both side of the in-
equality. By definition of B and ⊗, we get following set of

SPB(Q⊗R) = sP and tPB(Q⊗R) = tQ⊗R = tQ ∪ tR

source and target interfaces on the left-hand side which are equal to the
source and target interface present at the right-hand side

s(PBQ)⊗R = sP ⊗ sR = sP ∪ sR = sP ∪ 0 = sP

t(PBQ)⊗R = tQ ⊗ tR = tQ ∪ tR.

Similarly, we proceed for the sets of events. The set of event present on the
left-hand side EPB(Q⊗R)

EPB(Q⊗R) = (EP t EQ⊗R)/tP(i)=sQ⊗R(i)

= (EP t (EQ t ER))/tP(i)=sQ⊗R(i)

I By ⊗ def, sQ⊗R(i) denotes sQ(j) t tR(k) sets of events such that i = j + k
= (EP t (EQ t ER))/tP(i)=(sQ(j)tsR(k))

I Since sR = 0, sQ(j) t sR(k) = sQ(j) = sQ(i) such that i = j + 0 = j
= (EP t (EQ t ER))/tP(i)=sQ(i)

= (EP t EQ t ER)/tP(i)=sQ(i)

are equal to the sets of events present on the right-hand side E(PBQ)⊗R

E(PBQ)⊗R = EPBQ ⊗ ER

= EPBQ t ER

= (EP t EQ)/tP(i)=sQ(i) t ER

= (EP t EQ t ER)/tP(i)=sQ(i)

Now, we are left with the last part of the proof: the order relation. The order
relation present on the left-hand side P B (Q⊗ R) is given by

�PB(Q⊗R)= �P ∪ �Q⊗R ∪(EP \ tP × EQ⊗R \ sQ⊗R)
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= �P ∪(�Q ∪ �R) ∪ (EP \ tP × (EQ ∪ ER) \ (sQ ∪ sR))

I Since sR = 0, we get
= �P ∪(�Q ∪ �R) ∪ (EP \ tP × (EQ ∪ ER) \ (sQ ∪ 0))
I Since sQ /∈ ER, after distribution of sQ setminus over EQ ∪ ER

= �P ∪ �Q ∪ �R ∪(EP \ tP × (EQ \ sQ ∪ ER))

= �P ∪ �Q ∪ �R ∪(EP \ tP × EQ \ sQ) ∪ (EP \ tP × ER).

Similarly, the order relation present on the right-hand side of the inequality
is given by

�(PBQ)⊗R= �PBQ ∪ �R

= �P ∪ �Q ∪(EP \ tP × EQ \ sQ)∪ �R

= �P ∪ �Q ∪ �R ∪(EP \ tP × EQ \ sQ).

Observing the order relation �PB(Q⊗R), it is clear that all the ordered pairs
(e, f ) such that

e ∈ EP \ tP and f ∈ ER

present on the left hand side, are absent on the right-hand side �(PBQ)⊗R.
This witness �(PBQ)⊗R is contained in �PB(Q⊗R), which implies that the or-
der relation at the right-hands side�(PBQ)⊗R is less restrictive than the order
relation at the left hand side �PB(Q⊗R). The ordering relation supports the
inequality given by Equation (4.8) above.

4.2 The equational theory of iposet languages

Definition 38. Let P denote the set of all isomorphic class of iposets. We use nota-
tions

id1 = (Eid1 ,�id1 , sid1 , tid1) and id0 = (Eid0 ,�id0 , sid0 , tid0)

for an identity and empty iposet. An iposet language over P denotes a subset of P ,
i.e., an element of 2P .

Remark 14. An ordered monoid over P is a structure (P , o, 1) such that

P o 1 = P for P ∈ P

where 1 denotes an unit iposet with respect to P and operator o. The operator o is
isotone with respect to the order relation on P .
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Proposition 3. (P ,B,⊗, idn, id0) forms a double monoid, for n > 0. The double
monoid is a composite of two ordered monoids

(P ,B, idn) and (P ,⊗, id0)

such that, for P ∈ P
P B idn = P (4.9)

P⊗ id0 = P (4.10)

Proof.

I Proof of Equation (4.9):
P B idn = P.

Suppose P be an iposet
P = (EP,�P, sP, tP)

By the definition of idn,

idn = (Eidn ,�idn , sidn , tidn).

The composition P B idn is defined iff tP = sidn target interface of P is equal
to the source interface of idn, and by the definition of idn we know that

sidn = tidn . (4.11)

Then,
sPBidn = sP and tPBidn = tidn

4.11
= sidn = tP

represent the source and target interface of the composition P B idn. It is
clear that the interfaces of P remains unchanged in sequential composition
with idn. Now, we check the set of events produced by EPBidn

EPBidn = (EP t Eidn)/tP(i)=sidn (i)

By the definition of idn, we know sidn denotes Eidn . Therefore, we can write
tP(i) = sidn(i) equal to Eidn

EPBidn = (EP t Eidn)/Eidn
= EP

Similarly, the order �PBidn

�PBidn=�P ∪ �idn ∪{EP \ tP × Eidn \ sidn}.

Since sidn = Eidn , Eidn \ sidn equals to 0,

�PBidn = �P ∪ �idn ∪{EP \ tP × 0}

since 0 represents empty set of events, there does not exist any order pairs
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(x, y) in (EP \ tP× 0) such that x ∈ P \ tP and y ∈ 0. Therefore {P \ tP× 0} =
0. Similarly, since we know Eidn ⊆ EP, the order relation naturally follows
�idn⊆�P,

�idn ⊆ �P =⇒ �P ∪ �idn=�P .

using these results, we arrive at

�PBidn= �P ∪ �idn ∪{EP \ tP × 0}
= �P ∪ �idn ∪0
= �P ∪ �idn

= �P .

This witness the equality in all three aspect of iposets: interfaces, set of events
and order relation, and thus P B idn = P.

I Proof of Equation (4.10):
P⊗ id0 = P

Suppose P be an iposet
P = (EP,�P, sP, tP).

By the definition of id0,

id0 = (Eid0 ,�id0 , sid0 , tid0) = (ε, ε, ε, ε).

We proceed with

sP⊗id0 = sP ⊗ sid0 = sP ∪ ε = sP and tP⊗id0 = sP ⊗ sid0 = tP ∪ ε = tP

the source and target interface of P⊗ id0 by following the definition of par-
allel product ⊗. It is clear that interfaces of P remains unchanged to parallel
product with id0.

Now, we check the set of events produced by EP⊗id0

EP⊗id0 = (EP t Eid0) = (EP t 0) = EP

Similarly the order relation �P⊗id0

�P⊗id0=�P ∪ �id0=�P ∪ε =�P .

This proves the equality in all three aspects of iposets: the interfaces, set of
events and order relations, and thus P⊗ id0 = P.

The double monoid structure on individual iposet can be lifted to the pow-
erset level of iposets languages P and Q such that P, Q ∈ 2P as usual by
defining complex B and ⊗ product,

P B Q = {p B q | p ∈ P ∧ q ∈ Q and p B q is defined} (4.12)



46 Chapter 4. Iposets theory

P⊗Q = {p⊗ q | p ∈ P ∧ q ∈ Q} (4.13)

Proposition 4. (2P ,B,⊗, 1B, 1⊗) forms a double monoid over 2P .

Here, 1⊗ = {id0} denotes set containing only the empty iposet i.e. set of
empty ε string, and 1B = {idn} for n > 0 denotes set containing only identity
iposets such that (id, [n], id) : n → n. The double monoid of the iposets
lanauges is a composite

(2P ,B,⊗, 1B, 1⊗)

of two ordered monoids

(2P ,B, 1B) and (2P ,⊗, 1⊗)

structure such that, for P ∈ 2P

P B 1B = P
P⊗ 1⊗ = P.

Proposition 5. The structure (2P ,∪,B,⊗, 0, 1B, 1⊗) forms a bisemiring such that
following equations holds, for P, Q, R ∈ 2P

P B 0 = 0 (4.14)
P⊗ 0 = 0 (4.15)

P B 1B = P = 1B B P (4.16)
P⊗ 1⊗ = P = 1⊗ ⊗ P (4.17)

(P B Q)B R = P B (Q B R) (4.18)
(P⊗Q)⊗ R = P⊗ (Q⊗ R) (4.19)

P ∪ 0 = P (4.20)
P B (Q ∪ R) = P B Q ∪ R B Q (4.21)
(P ∪Q)B R = P B R ∪Q B R (4.22)
P⊗ (Q ∪ R) = P⊗Q ∪ P⊗ R (4.23)
(P ∪Q)⊗ R = P⊗ R ∪Q⊗ R (4.24)

Here, constant 0 denotes set of ∅ iposets and operation ∪ denotes choice.

Proof.

I Proof of Equation (4.14)
P B 0 = 0

Let x be an iposet such that x ∈ P B 0. By using the B Definition 4.12, there
exists iposets p ∈ P and q ∈ 0 such that

x = p B q is defined.
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We know 0 is the set of ∅ iposets, which means q must be an ∅ iposet, then

x = p B q = p B ∅ = ∅

This implies x ∈ 0. Similarly, x ∈ 0 can be found in P B 0. This two way
inclusion witness P B 0 = 0.

I Proof of Equation (4.15)
P⊗ 0 = 0

Let x be an iposet such that x ∈ P⊗ 0. By using the ⊗ Definition 4.13, there
exists iposets p ∈ P and q ∈ 0 such that

x = p⊗ q is defined.

We know 0 is the set of ∅ iposets, which means q must be an ∅ iposet then

x = p⊗ q = p⊗∅ = ∅

This implies x ∈ 0. Similarly x ∈ 0 can be found in P ⊗ 0. This two way
inclusion witness P⊗ 0 = 0.

I Proof of Equation (4.16)

P B 1B = P = 1B B P

Let x be an iposet such that x ∈ P B 1B. By using the B Definition 4.12, there
exists iposets p ∈ P and q ∈ 1B such that

x = p B q is defined.

We know 1B is the set of identity iposets, which means q must be an identity
iposet idn for n > 0 such that

x = p B q 4.9
= p

This implies x ∈ P. Similarly x ∈ P can be found in P B 1B. This two way
inclusion witness P B 1B = P. Similarly, we can prove P = 1B B P, and
conclude that P B 1B = P = 1B B P.

I Proof of Equation (4.17)

P⊗ 1⊗ = P = 1⊗ ⊗ P

Let x be an iposet such that x ∈ P⊗ 1⊗. By using the ⊗ Definition 4.13, there
exists iposets p ∈ P and q ∈ 1⊗ such that

x = p⊗ q is defined.
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We know 1⊗ is the set of ε empty iposets, which means q must be an ε empty
iposet then

x = p⊗ q 4.10
= p

This implies x ∈ P. Similarly x ∈ P can be found in P⊗ 1⊗. This two way
inclusion witness P ⊗ 1⊗ = P. Similarly, we can prove P = 1⊗ ⊗ P, and
conclude that P⊗ 1⊗ = P = 1⊗ ⊗ P.

I Proof of Equation (4.18)

(P B Q)B R = P B (Q B R)

Let x be an iposet such that x ∈ (P B Q)B R. By using the B Definition 4.12,
there exists iposets p ∈ P, q ∈ Q and r ∈ R such that

x = (p B q)B r is defined

By B associative property 4.1 of iposets, we get (pB q)B r = pB (qB r) then

x = p B (q B r)

This implies that there exists iposets p ∈ P, q ∈ Q and r ∈ R such that x =
p B (q B r) is defined, which means x ∈ P B (Q B R) by the Definition 4.12.
Similarly, we can show x ∈ P B (Q B R) implies x ∈ (P B Q)B R. This two
way inclusion concludes (P B Q)B R = P B (Q B R).

I Proof of Equation (4.19)

(P⊗Q)⊗ R = P⊗ (Q⊗ R)

Let x be an iposet such that x ∈ (P⊗Q)⊗ R. By the ⊗ Definition 4.13, there
exists iposets p ∈ P, q ∈ Q and r ∈ R such that

x = (p⊗ q)⊗ r is defined.

By using ⊗ associative property 4.2 of iposets, we get (p⊗ q)⊗ r = p⊗ (q⊗
r) then

x = p⊗ (q⊗ r)

This implies there exists p ∈ P, q ∈ Q and r ∈ R such that x = p⊗ (q⊗ r) is
defined, which means x ∈ P⊗ (Q⊗ R) by the Definition 4.13. Similarly, we
can show x ∈ P⊗ (Q⊗ R) implies x ∈ (P⊗Q)⊗ R. This two way inclusion
concludes (P⊗Q)⊗ R = P⊗ (Q⊗ R).

I Proof of Equation (4.20)
P ∪ 0 = P

Let x be an iposet such that x ∈ P ∪ 0. The x ∈ P ∪ 0 implies either x ∈
P or x ∈ 0. However, 0 denotes the set of ∅ iposets which implies x ∈
P. Similarly, it can be shown that x ∈ P implies x ∈ P ∪ 0. This two way
inclusion concludes P ∪ 0 = P.
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I Proof of Equation (4.20)

P B (Q ∪ R) = P B Q ∪ R B Q

Let x be an iposet such that x ∈ P B (Q ∪ R). By using the B Definition 4.12,
there exists iposets p ∈ P, q ∈ Q and r ∈ R such that

either x = (p B q) or x = (p B r) is defined.

This implies that there exists p ∈ P, q ∈ Q and r ∈ R such that x = (p B
q) ∪ (p B r) is defined, which means x ∈ P B Q ∪ R B Q. Similarly, it can
be shown that x ∈ P B Q ∪ R B Q implies x ∈ P B (Q ∪ R). This two way
inclusion concludes P B (Q ∪ R) = P B Q ∪ R B Q.

I Proof of Equation (4.21)

(P ∪Q)B R = P B R ∪Q B R

Let x be an iposet such that x ∈ (P ∪Q)B R. By using the B Definition 4.12,
there exists iposets p ∈ P, q ∈ Q and r ∈ R such that

either x = (p B r) or x = (q B r) is defined.

This implies that there exists p ∈ P, q ∈ Q and r ∈ R such that x = (p B r) ∪
(q B r) is defined, which means x ∈ P B R ∪ Q B R by the Definition 4.12.
Similarly, it can be shown that x ∈ P B R ∪ Q B R implies x ∈ (P ∪ Q)B R.
This two way inclusion concludes (P ∪Q)B R = P B R ∪Q B R.

I Proof of Equation (4.22)

P⊗ (Q ∪ R) = P⊗Q ∪ P⊗ R

Let x be an iposet such that x ∈ P⊗ (Q ∪ R). By using the ⊗ Definition 4.13,
there exists iposets p ∈ P, q ∈ Q and r ∈ R such that

either x = (p⊗ q) or x = (p⊗ r).

This implies that there exists p ∈ P, q ∈ Q and r ∈ R such that x = (p⊗ q) ∪
(p⊗ r), which means x ∈ P⊗Q∪ P⊗ R by the Definition 4.13. Similarly, we
can show that x ∈ P ⊗ Q ∪ P ⊗ R implies x ∈ P ⊗ (Q ∪ R). This two way
inclusion concludes P⊗ (Q ∪ R) = P⊗Q ∪ P⊗ R.

I Proof of Equation (4.22)

(P ∪Q)⊗ R = P⊗ R ∪Q⊗ R
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Let x be an iposet such that x ∈ (P ∪Q)⊗ R. By using the ⊗ Definition 4.13,
there exists iposets p ∈ P, q ∈ Q and r ∈ R such that

either x = (p⊗ r) or x = (q⊗ r).

This implies that there exists p ∈ P, q ∈ Q and r ∈ R such that x = (p⊗ r) ∪
(q ⊗ r) is defined, which means x ∈ P ⊗ R ∪ Q ⊗ R by the Definition 4.13.
Similarly, we can show that x ∈ P⊗ R∪Q⊗ R implies x ∈ (P∪Q)⊗ R. This
two way inclusion concludes (P ∪Q)⊗ R = P⊗ R ∪Q⊗ R.

4.3 The structured theory of iposets

In this section, we expose a hierarchy of iposet languages generated by a
finite number of series and parallel compositions of singleton iposets.

We can find four types of singleton iposets once the labelling of underlying
posets are uniquely determined. We use notation S to denote the class of
singleton iposets as follows

S = {[0]→ [1]← [0],
[1]→ [1]← [1],
[0]→ [1]← [1],
[1]→ [1]← [0]}.

We are interested in the sets of iposets generated by a finite number of series
B and parallel⊗ operations over S . Contrary to singleton pomsets, singleton
iposets are factorizable into the sequential B factors of identity iposets.

[0]→ [1]← [0] = [0]→ [1]← [1]B [1]→ [1]← [1]B [1]→ [1]← [0]

The decomposition of singleton iposet into a set of singleton identity iposets
can be seen as an internal (endogenous or temporal) decomposition. While
decomposing into a set of singleton identity iposets, the event induced by
singleton iposets remains static but its temporal property gets reconfigured.
For example, assume execution of [0]→ [1]← [0] takes an unit time interval
under the assumption of global clock. Then, the decomposed factors

[0]→ [1]← [0] = [0]→ [1]← [1]B [1]→ [1]← [0]

take twice of [0] → [1] ← [0] unit time to terminate its computation while
they induce same event, a single event. It says singleton iposets can delay
its computation by decomposing internally as long as it requires to respect
its temporal precedence in causal structure of computation. This notion of
internal decomposition of a singleton iposet might be useful to model syn-
chronization of communicating threads in a concurrent environment.
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Theorem 6 (Interval order). An ordered set is an interval order [10] iff it has no
suborder isomorphic to 2 + 2.

Definition 39 (Interval representation). A poset is an interval order if it has an
interval representation [10]. An interval representation of a poset P = (EP,�P)
with EP = {x1, . . . , xn} consists of a set of real intervals

I = {[li, ri] | i = 1, . . . , n, ∀i : li � ri} ⊆ 2R

with the property that xi �P xj iff ri � lj.

Remark 15. A linear extension of poset P = (EP,�P) is a linear order L =
(EP,�L) so that x �L if x �P y. A linear extension of an poset P is a set of
linear orders whose intersection is P, and an interval realizer of an poset P is
a set of interval orders whose intersection is P.

Let S⊗ denote the set of iposets generated from S by parallel product, and
(S⊗)B the set of i-posets generated from S⊗ by sequential product.

Theorem 7. An iposet is in (S⊗)B iff it is an interval order.

Proof.

If P, Q ∈ S⊗ then P and Q have interval order representation by Remark 15
and Thereom 6. Similarly, P B Q ∈ (S⊗)B produces an iposet with partial
order �PBQ

�PBQ = �P ∪ �Q ∪{EP \ tP × EQ \ sQ},
where {EP \ tP × EQ \ sQ} establish linear order from poset P to Q; hence
�PBQ preserves interval realizer of resulting poset P B Q.

Let S⊗,B denote the set of iposets generated from S by parallel and sequen-
tial product. We now want to expose a hierarchy of generated iposets and
compare them with series-parallel posets.

Definition 40 (Iposet hierarchy). Let P denotes the set of all iposets. For any
Q ⊆ P ,

Q⊗ = {P1 ⊗ · · · ⊗ Pn | n ∈N, P1, . . . , Pn ∈ Q} ,
QB = {P1 B · · ·B Pn | n ∈N, P1, . . . , Pn ∈ Q}.

Then, iposet hierarchy is given by

C0 = D0 = S
C2n+1 = C⊗2n D2n+1 = DB

2n

C2n+2 = CB2n+1 D2n+2 = D⊗2n+1
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Lemma 2. For all n we have,

1. Cn ⊆ Cn+1 and Cn ⊆ Dn+1.

2. Dn ⊆ Dn+1 and Dn ⊆ Cn+1.

3. Cn ∪Dn ⊆ Cn+1 ∩Dn+1.

Proof.

I Cn ⊆ Cn+1 and Cn ⊆ Dn+1 . Since the n + 1 iterations are build from the n
iterations, we have

Cn ⊆ Cn+1 and Dn ⊆ Dn+1

by definition. Similarly,

C0 ⊆ C.0 = (D.
0 = D1).

Since Cn is made from C0 by the same alternative applications of the two
operators ⊗ and . as Dn+1 is made from D1, we obtain the stated inclusion.

I Dn ⊆ Dn+1 and Dn ⊆ Cn+1. We have

Cn ⊆ Cn+1 and Dn ⊆ Dn+1

Analogously, by definition

D0 ⊆ D⊗0 = (C⊗0 = C1).

Since Dn is made from D0 by the same alternative applications of the two
operators . and ⊗ as Cn+1 is made from C1, we obtain the stated inclusion.

I Cn ∪Dn ⊆ Cn+1 ∩Dn+1

This is a generalization of the inclusion [1,2] above in Lemma 2. Since Cn ∪
Dn ⊆ Cn+1 and Cn ∪ Dn ⊆ Dn+1 by definition, their intersection includes
Cn ∪Dn.

Lemma 3. For all n we have,

1. D2n+1 ⊗D2n ⊆ D2n+2, and D2n ⊗D2n+1 ⊆ D2n+2.

2. C2n+1 B C2n ⊆ C2n+2, and C2n B C2n+1 ⊆ C2n+2.

Proof.

I D2n+1 ⊗ D2n ⊆ D2n+2 follows from

1. D2n+2 = D⊗2n+1 by Definition 40.

2. D2n+1 ⊇ D2n by Lemma 2.

3. Hence, D⊗2n+1 ⊇ D2n+1 ⊗D2n, and therefore D2n+1 ⊗ D2n ⊆ D2n+2.
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Similarly, D2n ⊗D2n+1 ⊆ D2n+2 follows.

I C2n+1 B C2n ⊆ C2n+2 follows from

1. C2n+2 = CB2n+1 by the Definition 40.

2. C2n+1 ⊇ C2n by the Lemma 2.

3. CB2n+1 ⊇ C2n+1 ⊗ C2n, and hence C2n+1 B C2n ⊆ C2n+2.

Similarly, C2n B C2n+1 ⊆ C2n+2 follows.

Lemma 4. For all n ≥ 1 we have,

1. D2n BD2n−1 ⊆ D2n+1, and D2n−1 BD2n ⊆ D2n+1.

2. C2n ⊗ C2n−1 ⊆ C2n+1, and C2n−1 ⊗ C2n ⊆ C2n+1.

Proof.

I D2n−1 BD2n ⊆ D2n+1 follows from

1. D2n+1 = DB
2n by Definition 40.

2. D2n ⊇ D2n−1 by Lemma 2.

3. DB
2n ⊇ D2n−1 BD2n, and hence D2n+1 ⊇ D2n−1 ⊆ D2n.

Similarly, D2n BD2n−1 ⊆ D2n+1 follows.

I C2n−1 ⊗ C2n ⊆ C2n+1 follows from

1. C2n+1 = C⊗2n by Definition 40.

2. C2n ⊇ C2n−1 by Lemma 2.

3. C⊗2n ⊇ C2n−1 ⊗ C2n, and hence C2n−1 ⊗ C2n ⊆ C2n+1.

Similarly, C2n ⊗ C2n−1 ⊆ C2n+1 follows.

Definition 41 (SP-poset hierarchy). Let S0 be an singleton iposet such that

S0 =
{
[0]→ [1]← [0]

}

corresponding to the singleton poset. Then, SP-poset hierarchy is given by

T0 = U0 = S0

T2n+1 = T ⊗2n U2n+1 = UB
2n

T2n+2 = T B
2n+1 U2n+2 = U⊗2n+1

Corollary 8. For all n, Tn ∪ Un = Tn+1 ∩ Un+1.

Corollary 9. For all n we have,

1. U2n+1 ⊗U2n ⊆ U2n+2, and U2n ⊗U2n+1 ⊆ U2n+2.
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2. T2n+1 B T2n ⊆ T2n+2, and T2n B T2n+1 ⊆ T2n+2.

Corollary 10. For all n ≥ 1 we have,

1. U2n BU2n−1 ⊆ U2n+1.

2. T2n ⊗ T2n−1 ⊆ T2n+1.

Remark 16. From hierarchy of SP-posets and iposets, it is clear that

S0 ( S =⇒ Tn ( Cn and Un ( Dn For all n.

The expressiveness of iposets compared to SP posets can be illustrated by
following example as well.

Q =

(
1· //

,,
3· // ·5

2· //

22

4· // ·6

)
=

(
1· // ·3
2· // ·4

) ˚(3,4)
B
(

3· // ·5
4· // ·6

)

Here, ˚(3, 4) denote agreeing interfaces between the iposets. We showed poset
Q is easily expressible in iposets hierarchy given in Definition 40, while it not
expressible in sp-posets hierarchy given in Definition 10 . Q contains an N-
pomset structure based on 1 � 5, 2 � 5 and 2 � 4 causal structure of events
in Q. Similar argument applies for all the posets listed in the proof section of
Proposition 12, except P itself in the proposition.

4.3.1 The non-collapsing hierarchy, conjectured

Conjecture 1. Let P1, P2, Q1, Q2 be iposets such that P1⊗ P2 = Q1 B Q2, then one
of the following is true:

1. P1 = ∅ or P2 = ∅

2. Q1 = idn or Q2 = idn for some n ∈N

Proof. Let P1, P2, Q1, Q2 be iposets.

Assume x ∈ Q1 and y ∈ Q2 such that x �Q1BQ2 y, then x �P1⊗P2 y by either
x �P1 y or x �P2 y. Consider the case x �P1 y and assume z ∈ P2 then we find
neither x �P1⊗P2 z nor y �P1⊗P2 z which implies neither z ∈ Q1 nor z ∈ Q2
(otherwise z will be connected to either one of x and y) unless either Q1 ∈ idn
such that z ∈ tQ1 and z = y or Q2 ∈ idn such that z ∈ sQ2 and x = z.

Now, lets consider the case Q1, Q2 /∈ idn and stick to neither z ∈ Q1 nor
z ∈ Q2.

However, P1 ⊗ P2 = Q1 B Q2 that implies P2 ⊆ Q1 B Q2, and we find

z ∈ P2 =⇒ z ∈ Q1 B Q2
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which leads to contradiction since neither z ∈ Q1 nor z ∈ Q2. Therefore,
P2 = ∅. Similarly, by choosing x �P2 y and assuming z ∈ P1, we arrive at
P1 = ∅.

Conjecture 2. Pn ∈ C2n \ C2n−1 for all n ≥ 1.

Proof. We proceeds with induction on base case n = 1; P1 is not a multiset.
Hence P1 /∈ C1. But Q ∈ C0 ⊆ C1, hence P1 = Q B Q ∈ C2 = CB1 .

Now let n ≥ 1 and assume Pn ∈ C2n and Pn /∈ C2n−1. Using Conjecture 1, we
can show that Pn ⊗ Pn ∈ C2n+1 \ C2n:

Obviously Pn ⊗ Pn ∈ C2n+1 = C⊗2n. Assume Pn ⊗ Pn ∈ C2n = CB2n−1, then
Pn ⊗ Pn = Q1 . Q2 . . . . for Qi ∈ C2n−1.

Note that Pn is a strongly connected component (SCC) since the event from Q
reaches all events from the Pn−1 components. This makes Pn ⊗ Pn union of
two SCC, call these SCC1 and SCC2. Assume that each Qi is non-trivial, i.e.,
for Q1 there exists at least one event that is not part of the t-interface, call
this e1. Assume e1 ∈ SCC1 and thus is not part of SCC2. By the definition of
concatenation . then e1 will have a dependency to all events in SCC2, which
cannot be true, unless all the events of SCC2 are part of the s-interface of
Q2 . . . . . Since SCC2 contains a 2+2 it means that there are at least two events
which are not minimal in the partial order, and thus cannot be part of the
s-interface. This finishes the contradiction, and thus Pn . Pn /∈ C2n.

Now to Pn+1 = Q B (Pn ⊗ Pn). Trivially, Pn+1 ∈ C2n+2 = CB2n+1. Assume
Pn+1 ∈ C2n+1 = C⊗2n. Pn+1 is not a parallel product, hence Pn+1 ∈ C2n = CB2n−1.
Now Pn+1 = Q B (Pn ⊗ Pn) is the only non-trivial B-decomposition of Pn+1,

thus Pn ∈ C2n−1, a contradiction. We have shown that Pn+1 /∈ C2n+1.

Corollary 11. C2n−1 ( C2n for all n ≥ 1, hence the Cn hierarchy does not collapse.

4.3.2 The incomplete hierarchy, conjectured

Proposition 12. Let P =

(
1· //

((
·4

2· //

((
·5

3· // ·6

)
. Then for all n ≥ 0,P /∈ Cn.

Proof. We fix the decomposition P = P1 B P2 non-trivial iff P1 and P2 are
neither null nor identity iposets. Similarly, the decomposition P = P1 B P2 is
trivial iff P1 ∈ idn or P2 ∈ idn for n ≥ 1. Here, idn ∈ Id such that

Id = {(Eidn ,�idn , sidn , 0), (Eidn ,�idn , 0, tidn), (Eidn ,�idn , sidn , tidn)}



56 Chapter 4. Iposets theory

Given the iposet P = (EP,�P, 0, 0) =

(
1· //

((
·4

2· //

((
·5

3· // ·6

)
is composed of set of E1 =

(
1·
2·
3·

)
minimal and E2 =

( ·4
·5
·6

)
maximal events. It is clear that E1 and E2

denotes two least subsets of events of P i.e., if P has factors Q and R then
E1 ⊆ EQ and E2 ⊆ ER such that EP = EQBR.

We proceed with the possible factors P1 = (EP1 ,�P1 , 0, 0) and P2 = (EP2 ,�P2
, 0, 0) such that E1 = EP1 and E2 = EP2 , and arrived at P1 B P2 6= P due to
the fact that 3 ≺P1BP2 4 and 3 ⊀P 4. This can be illustrated by the following
diagram, (

1·
2·
3·

)
B
( ·4
·5
·6

)
=

(
1· //

++

''

·4
2· //

++

33

·5
3· //

33

77

·6

)
6= P

Following P1 and P2 as the least possible factors of P, we list all possible
decomposition P = Q B R such that EP1 ⊆ EQ and EP2 ⊆ ER, where Q =
(EQ,�Q, 0, tQ) and R = (ER,�R, sR, 0) such that tQ = sR.

We first check for trivial case P = Q B R such that EP1 ⊆ EQ and EP2 ⊆ ER,
where Q ∈ Id or R ∈ Id,

1. It covers the case P = Q B R such that Q ∈ Id(
1·
2·
3·

)
(1,2,3)
B

(
1· //

((
·4

2· //

((
·5

3· // ·6

)
=

(
1· //

((
·4

2· //

((
·5

3· // ·6

)

where (1,2,3) denotes the agreeing interfaces

2. It covers the case P = Q B R such that R ∈ Id(
1· //

((
·4

2· //

((
·5

3· // ·6

)
(4,5,6)
B

(
4·
5·
6·

)
=

(
1· //

((
·4

2· //

((
·5

3· // ·6

)

Now, we check for non-trivial case P = Q B R such that EP1 ⊆ EQ and EP2 ⊆
ER where Q and R are neither null nor identity iposets,

1. We first proceed with fixed Q such that EP1 ⊆ EQ and find all possible
R such that EP2 ⊆ ER; the composition should respect EQBR = EP i.e.,
the Q B R should produce exactly same set of events in P.

(a) Lets fix Q =

(
1· // ·4
2·
3·

)
such that EP1 ⊆ EQ then, possible R such

that EP2 ⊆ ER covers following case

i.

(
1· // ·4
2·
3·

)
(4)
B
(

4·
5·
6·

)
=

(
1· //

++

''

·4
2· //

++
·5

3· //

33

·6

)
6= P

ii.

(
1· // ·4
2·
3·

)
(4,2)
B
(

4·
2· // ·5
6·

)
=

(
1· //

++

''

·4
2· // ·5
3· //

33

77

·6

)
6= P
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iii.

(
1· // ·4
2·
3·

)
(4,3)
B
(

4·
5·
3· // ·6

)
=

(
1· //

++

''

·4
2· //

++
·5

3· // ·6

)
6= P

iv.

(
1· // ·4
2·
3·

)
(4,2,3)
B

(
4·
2· // ·5
3· // ·6

)
=

(
1· //

++

''

·4
2· // ·5
3· // ·6

)
6= P

Here, we exclude the case R =

(
1· // ·4
5·
6·

)
such that EP2 ⊆ ER to

avoid EQBR 6= EP .

(b) Lets fix Q =

(
1·
2· // ·5
3·

)
such that EP1 ⊆ EQ then, possible R such

that EP2 ⊆ ER covers following case

i.

(
1·
2· // ·5
3·

)
(5)
B
(

4·
5·
6·

)
=

(
1· //

''

·4
2· //

33

++
·5

3· //

77

·6

)
6= P

ii.

(
1·
2· // ·5
3·

)
(1,5)
B
(

1· // ·4
5·
6·

)
=

(
1· // ·4
2· //

++

33

·5
3· //

77

·6

)
6= P

iii.

(
1·
2· // ·5
3·

)
(5,3)
B
(

4·
5·
3· // ·6

)
=

(
1· //

''

·4
2· //

++

33

·5
3· // ·6

)
6= P

iv.

(
1·
2· // ·5
3·

)
(1,5,3)
B

(
1· // ·4
5·
3· // ·6

)
=

(
1· // ·4
2· //

++

33

·5
3· // ·6

)
6= P

Here, we exclude the case R =

(
4·
2· // ·5
6·

)
such that EP2 ⊆ ER to

avoid EQBR 6= EP .

(c) Lets fix Q =

(
1·
2·
3· // 6·

)
such that EP1 ⊆ EQ then, possible R such

that EP2 ⊆ ER covers following case

i.

(
1·
2·
3· // 6·

)
(6)
B
(

4·
5·
6·

)
=

(
1· //

++
·4

2· //

33

·5
3· //

33

77

·6

)
6= P

ii.

(
1·
2·
3· // 6·

)
(2,6)
B
(

4·
2· // ·5
6·

)
=

(
1· //

++
·4

2· // ·5
3· //

33

77

·6

)
6= P

iii.

(
1·
2·
3· // 6·

)
(1,6)
B
(

1· // ·4
5·
6·

)
=

(
1· // ·4
2· //

33

·5
3· //

33

77

·6

)
6= P

iv.

(
1·
2·
3· // 6·

)
(1,2,6)
B

(
1· // ·4
2· // ·5
6·

)
=

(
1· // ·4
2· // ·5
3· //

33

77

·6

)
6= P
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Here, we exclude the case R =

(
4·
5·
3· // ·6

)
such that EP2 ⊆ ER to

avoid EQBR 6= EP .

(d) Lets fix Q =

(
1· // ·4
2· // ·5
3·

)
such that EP1 ⊆ EQ then, possible R such

that EP2 ⊆ ER covers following case

i.

(
1· // ·4
2· // ·5
3·

)
(4,5)
B
( ·4
·5
·6

)
=

(
1· //

''

·4
2· //

++
·5

3· // ·6

)
6= P

ii.

(
1· // ·4
2· // ·5
3·

)
(4,5,3)
B

(
4·
5·
3· // ·6

)
=

(
1· //

''

·4
2· //

++
·5

3· // ·6

)
6= P

Here, we exclude the case {
(

1· // ·4
5·
6·

)
,

(
4·
2· // ·5
6·

)
,

(
1· // ·4
2· // ·5
6·

)
} ∈

R such that EP2 ⊆ ER to avoid EQBR 6= EP .

(e) Lets fix Q =

(
1·
2· // ·5
3· // ·6

)
such that EP1 ⊆ EQ then, possible R such

that EP2 ⊆ ER covers following case

i.

(
1·
2· // ·5
3· // ·6

)
(5,6)
B
( ·4
·5
·6

)
=

(
1· // ·4
2· //

33

·5
3· //

77

·6

)
6= P

ii.

(
1·
2· // ·5
3· // ·6

)
(1,5,6)
B

(
1· // ·4
5·
6·

)
=

(
1· // ·4
2· //

33

·5
3· //

77

·6

)
6= P

Here, we exclude the case {
(

4·
2· // ·5
6·

)
,

(
4·
5·
3· // ·6

)
,

(
4·
2· // ·5
3· // ·6

)
} ∈

R such that EP2 ⊆ ER for similar reason like the cases above.

(f) Lets fix Q =

(
1· // ·4
2·
3· // ·6

)
such that EP1 ⊆ EQ then, possible R such

that EP2 ⊆ ER covers following case

i.

(
1· // ·4
2·
3· // ·6

)
(4,6)
B
( ·4
·5
·6

)
=

(
1· //

++
·4

2· // ·5
3· //

33

·6

)
6= P

ii.

(
1· // ·4
2·
3· // ·6

)
(4,2,6)
B

(
4·
2· // ·5
6·

)
=

(
1· //

++
·4

2· // ·5
3· //

33

·6

)
6= P

Here, we exclude the case {
(

1· // ·4
5·
6·

)
,

(
4·
5·
3· // ·6

)
,

(
1· // ·4
5·
3· // ·6

)
} ∈

R such that EP2 ⊆ ER to avoid EQBR 6= EP .



4.3. The structured theory of iposets 59

2. We now proceed with fixed R such that EP2 ⊆ ER and find for all the
possible Q such that EP1 ⊆ EQ; such that the composition should re-
spect EQBR = EP i.e., the Q B R should produce exactly same set of
events in P.

(a) Lets fix R =

(
1· // ·4
5·
6·

)
such that EP2 ⊆ ER then, possible Q such

that EP1 ⊆ EQ covers following case

i.

(
1·
2·
3·

)
(1)
B
(

1· // ·4
5·
6·

)
=

(
1· // ·4
2· //

++

33

·5
3· //

33

77

·6

)
6= P

ii. Case (b).(ii)

iii. Case (c).(iii)

Here, we exclude the case Q =

(
1· // ·4
2·
3·

)
such that EP1 ⊆ EQ to

avoid EQBR 6= EP .

(b) Lets fix R =

(
4·
2· // ·5
6·

)
such that EP2 ⊆ ER then, possible Q such

that EP1 ⊆ EQ covers following case

i. Case (a).(ii)

ii.

(
1·
2·
3·

)
(2)
B
(

4·
2· // ·5
6·

)
=

(
1· //

++

''

·4
2· // ·5
3· //

33

77

·6

)
6= P

iii. Case (c).(ii)

Here, we exclude the case Q =

(
1·
2· // ·5
3·

)
such that EP1 ⊆ EQ to

avoid EQBR 6= EP .

(c) Lets fix R =

(
4·
5·
3· // ·6

)
such that EP2 ⊆ ER then, possible Q such

that EP1 ⊆ EQ covers following case

i. Case (a).(iii)

ii. Case (b).(ii)

iii.

(
1·
2·
3·

)
(3)
B
(

4·
5·
3· // ·6

)
=

(
1· //

++

''

·4
2· //

++

33

·5
3· // ·6

)
6= P

Here, we exclude the case Q =

(
1·
2·
3· // ·6

)
such that EP1 ⊆ EQ to

avoid EQBR 6= EP .
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(d) Lets fix R =

(
1· // ·4
2· // ·5
6·

)
such that EP2 ⊆ ER then, possible Q such

that EP1 ⊆ EQ covers following case

i.

(
1·
2·
3·

)
(1,2)
B
(

1· // ·4
2· // ·5
6·

)
=

(
1· // ·4
2· // ·5
3· //

33

77

·6

)
6= P

ii. Case (c).(iv)

Here, we exclude the case {
(

1· // ·4
2·
3·

)
,

(
1·
2· // ·5
3·

)
,

(
1· // ·4
2· // ·5
3·

)
} ∈

Q such that EP1 ⊆ EQ to avoid EQBR 6= EP .

(e) Lets fix R =

(
4·
2· // ·5
3· // ·6

)
such that EP2 ⊆ ER then, possible Q such

that EP1 ⊆ EQ covers following case

i.

(
1·
2·
3·

)
(2,3)
B
(

4·
2· // ·5
3· // ·6

)
=

(
1· //

++

''

·4
2· // ·5
3· // ·6

)
6= P

ii. Case (a).(iv)

Here, we exclude the case {
(

1·
2· // ·5
3·

)
,

(
1·
2·
3· // ·6

)
,

(
1·
2· // ·5
3· // ·6

)
} ∈

Q such that EP2 ⊆ ER for similar reason like the cases above.

(f) Lets fix R =

(
1· // ·4
5·
3· // ·6

)
such that EP2 ⊆ ER then, possible Q such

that EP1 ⊆ EQ covers following case

i.

(
1·
2·
3·

)
(1,3)
B
(

1· // ·4
5·
3· // ·6

)
=

(
1· // ·4
2· //

++

33

·5
3· // ·6

)
6= P

ii. Case (b).(iv)

Here, we exclude the case {
(

1· // ·4
2·
3·

)
,

(
1·
2·
3· // ·6

)
,

(
1· // ·4
2·
3· // ·6

)
} ∈

Q such that EP2 ⊆ ER to avoid EQBR 6= EP .

These all the non-trivial cases P 6= Q B R such that EP1 ⊆ EQ and EP2 ⊆ ER
witness P /∈ Cn for n ≥ 0.

4.4 The theory of iposets under subsumption

In this section, we present algebraic results of iposets under subsumption
order. The subsumption order is an important concept in standard pomset
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theory (see for example [13, 17]) which captures the difference between "im-
plementation" and "specification" of concurrent systems in the sense that the
specification preserve more concurrent behaviour than the implementation.

Definition 42. The subsumption order P 6 Q on posets

P = (EP,�P) and Q = (EQ,�Q)

is defined [13] if there exists a bijection h : EQ → EP such that

x �Q y =⇒ h(x) �P h(y) for all x, y ∈ Q.

Subsumption says that the posets are higher in the subsumption order if they
have less sequential dependencies among their set of events. The downward-
closed sets of poset contains all possible linearization of its set of events.
This guarantees that the weak exchange law holds on posets and downward-
closed sets of posets. Below, we precisely define the order subsumption and
isomorphism on iposets.

Definition 43 (Subsumption on iposets). The subsumption order P 6 Q on
iposets

P = (EP,�P, sP, tP) and Q = EQ,�Q, sQ, tQ

is defined if there exists bijection h : EQ → EP such that

x �Q y =⇒ h(x) �P h(y) for all x, y ∈ Q

with the source and target interface bijections

h : sQ[nQ]→ sP[nP] and h : tQ[mQ]→ tP[mP].

Definition 44 (Isomorphism on iposets). The isomorphism P = Q on iposets

P = (EP,�P, sP, tP) and Q = EQ,�Q, sQ, tQ

is defined if there exists bijection h : EQ → EP such that

x �Q y iff h(x) �P h(y) for all x, y ∈ Q

along with
h : sQ[nQ]→ sP[nP] and h : tQ[mQ]→ tP[mP]

the source and target interfaces bijections.

The Lemma 5 defines subsumption order for empty iposets.

Lemma 5 (Empty iposet). Let P be an iposet such that P 6 id0 or id0 6 P and id0
denotes an ε empty iposet. Then P = id0.
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Proof.

Let P and id0 be iposets

P = (EP,�P, sP, tP) and id0 = (Eid0 ,�id0 , sid0 , tid0).

Consider the case P 6 id0 which witness the bijections h : Eid0 → EP such
that

x �id0 y =⇒ h(x) �P h(y) for all x, y ∈ id0

along with
h : sid0 → sP and h : tid0 → tP

the source and target interface bijections. The id0 is an empty iposet, i.e.,
Eid0 = ε, then we have id0 = (Eid0 ,�id0 , sid0 , tid0) = (ε, ε, ε, ε). Then, we get
EP = ε along with sP = ε and tP = ε since the bijections h. The x �idn y =⇒
h(x) �P h(y) naturally follows since the bijection h−1(P) = ε on underlying
empty set. Finally, P = (EP,�P, sP, tP) = (ε, ε, ε, ε) witness P = id0.

Similarly, it follows that h−1 : P → id0 is a subsumption order witnessing
id0 6 P, which naturally concludes P = id0.

The Lemma 6 defines subsumption order for singleton iposets.

Lemma 6 (Singleton iposet). Let P and Q be iposets, with Q a singleton iposet
such that Q 6 P or P 6 Q, then P = Q.

Proof.

Let P and Q be iposets

P = (EP,�P, sP, tP) and Q = (EQ,�Q, sQ, tQ)

Considering the case P 6 Q which witness the bijection h : EQ → EP such
that

x �Q y =⇒ h(x) �P h(y) for all x, y ∈ Q

along with
h : sQ → sP and h : tQ → tP

the source and target interface bijections. Since Q is a singleton iposet, the
bijection h : EQ → EP ensures that EP contains single events. The x �Q
y =⇒ h(x) �P h(y) naturally follows since the bijection on the underlying
single event. Finally, the bijections h on the interfaces ensures P and Q are
isomorphic singleton iposets, hence P = Q.

Similarly, consider the case Q 6 P. Since Q is singleton iposets, if x, y ∈ P
such that x �P y then x = y, which leads to

h−1(x) = h−1(y) and thus h−1(x) �Q h−1(y)
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along with
h−1(sQ) = sP and h−1(tQ) = tP

It follows that h−1 : Q→ P establish a subsumption order witnessing Q 6 P,
hence P = Q.

Remark 17. The Conjecture 1 relies on the fact that each iposet P is either a single-
ton or there is a unique i such that P is either Bi or ⊗i -reducible as Defined 4.3.
Moreover, P has, up to associativity, a unique maximal decomposition into a Bi or
⊗i -product of i-reducible n-iposets. Then, we know that P is an isomorphic class of
iposets.

The Lemma 7 defines subsumption order for B decomposition of iposets.

Lemma 7 (B Factorization). Let P, Q0 and Q1 be iposets such that P 6 Q0 B Q1.
Then there exist iposets P0 and P1 such that

P = P0 B P1, P0 6 Q0 and P1 6 Q1

Proof.

Let P, Q0 and Q1 be iposets

P = (EP,�P, sP, tP), Q0 = (EQ0 ,�Q0 , sQ0 , tQ0), and Q1 = (EQ1 ,�Q1 , sQ1 , tQ1)

Consider the case P 6 Q0 B Q1 which witness the bijection h : EQ0BQ1 → EP

EP = h(EQ0BQ1)

= h((EQ0 ∪ EQ1)/tQ0 (i)=sQ1
(i))

such that

x �Q0BQ1 y =⇒ h(x) �P h(y) for all x, y ∈ Q0 B Q1

along with
h : sQ0BQ1 → sP and h : tQ0BQ1 → tP

the source and target interfaces bijections. Now, we choose the pairwise dis-
joint iposets

P0 = (EP0 ,�P0 , sP0 , tP0) and P1 = (EP1 ,�P1 , sP1 , tP1)

such that

EP0 = EP ∩ h(EQ0) denotes the restriction of EQ0 to the EP such that

x �Q0 y =⇒ h(x) �P0 h(y)
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for all x, y ∈ Q0 along with the source sP0 = sP ∩ h(sQ0) and target tP0 =
EP ∩ h(tQ0) interfaces.

In short,

P0 = (EP ∩ h(EQ0), x �Q0 y =⇒ h(x) �P0 h(y), sP ∩ h(sQ0), EP ∩ h(tQ0))

Similarly,

P1 = (EP ∩ h(EQ1), x �Q1 y =⇒ h(x) �P1 h(y), EP ∩ h(sQ1), tP ∩ h(tQ1)).

To established P0 6 Q0, we proceed with the bijection on set of events h :
EQ0 → EP0

EP0 = EP ∩ h(EQ0) = h(EQ0BQ1) ∩ h(EQ0) = h(EQ0BQ1 ∩ EQ0) = h(EQ0)

along with the source and target h : sQ0 → sP0 and h : tQ0 → tP0 interface
bijections

sP0 = sP ∩ h(sQ0) = h(sQ0BQ1) ∩ h(sQ0) = h(sQ0) ∩ h(sQ0) = h(sQ0)

tP0 = EP ∩ h(tQ0) = h(EQ0BQ1) ∩ h(tQ0) = h(EQ0BQ1 ∩ tQ0) = h(tQ0)

such that x �Q0 y =⇒ h(x) �P0 h(y) for all x, y ∈ Q0. Let x, y ∈ Q0 such
that x �Q0 y. Then, we know x �Q0BQ1 y and x �P y. However x, y ∈ Q0
thus x �P0 y. Similarly, we can establish P1 6 Q1.

To see P = P0 B P1, we proceed with sets of events

EP0BP1 = (EP0 ∪ EP1)/tP0 (i)=sP1 (i)

= (EP0 ∪ EP1)/tP0 (i)=sP1 (i)

= ((EP ∩ h(EQ0)) ∪ (EP ∩ h(EQ1)))/tP0 (i)=sP1 (i)

IAfter simplifying,
= (EP ∩ h(EQ0 ∪ EQ1))/tP0 (i)=sP1 (i)

I Since P0 6 Q0 and P1 6 Q1, tP0(i) = sP1(i) and h(tQ0(i)) = h(sQ1(i))
denotes same set of events. Then, h(tQ0(i)) = h(sQ1(i)) can be written as
h(tQ0(i) = sQ1(i)) and after substitution we get

= EP ∩ h((EQ0 ∪ EQ1)/tQ0 (i)=sQ1
(i)))

= EP ∩ h(EQ0BQ1)

= EP ∩ EP = Ep

along with source and target interfaces bijections

sP0BP1 = sP0 = sP ∩ h(sQ0) = sP ∩ h(sQ0BQ1) = sP ∩ sP = sP

tP0BP1 = tP1 = tP ∩ h(tQ1) = tP ∩ h(tQ0BQ1) = tP ∩ tP = tP
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and order isomophism such that x �P y iff x �P0BP1 y for all x, y ∈ P . To
claim order isomorphism, let x, y ∈ P0 B P1 such that x �P0BP1 y, then

1. if x, y ∈ Q0 then x �Q0 y, and x �Q0BQ1 y. Thus, x �P y.

2. if x, y ∈ Q1 then x �Q1 y, and x �Q0BQ1 y. Thus, x �P y.

3. if x ∈ Q0 and y ∈ Q1, then there are three case to consider

(a) if x ∈ Q0 and y ∈ Q1 such that y ∈ sQ1 , then case (1).

(b) if x ∈ Q0 and y ∈ Q1 such that x ∈ tQ0 , then case (2).

(c) if x ∈ Q0 and y ∈ Q1 such that x /∈ tQ0 and y /∈ sQ1 , then x �Q0BQ1
y. Thus, x �P y.

4. if y ∈ Q0 and x ∈ Q1 such that x �Q0BQ1 y implies x = y by anti-
symmetry, and thus x = y explains the fusion such that y ∈ tQ0 and
x ∈ sQ1 .

Similarly, let x, y ∈ P such that x �P y, then

1. if x, y ∈ Q0 then x �P0 y, and thus x �P0BP1 y.

2. if x, y ∈ Q1 then x �P1 y, and thus x �P0BP1 y.

3. if x ∈ Q0 and y ∈ Q1 then there are three case to consider

(a) if x ∈ Q0 and y ∈ Q1 such that y ∈ sQ1 , then case (1).

(b) if x ∈ Q0 and y ∈ Q1 such that x ∈ tQ0 , then case (2).

(c) if x ∈ Q0 and y ∈ Q1 such that x /∈ tQ0 and y /∈ sQ1 , then x ∈ P0
and y ∈ P1. Thus, x �P0BP1 y.

4. if y ∈ Q0 and x ∈ Q1 then y ∈ P0 and x ∈ P1, thus x �P0BP1 y implies
x = y by antisymmetry. This explains P0 B P1 the fusion such that
y ∈ tP0 and x ∈ sP1 .

This proves the P = P0 B P1.

The Lemma 8 defines subsumption order for ⊗ decomposition of iposets.

Lemma 8 (⊗ Factorization). Let P0, P1 and Q be iposets such that P0 ⊗ P1 6 Q.
Then there exist iposets Q0 and Q1 such that

Q = Q0 ⊗Q1, P0 6 Q0 and P1 6 Q1

Proof.

Let P0, P1 and Q be iposets

P0 = (EP0 ,�P0 , sP0 , tP0), P1 = (EP1 ,�P1 , sP1 , tP1), and Q = (EQ,�Q, sQ, tQ)
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Consider the case P0 ⊗ P1 6 Q which witness the bijection h : EQ → EP0⊗P1

EQ = h−1(EP0⊗P1) = h−1(EP0 ∪ EP1)

such that
x �Q y =⇒ h(x) �P0⊗P1 h(y) for all x, y ∈ Q

along with
h : sQ → sP0⊗P1 and h : tQ → tP0⊗P1

the source and target interfaces bijections. Now, we choose the pairwise dis-
joint iposets

Q0 = (EQ0 ,�Q0 , sQ0 , tQ0) and Q1 = (EQ1 ,�Q1 , sQ1 , tQ1)

such that

Q0 = (EQ∩ h−1(EP0), x �Q0 y =⇒ h(x) �P0 h(y), sQ∩ h−1(sP0), EQ∩ h−1(tP0))

Q1 = (EQ∩ h−1(EP1), x �Q1 y =⇒ h(x) �P1 h(y), EQ∩ h−1(sP1), tQ∩ h−1(tP1)).

To established P0 6 Q0, we proceed with the bijection h : EQ0 → EP0

EQ0 = EQ ∩ h−1(EP0)

= h−1(EP0⊗P1) ∩ h−1(EP0)

= h−1(EP0 ∪ EP1) ∩ h−1(EP0)

= h−1((EP0 ∪ EP1) ∩ EP0)

= h−1(EP0)

along with the source and target h : sQ0 → sP0 and h : tQ0 → tP0 interface
bijections

sQ0 = sQ ∩ h−1(sP0) = h−1(sP0⊗P1) ∩ h−1(sP0) = h−1(sP0 ∪ sP1) ∩ h−1(sP0)

= h−1((sP0 ∪ sP1) ∩ sP0) = h−1(sP0)

tQ0 = EQ ∩ h−1(tP0) = h−1(EP0⊗P1) ∩ h−1(tP0) = h−1(EP0 ∪ EP1) ∩ h−1(tP0)

= h−1((EP0 ∪ EP1) ∩ tP0) = h−1(tP0)

such that x �Q0 y =⇒ h(x) �P0 h(y) for all x, y ∈ Q0. Let x, y ∈ Q0 be such
that x �Q0 y. We then know x �Q y, and x �P0⊗P1 y. However x, y ∈ Q0,
thus x �P0 y. Similarly, we can establish P1 6 Q1.

To see Q = Q0 ⊗Q1, we proceed with sets of events

EQ0⊗Q1 = EQ0 ∪ EQ1

= (EQ ∩ h−1(EP0)) ∪ (EQ ∩ h−1(EP1))
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IAfter simplifying,

= EQ ∩ h−1(EP0 ∪ EP1)

= EQ ∩ h−1(EP0⊗P1)

= EQ ∩ EQ = EQ

along with source and target interfaces

sQ0⊗Q1 = sQ0 ∪ sQ1

= (sQ ∩ h−1(sP0)) ∪ (EQ ∩ h−1(sP1))

ISince sQ ⊆ EQ and after simplifying,

= sQ ∩ h−1(sP0 ∪ sP1)

= sQ ∪ h−1(sP0⊗P1)

= sQ ∩ sQ = sQ

tP0⊗P1 =tP0 ∪ tP1

= (EQ ∩ h−1(tP0)) ∪ (tQ ∩ h−1(tP1))

ISince tQ ⊆ EQ and after simplifying,

= tQ ∩ h−1(tP0 ∪ tP1)

= tQ ∩ h−1(tP0⊗P1)

= tQ ∩ tQ = tQ

and order isomorphism such that x �Q y iff x �Q0⊗Q1 y for all x, y ∈ Q . To
prove order isomorphism, let x, y ∈ Q0 ⊗Q1 such that x �Q0⊗Q1 y then

1. if x, y ∈ P0 then x �P0 y, and x �P0⊗P1 y. Thus, x �Q y.

2. if x, y ∈ P1 then x �P1 y, and x �P0⊗P1 y. Thus, x �Q y.

Similarly, let x, y ∈ Q such that x �Q y, then

1. if x, y ∈ P0 then x �Q0 y, and thus x �Q0⊗Q1 y.

2. if x, y ∈ P1 then x �Q1 y, and thus x �Q0⊗Q1 y.

This proves Q = Q0 ⊗Q1.

Definition 45. The iposets P is said to be prime when it can not be uniquely de-
composable into either Bi or ⊗i -product of i-reducible n non-empty non-identity
iposets.

The Lemma 9 defines uniqueness of iposets under B and ⊗ decomposition.

Lemma 9 (Uniqueness). Let P be an iposet, then exactly one of the following case
holds for P

1. P is an empty iposet, or

2. P is an singleton iposet, or
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3. There exists non-empty non-identity iposets P0 and P1 such that P = P0 B P1.
or,

4. There exists non-empty non-identity iposets P′0 and P′1 such that P = P′0⊗ P′1.
or,

5. P is prime iposet, i.e., P /∈ Cn for all n ≥ 0.

Proof.

Let P be an iposet such that

P = (EP,�P, sP, tP).

Then, one of following case holds for P

1. if EP = Eid0 then P is an empty iposet by lemma 5. Thus, P neither
be an identity nor there exists non-empty non-identity iposets P0, P1, P′0
and P′1 such that either P = P0 B P1 or P = P′0 ⊗ P′1.

2. if EP = EQ such that Q is a singleton iposets then P is an singleton
iposets by lemma 6. Thus, P neither be an empty iposet nor there exists
non-empty non-identity iposets P0, P1, P′0 and P′1 such that either P =
P0 B P1 or P = P′0 ⊗ P′1.

3. To prove the last two cases; there exists non-empty non-identity iposets
P0, P1, P′0 and P′1 such that either P = P0 B P1 or P = P′0 ⊗ P′1, we postu-
late a contradiction P0 B P1 = P′0 ⊗ P′1 such as

P0 = (EP0 ,�P0 , sP0 , tP0), P1 = (EP1 ,�P1 , sP1 , tP1).

P′0 = (EP′0
,�P′0

, sP′0
, tP′0

), P′1 = (EP′1
,�P′1

, sP′1
, tP′1

).

Then, we know EP0BP1 and EP′0⊗P′1
denotes same set of events

EP0BP1 = EP′0⊗P′1
(4.25)

such that x �P0BP1 y iff x �P′0⊗P′1
y for all x, y ∈ P0 B P1. Suppose x ∈ P0

and y ∈ P1 such that x �P0BP1 y then x �P′0⊗P′1
y by either x �P′0

y or
x �P′1

y. Let take the case x �P′0
y and assume z ∈ P′1 then x �P′0⊗P′1

z
and y �P′0⊗P′1

z, and this imply neither z ∈ P0 nor z ∈ P1 (otherwise
z will be connected to either one of x and y). Since EP′1

⊆ EP0BP1 by
Equation (4.25), we find

z ∈ P′1 =⇒ z ∈ EP0BP1

which leads to contradiction since neither z ∈ P0 nor z ∈ P1. This
proves either P = P0 B P1 or P = P′0 ⊗ P′1.
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4. if none of the case (mentioned above) hold, then P is prime iposet de-
fined by P /∈ Cn for all n ≥ 0, i.e., P is not defined by iposets hierarchy
given in Definition 40.

The Lemma 10 defines subsumption order forB and⊗ composition of iposets
under subsumption.

Lemma 10 (Iposets composition). Let P0, P1, Q0 and Q1 be iposets such that P0 6
Q0 and P1 6 Q1. Then,

P0 B P1 6 Q0 B Q1 and P0 ⊗ P1 6 Q0 ⊗Q1.

Proof.

Let P0, P1, Q0 and Q1 be iposets such that

P0 = (EP0 ,�P0 , sP0 , tP0) and P1 = (EP1 ,�P1 , sP1 , tP1)

Q0 = (EQ0 ,�Q0 , sQ0 , tQ0) and Q1 = (EQ1 ,�Q1 , sQ1 , tQ1)

Consider the case P0 6 Q0 which witness the bijection h : EQ0 → EP0

EQ0 = h−1(P0)

such that x �Q0 y =⇒ h(x) �P0 h(y) for all x, y ∈ Q0 along with the

h : sQ0 → sP0 and h : tQ0 → tP0

source and target interfaces bijections. The case P1 6 Q1 follows accordingly.

To establish P0 B P1 6 Q0 B Q1, we proceed with bijection h : EQ0BQ1 →
EP0BP1

EQ0BQ1 = (EQ0 ∪ EQ1)/tQ0
I since Q0 B Q1 is defined by tQ0 = sQ1

= (EQ0 ∪ EQ1)/tQ0

= (h−1(EP0) ∪ h−1(EP1))/h−1(tP0 )

= h−1((EP0 ∪ EP1)/tP0
)

= h−1(EP0BP1)

along with the source and target interfaces bijections

sQ0BQ1 = sQ0 = h−1(sP0) = h−1(sP0BP1)

tQ0BQ1 = tQ1 = h−1(tP1) = h−1(tP0BP1)
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such that x �Q0BQ1 y =⇒ h(x) �P0BP1 h(y) for all x, y ∈ Q0 B Q1. To
establish order inclusion, we assume x, y ∈ Q0 B Q1 such that x �Q0BQ1 y
then

1. if x, y ∈ Q0 then x �P0 y, and thus x �P0BP1 y.

2. if x, y ∈ Q1 then x �P1 y, and thus x �P0BP1 y.

3. if x ∈ Q0 and y ∈ Q1 then we have three case

(a) if x ∈ Q0 and y ∈ Q1 such that y ∈ sQ1 then case 1.

(b) if x ∈ Q0 and y ∈ Q1 such that x ∈ tQ0 then case 2.

(c) if x ∈ Q0 and y ∈ Q1 such that x /∈ tQ0 and y /∈ sQ1 then x ∈ P0
and y ∈ P1, and thus x �P0BP1 y.

4. if y ∈ Q0 and x ∈ Q1 then y ∈ P0 and x ∈ P1, thus x �P0BP1 y implies
x = y by antisymmetry. This explains the fusion such that y ∈ tP0 and
x ∈ sP1 .

This proves P0 B P1 6 Q0 B Q1. To establish P0 ⊗ P1 6 Q0 ⊗ Q1, we proceed
with bijection h : EQ0⊗Q1 → EP0⊗P1

EQ0⊗Q1 = EQ0 ∪ EQ1

= h−1(EP0) ∪ h−1(EP1)

= h−1(EP0 ∪ EP1)

= h−1(EP0⊗P1)

along with the source and target interfaces bijections

sQ0⊗Q1 = sQ0 ∪ sQ1 = h−1(sP0) ∪ h−1(sP1) = h−1(sP0 ∪ sP1) = h−1(sP0⊗P1)

tQ0⊗Q1 = tQ0 ∪ tQ1 = h−1(tP0) ∪ h−1(tP1) = h−1(tP0 ∪ tP1) = h−1(tP0⊗P1)

such that x �Q0⊗Q1 y =⇒ h(x) �P0⊗P1 h(y) for all x, y ∈ Q0 ⊗ Q1. To
show order inclusion, let x, y ∈ Q0 ⊗ Q1 such that x �Q0⊗Q1 y then we have
following case to consider

1. if x, y ∈ Q0 then x �P0 y, and thus x �P0⊗P1 y.

2. if x, y ∈ Q1 then x �P1 y, and thus x �P0⊗P1 y.

We ignore the case x ∈ Q0 and y ∈ Q1 that implies x �Q0⊗Q1 y.

These proves P0 ⊗ P1 6 Q0 ⊗Q1.

Remark 18 (Extended subsumption). The subsumption order P 6 Q on iposets

P = (EP,�P, sP, tP) and Q = EQ,�Q, sQ, tQ
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is defined iff there exists bijection h : EQ → EP such that

x �Q y =⇒ h(x) �P h(y) for all x, y ∈ Q

along with

x ∈ sP =⇒ h−1(x) ∈ sQ and x ∈ tP =⇒ h−1(x) ∈ tQ , forall x ∈ (sP ∪ tP)

the source and target interface morphisms.

We have three different class of singletone iposets

S1 ={[0]→ [1]← [0]}
s2 ={[0]→ [1]← [1], [1]→ [1]← [0]}
s3 ={[1]→ [1]← [1]}

and according to the extended subsumption definition, we get following subsumption
order between them

s1 6 s2 6 s3

The B composition between s1 := [0]→ [1]← [0] singleton iposets is always serial
composition Bseries, and the B composition between s3 := [1] → [1] ← [1] single
iposets is always gluing composition Bgluing iff defined. However, the B composition
between s2 := [0] → [1] ← [1], [1] → [1] ← [0] depends on the target and source
interfaces of sequential component. For instance,

[0]→ [1]← [1]B [1]→ [1]← [0] wil be Bgluing composition iff defined

[1]→ [1]← [0]B [0]→ [1]← [1] wil be Bseries composition.

Similarly, the B composition between class of s1 and s2 is s1 Bseries s2 and s2 Bseries
s1 iff defined. Likewise, s2 and s3 is s2 Bgluing s3 and s3 Bgluing s2 iff defined.

Based on the fact above, the factorization lemma for iposets can be redefined as follows

1. iff s1 6 s2 ∧ s′1 6 s′2 then s1 Bseries s′1 6 s2 Bseries s′2 and s1 ⊗ s′1 6 s2 ⊗ s′2
2. iff s1 6 s2 ∧ s′2 6 s′′2 then s1 Bseries s′2 6 s2 Bseries s′′2 and s1 ⊗ s′2 6 s2 ⊗ s′′2
3. iff s2 6 s′2 ∧ s1 6 s′′2 then s2 Bseries s1 6 s′2 Bseries s′′2 and s2 ⊗ s1 6 s′2 ⊗ s′′2
4. iff s2 6 s3 ∧ s′2 6 s′3 then s2 Bgluing s′2 6 s3 Bgluing s′3 and s2 ⊗ s′2 6 s3 ⊗ s′3
5. iff s2 6 s3 ∧ s′3 6 s′′3 then s2 Bgluing s′3 6 s3 Bgluing s′′3 and s2⊗ s′3 6 s3⊗ s′′3
6. iff s3 6 s′3 ∧ s2 6 s′′3 then s3 Bgluing s2 6 s′3 Bgluing s′′3 and s3⊗ s2 6 s′3⊗ s′′3

The factorization lemma for the subsumption order between the s1 classes of iposets
(class of SP posets)

iff s1 6 s′2 ∧ s”1 6 s”′1 then s1 Bseries s”1 6 s′1 Bseries s”′1 and s1 ⊗ s”1 6 s′1 ⊗ s”′1
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Between s3 classes of iposets,

8. iff s3 6 s′3∧ s”3 6 s”′3 then s3 Bgluing s”3 6 s′3 Bgluing s”′3 and s3⊗ s”3 6 s′3⊗ s”′3

And between s2 classes of iposets,

iff s2 6 s′2 ∧ s”2 6 s”′2 then s2 Bseries s”2 6 s′2 Bseries s”′2 and s2 ⊗ s”2 6 s′2 ⊗ s”′2

iff s2 6 s′2∧ s”2 6 s”′2 then s2 Bgluing s”2 6 s′2 Bgluing s”′2 and s2⊗ s”2 6 s′2⊗ s”′2.

We now prove Lemma 11 for the proof of successive Lemma 12 and the
Lemma 17.

Lemma 11. Let P, Q, U, V be iposets such that P B Q 6 U B V. There exists
an iposets R such that either P 6 U B R and R B Q 6 V or P B R 6 U and
Q 6 R B V.

Proof.

Let P, Q, U and V be iposets

P = (EP,�P, sP, tP) , Q = (EQ,�Q, sQ, tQ),

U = (EU,�U, sU, tU) and V = (EV ,�V , sV , tV)

Consider the case P B Q 6 U B V which witness the bijection h : EUBV →
EPBQ

EUBV = h−1(EPBQ)

such that

x �UBV y =⇒ h(x) �PBQ h(y) for all x, y ∈ U B V

along with the source and target interface bijections

h : sUBV → sPBQ and h : tUBV → tPBQ.

Now, by lemma 7 we can find U′ 6 U and V′ 6 V such that PB Q = U′BV′

which witness the bijection

h : EPBQ → EU′BV′ such that x �PBQ y iff h(x) �U′BV′ h(y) for all x, y ∈ PBQ

along with h : sPBQ → sU′BV′ and h : tPBQ → tU′BV′ .

Consider a contradiction such that P * U′ and U′ * P, then there exists
events x ∈ P \ U′ and y ∈ U′ \ P. Since x /∈ U′, it follows that x ∈ V′

and by the same reasoning y ∈ Q. Then, we get x �PBQ y and y �U′BV′

x. Since P B Q and U′ B V′ is isomorphic by definition, we find x = y by
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antisymmetry. This is a contradiction, since x ∈ P and y /∈ P. Thus, either
P ⊆ U′ or U′ ⊆ P.

Let take case P ⊆ U′, while U′ ⊆ P will follow the similar procedure. Let
assume an iposet R = U′ \ (P \ idtP), then R = (ER,�R, sR, tR) is defined by

R = (h−1(EU′) \ (EP \ tP),�U′\(P\idtP )
, h−1(EU′) ∩ tP, h−1(tU′)).

Now we claim that U′ = P B R. To show U′ = P B R, we procced with sets
of events

EPBR = (EP \ tP) ∪ ER Isince tP = sR by the definition of R

= (EP \ tP) ∪ (h−1(EU′) \ (EP \ tP))

= h−1(EU′)

along with source and target

sPBR = sP = sPBQ = h−1(sU′BV′) = h−1(sU′)

tPBR = tR = h−1(tU′)

interface bijections such that x �U′ y iff h(x) �PBR h(y) for all x, y ∈ U′ . The
order isomorphism follows by

1. Suppose, x, y ∈ U′ such that x �U′ y, then

(a) if x, y ∈ P such that x �P y, then x �PBR y.

(b) if x, y ∈ R such that x �R y, then x �PBR y.

(c) if x ∈ P and y ∈ R, then there are three case to consider,

i. if x ∈ P and y ∈ sR, then case (a).

ii. if x ∈ tP and y ∈ R, then case (b).

iii. if x ∈ P and y ∈ R such that y /∈ sR and x /∈ tP, then x �PBR y.

(d) if y ∈ P and x ∈ R, then x �PBR y implies y = x by antisymmetry.
This implies x ∈ U′ such that x denotes fusion of y ∈ tP and x ∈
sQ.

2. Similarly, suppose x, y ∈ U′ such that x �PBR y, then

(a) if x, y ∈ P such that x �P y then x �PBQ y, and x �U′BV′ y. Since
x, y ∈ U′, thus x �U′ y.

(b) if x, y ∈ R such that x �R y. Since ER ⊆ h−1(EU′) \ (EP \ tP), thus
x �U′ y.

(c) if x ∈ P and y ∈ R, then there are three case to consider

i. if x ∈ P and y ∈ sR, then case (a).

ii. if x ∈ tP and y ∈ R, then case (b).
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iii. if x ∈ P and y ∈ R such that y /∈ sR and x /∈ tP, then y ∈ Q
therefore x �PBQ y. Since PB Q = U′BV′, we have x �U′BV′

y. Then x, y ∈ U′, thus x �U′ y.

(d) if y ∈ P and x ∈ R then x �PBR y implies y = x (by antisymmetry),
and thus x ∈ U′ such that x denotes fusion of y ∈ tP and x ∈ sQ.

We choose R to find that U′ = P B R. Since U′ 6 U, thus P B R 6 U.
Similarly, we arrive at P 6 U B R by following the optional case U′ ⊆ P.

We now claim RBV′ 6 Q by following similar procedure as above. Consider
a contradiction Q * V′ and V′ * Q, then we eventually arrive at either
V′ ⊆ Q or Q ⊆ V′. Lets take the case V′ ⊆ Q and assume iposets R =
Q \ (V′ \ idsV′ ) such that

R = (h(EQ) \ (EV′ \ sV′),�Q\(V′\idsV′ )
, h(sQ), h(EQ) ∩ sV′).

To show Q = R B V′, we now proceed with sets of events

ERBV′ = ER ∪ (EV′ \ sV′) I since tR = sV′ by definition of R
= (h(EQ) \ (EV′ \ sV′)) ∪ (EV′ \ sV′)

= h(EQ)

along with the source
sRBV′ = sR = h(sQ)

and target interface

tRBV′ = tV′ = tU′BV′ = h(tPBQ) = h(tQ)

bijections such that x �Q y iff h(x) �RBV′ h(y) for all x, y ∈ Q, denotes order
isomorphism. The order isomorphism follows by

1. Suppose x, y ∈ Q such that x �Q y. There are three case to consider

(a) if x, y ∈ R then x �R y. Thus, x �RBV′ y.

(b) if x, y ∈ V′ then x �V′ y. Thus, x �RBV′ y.

(c) if x ∈ R and y ∈ V′, then there are three case to consider

i. if x ∈ R and y ∈ tR, then case (a).

ii. if x ∈ sV′ and y ∈ V′, then case (b).

iii. if x ∈ R and y ∈ V′ such that y /∈ tR and x /∈ sV′ , then x �RBV′

y.

(d) if y ∈ R and x ∈ V′, then y �RBV′ x implies y = x by antisymme-
try. This implies x ∈ Q such that x denotes fusion of y ∈ tR and
x ∈ sV′ .

2. Similarly, suppose x, y ∈ Q such that x �RBV′ y. There are three cases
to consider



4.4. The theory of iposets under subsumption 75

(a) if x, y ∈ R, then x �U′ y and x �U′BV′ y. Thereafter x �PBQ y, and
thus it follows x �Q y.

(b) if x, y ∈ V′ then x �U′BV′ y. Thereafter x �PBQ y, and thus it
follows x �Q y.

(c) if x ∈ R and y ∈ V′, then there are three case to consider

i. if x ∈ R and y ∈ sV′ , then case (a).

ii. if x ∈ tR and y ∈ V′, then case (b).

iii. if x ∈ R and y ∈ V′ such that x /∈ tR and y /∈ sV′ , then x ∈ U′,
thus x �U′BV′ y. Thereafter x �PBQ y, and thus it follows
x �Q y.

(d) if y ∈ R and x ∈ V′, then y �RBV′ x implies y = x (by antisym-
metry) and thus x ∈ Q such that x denotes fusion of y ∈ tR and
x ∈ sV′ .

We choose R to find that Q = R B V′. Since V′ 6 V, thus Q 6 R B V.
Similarly, we arrive at RB Q 6 V by following the optional case Q ⊆ V′.

We state Lemma 12 for the proof of successive Lemma 13 for unique B de-
composition of iposets.

Lemma 12. Let P, Q, U, V be iposets such that P B Q = U B V. There exists
an iposets R such that either P = U B R and R B Q = V or P B R = U and
Q = R B V.

Proof. Trivial by lemma 11 with h−1 inverse morphisms in order relation.

The Lemma 13 defines uniqueness B decomposition of iposets.

Lemma 13 (UniqueB Factorization). Let P be an iposets such that U1 BU2 . . . Un
and V1 BV2 . . . Vm denotes the Sequential factorization of P for some n, m ∈N, then

U1 BU2 . . . Un = V1 B V2 . . . Vm

Proof.

We follow similar method [18, lemma 3.8] in our case as well.
Given iposets U1, U2 . . . , Un and V1, V2 . . . , Vm such that

U1 BU2 . . . Un = V1 B V2 . . . Vm.

We proceed to prove Un = Vm for 1 ≤ (n = m) ≤ N by induction based on
lemma 12 such as

1. Trivial by Lemma 9 if n = m = 0.

2. Trivial by Lemma 9 if n = m = 1.
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3. Let assume claim holds for n′, m′ such that n′ < n = m′ < m and
(n = m) > 1. Then by Lemma 12, consider an iposet R such that either

U1 B R = V1 and U2 B . . . Un = R B V2 . . . Vm

or
V1 B R = U1 and V2 B . . . Vm = R BU2 . . . Un.

If we assume R = idn, then either part becomes U1 = V1 and U2 B
. . . Un = V2 B . . . Vm, where U2 B . . . Un = V2 B . . . Vm again holds by
following induction. Similar argument can be made for later case as
well.

We prove Lemma 14 for the proof of successive Lemma 15.

Lemma 14. Let P, Q, U, V be iposets such that P ⊗ Q 6 U ⊗ V there exists an
iposets R such that either P 6 U ⊗ R and R⊗ Q 6 V or P⊗ R 6 U and Q 6
R⊗V.

Proof.

Let P, Q, U and V be iposets

P = (EP,�P, sP, tP) , Q = (EQ,�Q, sQ, tQ),

U = (EU,�U, sU, tU) and V = (EV ,�V , sV , tV)

Consider the case P⊗ Q 6 U ⊗ V which witness the bijection h : EU⊗V →
EP⊗Q

EU⊗V = h−1(EP⊗Q)

such that

x �U⊗V y =⇒ h(x) �P⊗Q h(y) for all x, y ∈ U ⊗V

along with the source and target interfaces bijections

h : sU⊗V → sP⊗Q and h : tU⊗V → tP⊗Q.

Now, by Lemma 8 we can find U′ 6 U and V′ 6 V such that P⊗Q = U′⊗V′

which witness the bijection

h : EP⊗Q → EU′⊗V′ such that x �P⊗Q y iff h(x) �U′⊗V′ h(y) for all x, y ∈ P⊗Q

along with h : sP⊗Q → sU′⊗V′ and h : tP⊗Q → tU′⊗V′

Assume a contradiction such that P * U′ and U′ * P, then there exists events
x ∈ P \U′ and y ∈ U′ \ P. Since x /∈ U′, it follows x ∈ V′, and by the same
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reasoning y ∈ Q. But, then x⊗ y ∈ P⊗ Q and y⊗ x ∈ U′ ⊗V′. Since P⊗ Q
and U′ ⊗ V′ is isomorphic by definition , we find x ⊗ y = y ⊗ x . This is a
contradiction, since x⊗ y 6= y⊗ x once the iposets are labelled. Thus, either
P ⊆ U′ or U′ ⊆ P is true.

Let take case P ⊆ U′, while U′ ⊆ P will follow the similar procedure. Lets
assume iposets R = U′ \ P such that

R = (h−1(EU′) \ EP,�U′\P, h−1(sU′) \ sP, h−1(tU′) \ tP).

We now claim U′ = P⊗ R. To show U′ = P⊗ R, we proceed with the sets of
events

EP⊗R =EP ∪ ER

= EP ∪ (h−1(EU′) \ EP)

= h−1(EU′)

along with source

sP⊗R = sP ∪ sR = sP ∪ (h−1(sU′) \ sP) = h−1(sU′)

and target

tP⊗R = tP ∪ tR = tP ∪ (h−1(tU′) \ tP) = h−1(tU′)

interface bijections such that x �U′ y iff h(x) �P⊗R h(y) for all x, y ∈ U′

denotes order isomorphism. The order isomorphism follows by

1. Suppose, x, y ∈ U′ such that x �U′ y, then

(a) if x, y ∈ P such that x �P y, then x �P⊗R y.

(b) if x, y ∈ R such that x �R y, then x �P⊗R y.

We list an additional case if x, y ∈ U′ such that x �U′ y then, x �P⊗R y
by x ∈ P and y ∈ R.

2. Similarly, suppose x, y ∈ U′ such that x �P⊗R y, then

(a) if x, y ∈ P such that x �P y then x �P⊗Q y, and x �U′⊗V′ y. Since
x, y ∈ U′, thus x �U′ y.

(b) if x, y ∈ R such that x �R y. Since ER ⊆ (h−1(EU′) \ EP), thus
x �U′ y.

We list an additional case x ∈ P and y ∈ R such that x �P⊗R y (since
R = (U′ \ P), the disjointness of P and R) then, by 2(a) and 2(b) x �U′ y.

We choose R to find that U′ = P ⊗ R. Since U′ 6 U, thus P ⊗ R 6 U.
Similarly, we arrive at P 6 U ⊗ R by following the optional case U′ ⊆ P.

We now claim R⊗V′ 6 Q by following similar procedure as above. Consider
a contradiction Q * V′ and V′ * Q, then we eventually arrive at either
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V′ ⊆ Q or Q ⊆ V′. Lets take the case V′ ⊆ Q and assume iposets R = Q \V′

such that
R = (h(EQ) \ EV′ ,�Q\V′ , h(sQ) \ sV′ , h(tQ) \ tV′).

To show Q = R⊗V′, we now proceed with sets of events

ER⊗V′ = ER ∪ EV′)

= (h(EQ) \ EV′) ∪ EV′

= h(EQ)

along with the source

sR⊗V′ = sR ∪ sV′ = (h(sQ) \ sV′) ∪ sV′ = h(sQ)

and target interface

tRBV′ = tR ∪ tV′ = (h(tQ) \ tV′) ∪ tV′ = h(tQ)

bijections such that x �Q y iff h(x) �R⊗V′ h(y) for all x, y ∈ Q denotes order
isomorphism. The order isomorphism follows by

1. Suppose x, y ∈ Q such that x �Q y, then

(a) if x, y ∈ R then x �R y. Thus, x �R⊗V′ y.

(b) if x, y ∈ V′ then x �V′ y. Thus, x �R⊗V′ y.

We list an additional case if x, y ∈ Q such that x �Q y then, x �R⊗V′ y
by x ∈ R and y ∈ V′.

2. Similarly, suppose x, y ∈ Q such that x �R⊗V′ y, then

(a) if x, y ∈ R, then x �U′ y and x �U′⊗V′ y. Thereafter x �P⊗Q y, and
thus it follows x �Q y.

(b) if x, y ∈ V′ then x �U′⊗V′ y. Thereafter x �P⊗Q y, and thus it
follows x �Q y.

We list an additional case x ∈ R and y ∈ V′ such that x �R⊗V′ y (since
R = (Q \V′), the disjointness of R and V′) then, by 2(a) and 2(b) x �Q
y.

We choose R to find that Q = R ⊗ V′. Since V′ 6 V, thus Q 6 R ⊗ V.
Similarly, we arrive at R⊗Q 6 V by following the optional case Q ⊆ V′.

We state Lemma 15 for the proof of successive Lemma 16.

Lemma 15. Let P, Q, U, V be iposets such that P ⊗ Q = U ⊗ V there exists an
iposets R such that either P = U ⊗ R and R⊗ Q = V or P⊗ R = U and Q =
R⊗V.

Proof. Trivial by lemma 14 with h−1 inverse morphisms in order relation.
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The Lemma 16 defines uniqueness of ⊗ decomposition of iposets.

Lemma 16 (Unique⊗ Factorization). Let P be an iposet such that U1⊗U2 . . . Un
and V1 ⊗V2 . . . Vm denotes the parallel factorization of P for some n, m ∈N, then

U1 ⊗U2 . . . Un = V1 ⊗V2 . . . Vm

Proof.

Given iposets U1, U2 . . . , Un and V1, V2 . . . , Vm such that

U1 ⊗U2 . . . Un = V1 ⊗V2 . . . Vm.

We proceed to prove Un = Vm for 1 ≤ (n = m) ≤ N by induction based on
Lemma 15 such as

1. Trivial by lemma 9 if n = m = 0.

2. Trivial by lemma 9 if n = m = 1.

3. Let assume claim holds for n′, m′ such that n′ < n = m′ < m and
(n = m) > 1. Then by lemma 15, consider an iposet R such that either

U1 ⊗ R = V1 and U2 ⊗ . . . Un = R⊗V2 . . . Vm

or
V1 ⊗ R = U1 and V2 ⊗ . . . Vm = R⊗U2 . . . Un

If we assume R = id0 (an empty iposet), then either part becomes U1 =
V1 and U2 ⊗ . . . Un = V2 ⊗ . . . Vm, where U2 ⊗ . . . Un = V2 ⊗ . . . Vm
again holds by following induction. Similarly, claim for later case can
be established.

We now prove Levi’s Lemma 17 for iposets.

Lemma 17 (Levi). Let P and Q be iposets, and let W0, W1, ..., Wn−1 with n > 0 be
non-empty iposets such that P B Q 6 W0 BW1 B ...BWn−1. Then, there exists an
m < n and iposets U, V such that

UBV = Wm, P 6 W0 BW1 B ...BWm−1 BU and V 6 V BWm+1 BWm+2 B ...BWn−1.

Proof.

We follow proof similar to the literature [17, lemma 3.4].
We proceed with induction on n,

1. The base case when n = 1, then m = 0. We get,

P B Q 6 W0 and U B V 6 W0



80 Chapter 4. Iposets theory

we choose P = U and Q = V to satisfy the claim.

2. We assume (1) holds for induction step n− 1. Then, we can write

P B Q 6 W0 BW1 B ... BWn−1

rewritting
P B Q 6 W0 B (W1 B ... BWn−1)

Then, by Lemma 11, we have following two cases

(a) Consider an iposet R such that

P 6 W0 B R and R B Q 6 W1 B ... BWn−1.

By induction, 1 ≤ m < n and iposets U, V such that U B V 6 Wm
and R 6 W1 B ...BWm−1 BU and Q 6 V BWm+1 B ...BWn. Since
P 6 W0 B R, it follows P 6 W0 BW1 B ... BWm−1 BU.

(b) Consider an iposet R such that P B R 6 W0 and Q 6 R B (W1 B
... B Wn−1).Again we choose m = 0, then P = U and Q = V
follows the claims.

We now prove soft version of interpolation Lemma 18 for parallel factors of
iposets.

Lemma 18. Let P, Q, U, V be iposets such that P⊗ Q 6 U ⊗ V. Then there exist
iposets U0, U1, V0, V1 such that

U0 ⊗U1 6 U, V0 ⊗V1 6 V, P 6 U0 ⊗V0, and Q 6 U1 ⊗V1.

Proof.

Let P, Q, U, V be iposets

P = (EP,�P, sP, tP) and Q = (EQ,�Q, sQ, tQ)

U = (EU,�U, sU, tU) and V = (EV ,�V , sV , tV)

Consider the case P⊗Q 6 U ⊗V which establish the bijection

h : EU⊗V → EP⊗Q (4.26)

such that

x �U⊗V y =⇒ h(x) �P⊗Q h(y) for all x, y ∈ (U ⊗V)

along with the source and target interfaces bijections

h : sU⊗V → sP⊗Q = sP ∪ sQ and h : tU⊗V → tP⊗Q = tP ∪ tQ.
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Now, we choose the pairwise disjoint iposets

U0 = (EU0 ,�U0 , sU0 , tU0) and U1 = (EU1 ,�U1 , sU1 , tU1)

V0 = (EV0 ,�V0 , sV0 , tV0) and V1 = (EV1 ,�V1 , sV1 , tV1)

such that

EU0 = EU ∩ h−1(EP) denotes the restriction of EP to the EU such that

�U ∩ h−1(�P) along with sU0 = sU ∩ h−1(sP) and tU0 = EU ∩ h−1(tP).

In short

I U0 = (EU ∩ h−1(EP),�U ∩h−1(�P), sU ∩ h−1(sP), EU ∩ h−1(tP)).

Similarly,

U1 = (EU ∩ h−1(EQ),�U ∩h−1(�Q), EU ∩ h−1(sQ), tU ∩ h−1(tQ))

V0 = (EV ∩ h−1(EP),�V ∩h−1(�P), sV ∩ h−1(sP), EV ∩ h−1(tP))

V1 = (EV ∩ h−1(EQ),�V ∩h−1(�Q), EV ∩ h−1(sQ), tV ∩ h−1(tQ)).

To establish P 6 U0 ⊗V0, we proceed with the bijection h : EU0⊗V0 → EP

EU0⊗V0 = EU0 ∪ EV0

= (EU ∩ h−1(EP)) ∪ (EV ∩ h−1(EP))

I After simplifying,

= (EU ∪ EV) ∩ h−1(EP)

= EU⊗V ∩ h−1(EP)

= h−1(EP⊗Q ∩ EP)

= h−1((EP ∪ EQ) ∩ EP)

= h−1(EP)

along with the source h : sU0⊗V0 → sP and target h : tU0⊗V0 → tP

sU0⊗V0 =sU0 ∪ sV0

= (sU ∩ h−1(sp)) ∪ (sV ∩ h−1(sP))

I After simplifying,

= (sU ∪ sV) ∩ h−1(sP)

= sU⊗V ∩ h−1(sP)

= h−1(sP⊗Q) ∩ h−1(sP)

= h−1((sP ∪ sQ) ∩ sP)

= h−1(sP)
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tU0⊗V0 =tU0 ∪ tV0

= (EU ∩ h−1(tp)) ∪ (EV ∩ h−1(tP))

I After simplifying,

= (EU ∪ EV) ∩ h−1(tP)

= EU⊗V ∩ h−1(tP)

= h−1(EP⊗Q) ∩ h−1(tP)

= h−1((EP ∪ EQ) ∩ tP)

I Since, tP ⊆ EP

= h−1(tP)

interface bijections and order subsumptions such that x �U0⊗V0 y =⇒
h(x) �P h(y). Suppose x, y ∈ P such that x �U0⊗V0 y, which is either x �U0 y
or x �V0 y. if x �U0 y then x �U y by choice of U0. But then x �U⊗V y, thus
x �P⊗Q y by equation 4.26. Since x, y ∈ P, we conclude x �P y. Similarly,
we can show x �P y when x �V0 y. This proves P 6 U0 ⊗ V0. Similarly, we
can establish Q 6 U1 ⊗V1 as well.

To establish U0 ⊗ U1 6 U, we now proceed with the bijection h : EU →
EU0⊗U1

EU0⊗U1 = EU0 ∪ EU1

= (EU ∩ h−1(EP)) ∪ (EU ∩ h−1(EQ))

= (EU ∪ EU) ∩ (EU ∪ h−1(EQ)) ∩ (h−1(EP) ∪ EU) ∩ (h−1(EP) ∪ h−1(EQ))

I By simplifying first 3 term, we get

= EU ∩ (h−1(EP) ∪ h−1(EQ))

= EU ∩ h−1(EP ∪ EQ)

= EU ∩ h−1(EP⊗Q)

= EU ∩ (EU⊗V)

= EU ∩ (EU ∪ EV)

= EU

along with the source and target h : sU → sU0⊗U1 and h : tU → tU0⊗U1
interface bijections

sU0BU1 = sU0 ∪ sU1

= (sU ∩ h−1(sP)) ∪ (EU ∩ h−1(sQ))

= (sU ∪ EU) ∩ (sU ∪ h−1(sQ)) ∩ (h−1(sP) ∪ EU) ∩ (h−1(sP) ∪ h−1(sQ))

I Since sU ⊆ EU, then simplifying

= sU ∩ (h−1(sP) ∪ h−1(sQ))

= sU ∩ h−1(sP⊗Q)

= sU ∩ sU⊗V
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= sU ∩ (sU ∪ sV)

= sU

tU0⊗U1 = tU0 ∪ tU0

= (EU ∩ h−1(tP)) ∪ (tU ∩ h−1(tQ))

= (EU ∪ tU) ∩ (EU ∪ h−1(tQ)) ∩ (h−1(tP) ∪ tU) ∩ (h−1(tP) ∪ h−1(tQ))

I Since tU ⊆ EU, then simplifying

= tU ∩ (h−1(tP) ∪ h−1(tQ))

= tU ∩ h−1(tP⊗Q)

= tU ∩ tU⊗V

= tU ∩ (tU ∪ tV)

= tU

such that x �U y =⇒ h(x) �U0⊗U1 h(y). Suppose x, y ∈ U such that
x �U y. Then, we know that x �U y mean x �U⊗V y, and thus x �P⊗Q y.
Then, we have following case to consider

1. if x, y ∈ P then x �U0 y, and thus x �U0⊗U1 y.

2. if x, y ∈ Q then x �U1 y, and thus x �U0⊗U1 y.

We ignore the case x ∈ P and y ∈ Q that implies x �P⊗Q y. The order
subsumptions above witness U0 ⊗U1 6 U. Similarly, we can establish V0 ⊗
V1 6 V as well.

We generalise Lemma 19 for iposets from soft version of interpolation Lemma 18
above.

Lemma 19. Let P, Q, U, V be iposets such that P⊗ Q = U ⊗V. Then there exist
iposets U0, U1, V0, V1 such that

U0 ⊗U1 = U, V0 ⊗V1 = V, P = U0 ⊗V0, and Q = U1 ⊗V1.

Proof. Trivial by Lemma 18 with h−1 inverse morphisms in order relation.

We now prove interpolation Lemma 17 for iposets.

Lemma 20 (Interpolation). Let P, Q, U, V be iposets such that P B Q 6 U ⊗ V.
Then there exist iposets U0, U1, V0, V1 such that

U0 BU1 6 U, V0 B V1 6 V, P 6 U0 ⊗V0, and Q 6 U1 ⊗V1.

Proof.
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Let P, Q, U, V be iposets

P = (EP,�P, sP, tP) and Q = (EQ,�Q, sQ, tQ)

U = (EU,�U, sU, tU) and V = (EV ,�V , sV , tV).

Consider the case P B Q 6 U ⊗V which witness the bijection

h : EU⊗V → EPBQ (4.27)

such that

x �U⊗V y =⇒ h(x) �PBQ h(y) for all x, y ∈ (U ⊗V)

along with the

h : sU⊗V → sPBQ = sP and h : tU⊗V → tPBQ = tQ

source and target interfaces bijections. Now, we choose the pairwise disjoint
iposets

U0 = (EU0 ,�U0 , sU0 , tU0) and U1 = (EU1 ,�U1 , sU1 , tU1)

V0 = (EV0 ,�V0 , sV0 , tV0) and V1 = (EV1 ,�V1 , sV1 , tV1)

such that

EU0 = EU ∩ h−1(EP) denotes the restriction of EP to the EU such that

�U ∩h−1(�P) along with sU0 = sU ∩ h−1(sP) and tU0 = EU ∩ h−1(tP).

In short,

I U0 = (EU ∩ h−1(EP),�U ∩h−1(�P), sU ∩ h−1(sP), EU ∩ h−1(tP)).

Similarly,

U1 = (EU ∩ h−1(EQ),�U ∩h−1(�Q), EU ∩ h−1(sQ), tU ∩ h−1(tQ))

V0 = (EV ∩ h−1(EP),�V ∩h−1(�P), sV ∩ h−1(sP), EV ∩ h−1(tP))

V1 = (EV ∩ h−1(EQ),�V ∩h−1(�Q), EV ∩ h−1(sQ), tV ∩ h−1(tQ)).

To established P 6 U0 ⊗V0, we proceed with the bijection h : EU0⊗V0 → EP

EU0⊗V0 = EU0 ∪ EV0

= (EU ∩ h−1(EP)) ∪ (EV ∩ h−1(EP))

IAfter simplifying,

= (EU ∪ EV) ∩ h−1(EP)

= EU⊗V ∩ h−1(EP)
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= h−1(EPBQ ∩ EP)

= h−1(EP)

along with the source h : sU0⊗V0 → sP and target h : tU0⊗V0 → tP

sU0⊗V0 = sU0 ∪ sV0

= (sU ∩ h−1(sp)) ∪ (sV ∩ h−1(sP))

I After simplifying,

= (sU ∪ sV) ∩ h−1(sP)

= sU⊗V ∩ h−1(sP)

= h−1(sPBQ) ∩ h−1(sP)

= h−1(sPBQ ∩ sP)

= h−1(sP ∩ sP)

= h−1(sP)

tU0⊗V0 = tU0 ∪ tV0

= (EU ∩ h−1(tp)) ∪ (EV ∩ h−1(tP))

I After simplifying,

= (EU ∪ EV) ∩ h−1(tP)

= EU⊗V ∩ h−1(tP)

= h−1(EPBQ) ∩ h−1(tP)

= h−1(EPBQ ∩ tP)

= h−1(tP)

interface bijections and order subsumptions such that x �U0⊗V0 y =⇒
h(x) �P h(y). Suppose x, y ∈ P such that x �U0⊗V0 y, which is either x �U0 y
or x �V0 y. If x �U0 y then x �U y by choice of U0. But then x �U⊗V y, thus
x �PBQ y by Equation (4.27). Since x, y ∈ P, we conclude x �P y. Similarly,
we can show x �P y when x �V0 y. This witness P 6 U0 ⊗V0. Similarly, we
can establish Q 6 U1 ⊗V1 as well.

To establish U0 B U1 6 U, we now proceed with the bijection h : EU →
EU0BU1

EU0BU1 = (EU0 ∪ EU1)/tU0
I since tU0 = sU1

= ((EU ∩ h−1(EP)) ∪ (EU ∩ h−1(EQ)))/tU0

= ((EU ∪ EU) ∩ (EU ∪ h−1(EQ))∩
(h−1(EP) ∪ EU) ∩ (h−1(EP) ∪ h−1(EQ)))/tU0

I By simplifying first 3 term, we get

= (EU ∩ (h−1(EP) ∪ h−1(EQ)))/tU0



86 Chapter 4. Iposets theory

= (EU ∩ (h−1(EP) ∪ h−1(EQ)))/EU∩h−1(tP)

= (EU ∩ (h−1(EP) ∪ h−1(EQ))) ∩ EU ∩ h−1(tP)

= (EU ∩ (h−1(EP) ∪ h−1(EQ))) ∩ (EU ∪ h−1(tP))

= ((EU ∩ (h−1(EP) ∪ h−1(EQ))) ∩ EU)∪
((EU ∩ (h−1(EP) ∪ h−1(EQ))) ∩ h−1(tP))

I By simplifying first term, we get

= ∅ ∪ ((EU ∩ (h−1(EP) ∪ h−1(EQ))) ∩ h−1(tP))

I While simplifying rest, we get

= ((EU ∩ (h−1(EP) ∪ h−1(EQ))))/h−1(tP)

I Again simplifying, we get

= EU ∩ h−1((EP ∪ EQ)/tP)

= EU ∩ h−1(EPBQ)

= EU ∩ (EU ∪ EV)

= EU.

along with the source h : sU → sU0BU1 and target h : tU → tU0BU1 interface
bijections are given

sU0BU1 = sU0 = sU ∩ h−1(sP) = sU ∩ h−1(sPBQ)

= sU ∩ sU⊗V = sU ∩ (sU ∪ sV) = sU

and

tU0BU1 = tU1 = tU ∩ h−1(tQ) = tU ∩ h−1(tPBQ)

= tU ∩ tU⊗V = tU ∩ (tU ∪ tV) = tU

such that x �U y =⇒ h(x) �U0BU1 h(y). For order inclusion, suppose
x, y ∈ U such that x �U y. Then, x �U y implies x �U⊗V y, and thus
x �PBQ y. Now, we have three cases to consider

1. if x, y ∈ P then x �U0 y, and thus x �U0BU1 y.

2. if x, y ∈ Q then x �U1 y, and thus x �U0BU1 y.

3. if x ∈ P and y ∈ Q, then there are three case to consider

(a) if x ∈ P and y ∈ Q such that y ∈ sQ, then case 1.

(b) if x ∈ P and y ∈ Q such that x ∈ tP, then case 2.

(c) if x ∈ P and y ∈ Q such that x /∈ tP and x /∈ sQ, then x ∈ U0 and
y ∈ U1, and thus x �U0BU1 y.

4. if y ∈ P and x ∈ Q , then y ∈ U0 and x ∈ U1. But, x �U0BU1 y implies
x = y by antisymmetry. Thus, x ∈ U0 B U1 explains the fusion such
that y ∈ tU0 and x ∈ sU1 .



4.5. Summary 87

The order subsumptions above proves U0 B U1 6 U. Similarly, we get V0 B
V1 6 V as well.

Lemma 21. Let P, Q, U, V be iposets such that P B Q = U ⊗ V. Then there exist
iposets U0, U1, V0, V1 such that

U0 BU1 = U, V0 B V1 = V, P = U0 ⊗V0, and Q = U1 ⊗V1.

Proof. Trivial by the proof of Lemma 20.

Remark 19. We have proved most of the property of order structure of SP posets
under subsumption [13] for the order structure of iposets under subsumption. These
algebraic results of iposets under subsumption orders are rich enough to generalise
the weak class of iposet languages.

4.5 Summary

In this chapter, we presented our results of iposets theory. We gave an equa-
tional theory of iposets algebra in Section 4.1. We established that ordered
bisemigroup of iposets forms a concurrent semigroup, and thereby satisfies
exchange law given in Equation (4.3). We also established that the identi-
ties of concurrent monoid in iposet algebra do not imply exchange law in
Lemma 1; replicating the original results of Concurrent Kleene algebra [14,
Definition 6.8.]. We gave an equational theory of iposet languages in Sec-
tion 4.2. We have shown that the double monoid structure of iposets in
Proposition 3 defines language bisemirings of iposets in Proposition 5.

We defined structured theory for iposet languages and outlined their hierar-
chy in Section 4.3. We generalized properties of iposets hierarchy in the Lem-
mas 2, 3 and 4. Further, we derived properties of iposets under subsumption
order in Section 4.4 and established that the order structure of iposets under
subsumption respects most of the property of order structure of SP posets
under subsumption.
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Chapter 5

Domain and modal operators for
iposets languages

In this chapter, we present axioms of domain operations for iposets lan-
guages and generalise their corresponding modal operators by following ear-
lier exposition of literature in Section 2.3.

5.1 Domain operators

Relations are a natural model of computation such as input-output aspects
of programs. These input-output structures (or labelled transition systems)
are models of program execution and provide logic for programs such as dy-
namic logic. For example, a pair in a binary relation can be seen as relating a
start state to an end state in program execution. These input-output examples
of relation capture all possible end states that the program can reach from the
point of its executions. A domain operation on such a relation would then
return all the start states, i.e., all those states from which the program can
execute. Peleg gives similar justifications for multi-relations for concurrent
programs in the setting of Concurrent dynamic logic [30] and the domain of
multi-relations [12] capture similar input-output relational aspect.

Relations can be extracted from labelled iposets by looking at the individual
source s and target t interfaces as follows, for some iposets P, Q

R(P) = {(i, j) | s(i) ≤ t(j)}.

This resulting relation will be over two different sets, or it can be made over
the same set if we impose some restrictions on how the interfaces of the
iposet should always look like. However, we also want that such a trans-
lation should capture the following relational compositions

R(P . Q) = R(P) ◦ R(Q).

However, this cannot be true because the iposet concatenation introduces
dependencies between the s interfaces of P and the t interfaces of Q which
cannot be avoided no matter how we construct the iposet.
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Now, if we look at languages of iposets then there is a way to translate these
into relations. Consider the following two translations between relation R,
the set of relations R ⊆N×N, and iposets languages PL, PL ∈ 2P the set of
all sets of iposets,

R(PL) = {(i, j) | [i]→ P← [j] ∈ PL} (5.1)

L(R) = {id : [i]→ [i + j]← [j] : id | (i, j) ∈ R.} (5.2)

Theorem 13. For any relation R and iposets PL, QL ∈ 2P , the maps in Equaitons (5.1)
and (5.2) respect the following

R(PL B QL) = R(PL) ◦ R(QL), (5.3)

L(R ◦ R′) = L(R)BL(R′). (5.4)

Proof.

I Proof of Equation (5.3): the language composition is defined pointwise.
For some [i] → P ← [j] ∈ PL and [j′] → P ← [k] ∈ QL are composable iff
[j] = [j′], i.e., are the same number. Then, the resulting ipomset in the new
language has the source interface [i] and the target interface [k]. This is the
same as in relational composition, where the two corresponding pairs (i, j)
and (j′, k) can be composed only if j = j′ to form the new pair (i, k).

I Proof of Equation (5.4): for each pair (i, j) ∈ R and (j′, k) ∈ R′, there
exist the corresponding iposets id : [i] → [i + j] ← [j] : id ∈ L(R) and
id : [j′] → [j′ + k] ← [k] : id ∈ L(R′). The relational composition between R
and R′ is defined only when j = j′, thus making the iposet concatenation also
defined, with the resulting iposet being translated into the corresponding
relation pair.

We call any I ⊆ 1B a subidentity. The set of all subidentities together with the
concatenation and union form a Boolean algebra with 1B as the top element and ∅
as the bottom element. The concatenation B acts as conjunction (i.e., I B J = I ∩ J
for I, J ⊆ 1B) and union acts as disjunction when applied to the elements of 1B.

Theorem 14 (Boolean algebra). The set of I ⊆ 1B identity iposets generalize
Boolean elements such that I ⊆ 1B \ I denotes Boolean complement of I, and
satisfies following Boolean axioms

I B I = ∅, (5.5)

I ∪ I = 1B. (5.6)

Proof.
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I we first proceed for

I B J = I ∩ J for any I, J ⊆ 1B. (5.7)

The composition I B J is defined by finding those identity iposets in I and J
which leads to I′ B J′ = I′ such that I′ ∈ I and J′ ∈ J. This implies I′ = J′

and the gluing between two identity iposets is the identity iposets itself if
the gluing is defined. That is exactly the I ∩ J, the composition yields those
identity iposets in I and J which are isomorphics, i.e., I′ = J′ such that I′ ∈ I
and J′ ∈ J.

I The proof of Equation (5.5) follows from Equation (5.7), which is trivial by
set theory

I B I = I ∩ I = I ∩ (1B \ I) = ∅.

I The Equation (5.6) is trivial by set theory

I ∪ I = I ∪ (1B \ I) = 1B.

Domain definition over iposets

We follow the intuitions and results from [7, 9], and define the domain opera-
tion applied to an iposet as

dom([n]→ P← [m])
def
= [n]→ [n]← [n]

which is an element of 1B. For a set of iposets, we define domain by point-
wise application

dom(A)
def
= {dom(P) | P ∈ A}

which is a subidentity (i.e., dom(A) ⊆ 1B). The definition of range is similar,
except, that it returns the target interface of the iposet

ran([n]→ P← [m])
def
= [m]→ [m]← [m]

with the same observations as above of being a subidentity when applied to
sets of iposets.

Note that now we can formulate the definedness condition for concatenation
of languages of iposets using domain and range as follows:

L B M = {P B Q | P ∈ L, Q ∈ M, iff ran(P) = dom(Q)}.
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For languages of iposets we define the antidomain as

ant(A)
def
= 1B \ {dom(P) | P ∈ A}

which is a subidentity.

Lemma 22. We observe following equalities for domain of individual iposet.

dom(P)B P = P (5.8)

dom(dom(P)) = dom(P) (5.9)

dom(P B Q) = dom(P) if ran(P) = dom(Q) (5.10)

Proof.

I Proof of Equation (5.8): consider an iposet P such that [n] → P ← [m] ,
then by following definition of domain

dom(P) = {[n]→ [n]← [n]}

yields an identity iposets which contains all the events of source interface of
P. This implies dom(P)B P composition is defined by gluing dom(P) with P,
which fuses all the events of identity iposet yields from dom(P) to the source
interface of P, and P remains unchanged by the composition dom(P)B P.

dom(P)B P = idn B P = P.

I Proof of Equation (5.9) follows from the definition of domain. The dom(P)
yields an identity iposet containing all the events of the source interfaces
of P, and dom(dom(P)) yields an identity iposets containing all the events
of source interface of the identity iposet produced by dom(P). Since the
source interface of an identity iposet contains all the events of the iposet,
the dom(dom(P)) and dom(P) identity poset contains exactly the same events
that belongs to the source interface of P, i.e., dom(dom(P)) = dom(P).

I Proof of Equation (5.10) follows from the definition of domain

dom(P B Q) = dom(P) since, sPBQ = sP iff ran(P) = dom(Q)

Lemma 23. Following equalities exist for the range of individual iposets.

P B ran(P) = P (5.11)

ran(ran(P)) = ran(P) (5.12)
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ran(P B Q) = ran(Q) if ran(P) = dom(Q) (5.13)

ran(dom(P)) = dom(P) (5.14)

dom(ran(P)) = ran(P). (5.15)

Proof.

I Proof of Equation (5.11): consider an iposet P such that [n] → P ← [m].
Then, by the definition of range

ran(P) = {[m]→ [m]← [m]}

yields an identity iposets which contains all the events of target interfaces of
P. This implies P B ran(P) composition is defined by gluing P with ran(P),
that merge all the events of identity iposets yields from ran(P) to the target
interface of P, and P remains unchanged by the composition P B ran(P)

P B ran(P) = P B idm = P.

I Proof of Equation (5.12) follows from the definition of range. The ran(P)
yields an identity iposet containing all the events of the target interfaces of P,
and ran(ran(P)) yields an identity iposet containing all the events of target
interface of the identity iposet produced by ran(P). Since the target interface
of an identity iposet contains all the events of the iposets, ran(ran(P)) and
ran(P) identity posets contains exactly the same events that belongs to the
target interface of P, i.e., ran(ran(P)) = ran(P).

I Proof of Equation (5.13) follows from the definition of range,

ran(PBQ) = ran(Q) since composition P B Q is defined by ran(P) = dom(Q)

I Proof of Equation (5.14) and 5.15 follows from similar argument as proof
of Equation (5.12) from above.

Theorem 15 (Domain axioms). For some sets of iposets A, B we have:

A ∪ dom(A)B A = dom(A)B A (5.16)

dom(A B B) = dom(A B dom(B)) (5.17)

dom(A) ∪ 1B = 1B (5.18)

dom(∅) = ∅ (5.19)
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dom(A ∪ B) = dom(A) ∪ dom(B) (5.20)

The domain of iposets is local wrt. concatenation and least left preserver by Equa-
tion (5.8), domain elements are subidentities by Equation (5.9), domain is strict and
additive by Equation (5.20).

For some subidentity I ⊆ 1B we have:

dom(I) = I (5.21)

Proof.

I Proof of Equation (5.16): we prove instead A = dom(A)B A which then
implies the axiom. By definition, dom(A) = {idn = id : [n]→ [n]← [n] : id |
[n]→ P← [m] ∈ A} contains all those identity iposets that appear as source
interface of some iposet from A. An iposet from the concatenation dom(A)B
A is dom(P)B Q for P, Q ∈ A for which the concatenation is defined, i.e., the
source interface of Q is some [n] which is the same as the target interface of P
and the domain becoming the identity idn. Therefore, the identity disappears
into dom(P)B Q = idn B Q = Q which is in A, thus proving one direction of
the equality. Proving the other direction is similar; taking any Q ∈ A we find
its domain dom(Q) ∈ dom(A), by definition. It is obvious that dom(Q) = idn
can be concatenated to the left with Q and is the source interfaces of Q. Thus,
we have found the iposet from dom(A)B A.

I Proof of Equation (5.17), we explicit both sides of the equality as follows:

dom(A B B) = {dom(P B P′) | P ∈ A, P′ ∈ B, and ran(P) = dom(P′), }
(5.22)

which implies

1. for any P ∈ A, P′ ∈ B, s.t. ran(P) = dom(P′) we find dom(P B P′) =
dom(P) in the above set, and nothing else.

On the other side,

dom(A B dom(B)) = {dom(P B Q) | P ∈ A, Q ∈ dom(B),
and ran(P) = dom(Q)} (5.23)

= {dom(P B Q) | P ∈ A, Q = dom(P′) for P′ ∈ B, and

ran(P) = dom(dom(P′)) = dom(P′), } (5.24)

which implies

1. for any P ∈ A, P′ ∈ B, s.t. ran(P) = dom(P′) we find dom(PBdom(P′)) =
dom(P) in the above set, and nothing else.

Therefore the two sets are the same.
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I It is easy to see that Equation (5.19) is true since the domain has no iposet
to be applied to, thus the resulting empty set.

I Proof of Equation (5.18): since the domain is a subidentity then set opera-
tions give the stated result.

I Proof of Equation (5.20): it is enough to use properties of pointwise defini-
tion of domain over union of sets.

Note 2. The equations for domain from [9, Lemma 5.1] hold for languages of
iposets, which one can check manually.

Remark 20. The anitdomain ant(x) of a program x model the set of states
from which x can not execute, compared to domain dom(x) of a program x
that model the set of states from which x can execute. This interprets ant(x) as
a Boolean complement of dom(x), and they together model the input-output
state spaces of program x.

Theorem 16 (Antidomain axioms). For some sets of iposets A, B we have:

ant(A)B A = ∅ (5.25)

ant(A B B) = ant(A B dom(B)) (5.26)

dom(A) ∪ ant(A) = 1B (5.27)

ant(∅) = 1B (5.28)

dom(A)B ant(A) = ∅ (5.29)

ant(A ∪ B) = ant(A)B ant(B) (5.30)

Proof.

I Proof of Equation (5.25): we use the definition of antidomain as follows

ant(A)B A = (1B \ dom(A))B A = (1B B A) \ (dom(A)B A) = A \ A = ∅.

I Proof of Equation (5.26): we use domain axioms as follows

ant(ABB) = 1B \ dom(ABB) 5.17
= 1B \ dom(ABdom(B)) = ant(ABdom(B)).

I Proof of Equations 5.27 and 5.28 follow immediately from the definition.



96 Chapter 5. Domain and modal operators for iposets languages

I The proof of Equation (5.29) follows from the Equation (5.7). By definition,
ant(A) contains those identities that are not in dom(A). Therefore, when con-
catenating the languages we cannot find any pair of identity iposets where
the concatenation is defined, because their respective interfaces are different.

I Proof of Equation (5.30): we explicit the two sides. The left side is

ant(A ∪ B) = 1B \ dom(A ∪ B) 5.20
= 1B \ (dom(A) ∪ dom(B))

which thus contains all identities idn that are not part of dom(A) and neither
of dom(B). The right side is

ant(A)B ant(B) = (1B \ dom(A))B (1B \ dom(B))

which thus contains iposets obtained as concatenation of an identity that is
not in dom(A) and another identity that is not in dom(B). Since the concate-
nation must be defined, it means that the two identities must be the same,
and thus we are left only with those identities as in the let side of the equa-
tion.

Theorem 17 (Boolean domain axioms). The domain and antidomain operations
satisfies following axioms, for some sets of iposets A, B and C

ant(A) ∪ dom(A) = 1B (5.31)

dom(A)B (ant(A) ∪ dom(B)) = dom(A)B dom(B) (5.32)

dom(B)B (ant(A) ∪ dom(B)) = dom(B) (5.33)

ant(A) ∪ (dom(B)B dom(C)) = (ant(A) ∪ dom(B))
B (ant(A) ∪ dom(C)) (5.34)

Then, 1B is a Boolean domain semiring and dom(ant(A)) = ant(A).

Proof.

I The proof of Equation (5.31) follows the proof of Equation (5.27) above.

I Proof of Equation (5.32): we follow left side of equation, and by distribu-
tion of B over union

dom(A)B (ant(A) ∪ dom(B)) = (dom(A)B ant(A)) ∪ (dom(A)B dom(B))

We have dom(A)B ant(A) = ∅ by Equation (5.29), then

= ∅ ∪ (dom(A)B dom(B))
= dom(A)B dom(B))
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we arrived at the right hand side of Equation (5.32).

I Proof of Equation (5.33): we follow the left hand side of the equation, and
by distribution of B with union

dom(B)B (ant(A) ∪ dom(B)) = (dom(B)B ant(A)) ∪ (dom(B)B dom(B))
= (dom(B)B ant(A)) ∪ dom(B).

By following the right hand side of Equation (5.33)

dom(B) = dom(B)B 1B
ISince dom(A) ⊆ 1B, so we can write
= dom(B)B (ant(A) ∪ 1B)
IBy distribution of B with union, we get
= (dom(B)B ant(A)) ∪ (dom(B)B 1B)
= (dom(B)B ant(A)) ∪ dom(B)

we arrive at the left hand side.

I Proof of Equation (5.34): we first proceeds with left hand side

(ant(A) ∪ dom(B))(ant(A) ∪ dom(C)) = (ant(A)B ant(A))

∪ (ant(A)B dom(C)) ∪ (dom(B)B ant(A)) ∪ (dom(B)B dom(C)).

Since ant(A)B ant(A) = ant(A), we arrive

(ant(A) ∪ dom(B))(ant(A) ∪ dom(C)) = ant(A) ∪ (ant(A)B dom(C))
∪ (dom(B)B ant(A)) ∪ (dom(B)B dom(C))

By following the left hand side of the equation 5.34

ant(A) ∪ (dom(B)B dom(C)) = (ant(A)B 1B) ∪ (dom(B)B dom(C))
Isince dom(C) ⊆ 1B, we can write
= (ant(A)B (1B ∪ dom(C))) ∪ (dom(B)B dom(C))
= ant(A) ∪ (ant(A)B dom(C)) ∪ (dom(B)B dom(C))
= (1B B ant(A)) ∪ (ant(A)B dom(C)) ∪ (dom(B)B dom(C))
Isince dom(B) ⊆ 1B, we can write
= ((dom(B) ∪ 1B)B ant(A)) ∪ (ant(A)B dom(C))
∪ (dom(B)B dom(C))

= (1B B ant(A)) ∪ (dom(B)B ant(A))

∪ (ant(A)B dom(C)) ∪ (dom(B)B dom(C))
IRewritting using commutative of union, we get
= ant(A) ∪ (ant(A)B dom(C))
∪ (dom(B)B ant(A)) ∪ (dom(B)B dom(C)),
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we arrive at the left hand side.

Definition 46 (Endomorphism). The endomorphism dom(A) → dom(B) on
domain operations for some sets of iposets A and B, is called relative pseu-
docomplement of dom(B) with respect to dom(A). The pseudocomplement
¬dom(A) of dom(A) is can be expressed as dom(A)→ 0.

Definition 47 (Galois connection). The Galois connection, some sets of iposets
A, B and C, is a biconditional endomorphism↔ on the domain operations

dom(A)B dom(B) ≤ dom(C)↔ dom(A) ≤ dom(B)→ dom(C)

defined by

dom(A)B dom(B) ≤ dom(C)↔ dom(A) ≤ ant(B) ∧ dom(C). (5.35)

Corollary 18. The Galois connection together with a closure condition

dom(dom(A)→ dom(B)) = dom(A)→ dom(B)

The Galois connection together with a closure condition axiomatise Heyting alge-
bra [9, Proposition 10.1] given by following axioms

dom(A)→ dom(A) = 1B (5.36)

dom(A)B (dom(A)→ dom(B)) = dom(A)B dom(B) (5.37)

dom(B)B (dom(A)→ dom(B)) = dom(B) (5.38)

dom(A)→ dom(B)B dom(C) = (dom(A)→ dom(B))
B (dom(A)→ dom(C)) (5.39)

Remark 21. The opposite of a semiring swaps the order of sequential com-
position and runs program backwards. By duality, the opposite of all the
statement about semiring hold in the opposite of the semiring. This defines
ran(x) range as a weak converse of dom(x) domain [7, Section 5.2]. Anal-
ogously, the weak converse of an antidomain ant(x) of program x should
model the antirange ar(x) of the program x, but anti-domain is not closed
under this duality. The ar(x) denotes the set of states in which program x can
not terminate. This interprets ar(x) as Boolean complement over ran(x), and
they together model the post state space of program x.
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Corollary 19. Following the Remark 21 and Theorem 15, these are routine facts
about the range for some sets of iposets A, B,

A ∪ A B ran(A) = A B ran(A) (5.40)

ran(A B B) = ran(ran(A)B B) (5.41)

ran(A) ∪ 1B = 1B (5.42)

ran(∅) = ∅ (5.43)

ran(A ∪ B) = ran(A) ∪ ran(B) (5.44)

Proof.

I Proof of Equation (5.40): we know P = P B ran(P) for some individ-
ual iposets from Equation (5.11). The composition A B ran(A) at the right
side of the Equation (5.40) will be defined iff there exist P, Q ∈ A such that
PB ran(Q) is defined. By following definition of range, ran(Q) in PB ran(Q)
implies all those sets of identity iposets which has same source interfaces as
target interfaces of iposets in P. Therefore P B ran(Q) is defined, and yields
iposets P such that P ∈ A. The events of identity iposets ran(Q) disap-
pears into the P by following definition of iposets gluing B. This implies
A B ran(A) = A, and follows the composition A ∪ A B ran(A) = A ∪ A = A
at the right hands side of the Equation (5.40).

I Proof of Equation (5.41): we proceed from left side

ran(A B B) = {ran(P B Q) | P ∈ A, Q ∈ B, and ran(P) = dom(Q)}

we get ran(P B Q) = ran(Q) such that Q ∈ B by Equation (5.13), which
implies ran(A B B) = ran(B). Similarly, we take right hand side

ran(ran(A)BB) = {ran(PBQ) | P ∈ ran(A), Q ∈ B, and ran(P) = dom(Q)}

since P belongs to the sets of identity iposets; P ∈ ran(A), we get ran(P) = P

ran(ran(A)B B) = {ran(P B Q) | P ∈ ran(A), Q ∈ B, and P = dom(Q)}

Again, ran(P B Q) = ran(Q) such that Q ∈ B by Equation (5.13), which
implies ran(A B B) = ran(B). Therefore, the both side contains same sets of
identity iposets.

I The proof of the equations 5.42,5.43 and 5.44 follows similar proof like
domain axioms in the theorem 15.
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Corollary 20. Following the Remark 21 and Theorem 15, these are some routine
facts about the antirange for some sets of iposets A, B and C,

ar(A) ∪ ran(A) = 1B (5.45)

A B ar(A) = ∅ (5.46)

ar(A B B) ∪ ar(ran(A)B B) = ar(ran(A)B B) (5.47)

Proof.

I Proof of Equation (5.45) follows immediately from the definition of the
complement of ran(A), i.e., ar(A) = 1B \ ran(A).

I Proof of Equation (5.46): we use definition of antirange

A B ar(A) = A B (1B \ ran(A)) = (A B 1B) \ (A B ran(A)) = A \ A = ∅.

I Proof of Equation (5.47): we instead prove ar(A B B) = ar(ran(A)B B).

ar(A B B) = 1B \ ran(A B B) 5.41
= 1B \ ran(ran(A)B B) = ant(ran(A)B B),

which simplifies and complete proof of Equation (5.47).

Theorem 21 (Domain and products). For some iposets P, Q we have:

dom(P⊗Q) = dom(P)⊗ dom(Q) = dom(Q⊗ P) (5.48)

For some sets of iposets A, B we have:

dom(A⊗ B) = dom(A)⊗ dom(B) (5.49)

Proof.

I Proof of Equation (5.48): dom(P⊗ Q) produces the cumulation [m + n] of
source interfaces of P and Q respectively. Therefore, the domain is the iden-
tity idm+n which is the same as idn+m and thus is the same as the domain
of Q ⊗ P. Then, dom(P) = idn and dom(Q) = idn which when put in par-
allel their two interfaces are cumulated into the [m + n] and the equation is
verified.

I Proof of Equation (5.49): we first follow the left side

dom(A⊗ B) = {dom(P⊗Q) | P ∈ A, Q ∈ B}
5.48
= {dom(P)⊗ dom(Q) | P ∈ A, Q ∈ B}. (5.50)
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On the right side, we make the product of the respective two languages that
each contain identities belonging to the respective domain. The product of
languages makes products of individual iposets, i.e., of domains from each
language. Thus

dom(A)⊗ dom(B) = {dom(P) | P ∈ A} ⊗ {dom(Q) | Q ∈ B}

= {dom(P)⊗ dom(Q) | P ∈ A, Q ∈ B}.

Note 3. For some labelled iposts P, Q, we have

dom(P⊗Q) 6= dom(Q⊗ P) (5.51)

Let idn+m donotes the dom(P⊗Q) produced by the disjoint union

sP ∪ sQ = s : [m + n]→ (P tQ)

of source interfaces sP : [m] → P and sQ : [n] → Q of P and Q respectively.
Similarly, idm+n denotes the dom(Q⊗ P) given by

sQ ∪ sP = s : [m + n]→ (Q t P)

which is not the same as idn+m, as the naming of interface in idm+n are differ-
ent from idn+m. Therefore, when we put dom(P) = idn and dom(Q) = idm in
parallel composition their interfaces are two different cummulation depend-
ing on the order we put them in parallel composition, and the Equation (5.51)
is verified.

5.2 Modal operators

We define a diamond modal operation using the domain. The antidomain
then gives us logical negation.
Definition 48 (Diamond modality). We define an operation |·〉· : 2P × 21B →
21B taking one language of iposets and one subidentity and returning another subiden-
tity, as follows

|A〉I def
= dom(A B I).

Intuitively, the modality can be understood as follows. The subidentity I
contains a set of possible interfaces (i.e., identity iposets). The concatenation
A B I picks only those iposets Q ∈ A from A that finish with an interface
among those in I. For all these concurrent behaviors that were selected, take
their domain, thus giving all their source interfaces which represent all the
possibilities that these behaviors can be preceded by other matching behav-
iors.
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This is a set interpretation of a modal operator, i.e. the semantics is the set of
those states in the Kripke model where the modal formula holds.

Remark 22. following the Definition 48 of diamond modal box above

|A〉I def
= dom(A B I)

I models the post states space of A which it might possibly reach after exe-
cution, and |A〉I models those pre-states of A from which executing A may
lead into the post states space I, i.e., essential domain of A but only those
ones which leads A to I.

It is clear that |A〉I models pre- state spaces of A with respect to the spec-
ified post- state space I; quite similar to dom(xy); only those pre- states of
x from where x can execute and finds gluing with y, i.e., precisely domain
restriction with respect to post condition. Since interfaces of iposets mod-
els the domain and range, |A〉I models source interfaces of those iposets in
A whose target interfaces are equal to the I. This implies I is a fixed set of
identity iposets which essential models the sets of target interfaces that every
iposets in A has to qualify to proceed concurrently from the pull of iposets A.

Theorem 22 (Modal axioms). For some sets of iposets A, B and some subidentities
I, I′ we have:

|A ∪ B〉I = |A〉I ∪ |B〉I (5.52)

|A〉(I ∪ I′) = |A〉I ∪ |A〉I′ (5.53)

|A B B〉I = |A〉|B〉I (5.54)

|A〉∅ = ∅ (5.55)

|1B〉I = I (5.56)

|I〉I′ = I ∩ I′ (5.57)

Proof.

I Proof of Equation (5.52): the left side translates into dom((A ∪ B) B I)
which because of the distributivity of sum over concatenation is the same
as

dom((A B I) ∪ (B B I)) 5.20
= dom(A B I) ∪ dom(B B I) = |A〉I ∪ |B〉I.
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I Proof of Equation (5.53) follows from similar arguments as above apply to
the left side

dom(A B (I ∪ I′)) = dom((A B I) ∪ (A B I′)) 5.20
=

dom(A B I) ∪ dom(A B I′) = |A〉I ∪ |A〉I′..

I Proof of Equation (5.54): the right-hand side, using the definition

|A〉dom(B B I) = dom(A B dom(B B I)).

The left-hand side also rewrites into the same domain as above

dom(A B B B I) 5.17
= dom(A B dom(B B I)).

I For Equation (5.55)

|A〉∅ = dom(A B ∅) = dom(∅)
5.19
= ∅.

I For Equation (5.56)

|1B〉I = dom(1B B I) = dom(I) = I.

I Proof of Equation (5.57): the left side rewritten by definition as follows
dom(I B I′). The concatenation picks only those identities from I that are also
present in I′, then the domain just returns these. This is the same as the inter-
section of the two subidentities. The proof follows from the Equation (5.7),
i.e., I B I′ = I ∩ I′.

Remark 23. Following the argument at the beginning of the Section 5.2, the
modal box operator can be obtained from modal diamond operator by using
logical negation such as

¬(|A〉I) def
= ¬(dom(A B I))

|A]I def
= ant(A B ant(I)).

I models those set of post- states space of A that it must reach after execution,
and |A〉I models those set of pre- states space of A from which executing A
must lead into the post states spaces I, i.e., essential anti-domain of those
iposets in A which does not lead to I , which are anti-domain of those iposets
in A which leads to the anti-domain of I

Corollary 23. Following Remark 23 and Thereom 22, we get following axioms of
modal box operator for iposets language. For some sets of iposets A, B and I, I′ ∈ 1B,

|A ∪ B]I = |A]I ∪ |B]I (5.58)
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|A](I ∪ I′) = |A]I ∪ |A]I′ (5.59)

|A B B]I = |A]|B]I (5.60)

|A]∅ = ∅ (5.61)

|1B]I = I (5.62)

|I]I′ = I ∩ I′ (5.63)

Corollary 24. Following the Remark 21 and Corollary 19, backward modal diamond
operator for iposet languages can be expressed as converse of forward modal diamond
operator such that

(|A〉I)c def
= (dom(A B I))c

〈A|I def
= ran(I B A).

The 〈A|I yields the possible post states space of every iposets in A whose pre-states
space qualifies I. For some sets of iposets A, B and I, I′ ∈ 1B, we get

〈A ∪ B|I = 〈A|I ∪ 〈B|I (5.64)

〈A|(I ∪ I′) = 〈A|I ∪ 〈A|I′ (5.65)

〈A B B|I = 〈A|〈B|I (5.66)

〈A|∅ = ∅ (5.67)

〈1B|I = I (5.68)

〈I|I′ = I ∩ I′ (5.69)

Corollary 25. Following the Remark 21, the backward modal box operator for iposet
languages is obtained from the backward modal diamond operator by logical negation
such as

¬(〈A|I) def
= ¬(ran(I B A))

[A|I = ar(ar(I)B A)
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The [A|I yields all the post- states space of every iposets in A whose pre-states space
qualifies I. For some sets of iposets A, B and I, I′ ∈ 1B, we get

[A ∪ B|I = [A|I ∪ [B|I (5.70)

[A|(I ∪ I′) = [A|I ∪ [A|I′ (5.71)

[A B B|I = [A|[B|I (5.72)

[A|∅ = ∅ (5.73)

[1B|I = I (5.74)

[I|I′ = I ∩ I′ (5.75)

5.3 Summary

In this chapter, we presented an algebraic approach to modal operators based
on the axioms of domain operations for iposet languages. In Section 5.1, we
defined relational semantics for iposet languages and generalised their ax-
ioms of domain operations. We have presented several axiomatisation of
domain operations for iposet languages following the results of literature [7,
9]. We have shown that domain axiomatisation generalise a missing link
between the algebraic model of iposet languages and their relational seman-
tics. The axioms of domain operations capture many natural properties of the
relational domain operation and provide insights into the iposet languages
compositionality. They considerably argue in favour of expressiveness of
iposets language, particular, for the analysis and verification of programs
modelled by iposet languages.
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Chapter 6

Conclusion

We have introduced a language-theoretic model of iposets for concurrency
modelling in Chapter 4. The presented hierarchy for a structured theory of
iposets in Definition 40 are more general than the SP posets hierarchy given
in Definition 41. We have shown that posets that contain N-pomset, which
are not admissible in the SP posets hierarchy, become naturally admissible
in the iposets hierarchy in Remark 16. The hierarchical facts about iposets
collected in Lemmas 2, 3, and 4 evidence that the structured theory of iposets
is applicable to a wider spectrum of concurrency theory compared to the
SP posets. Moreover, we have shown that ordered bisemigroup of iposets
forms a concurrent semigroup in Proposition 2, and thereby, satisfies the
exchange law given in Equation 4.3. We also proved that the identities of
iposets semigroup do not imply the exchange law in Lemma 1, reproducing
the result of Concurrent Kleene algebra [14, Definition 6.8.] in our iposets
algebra. Further, we derived an equational theory of iposets bisemiring in
Proposition 5. These results of iposets manifest promising algebraic prop-
erty to adopt iposets as a language model for concurrency modelling such as
Concurrent Kleene algebra and Higher dimensional automata [31].

The main contribution of this thesis are the methods and results listed in the
theory of iposets under subsumption order in Section 4.4. The structured
theory of iposets under subsumption order have been rigorously derived,
and thereby, we have postulated that the algebraic properties of iposets un-
der subsumption are rich enough to generalise a weak class of iposets lan-
guage. The language theory under subsumption order is one of the impor-
tant techniques for cutting down the search space in an automated theorem
prover. The methods for writing efficient subsumption procedures pivot on
unit clauses assumption. The non-unit subsumption tends to slow down
the proof resolution as the complexity increases with non-unit subsumption
computation [28]. However, our proofs for the iposets under subsumption
order are not necessarily given based on the assumption of singleton (unit)
iposets subsumption unless we are explicitly dealing with singleton iposets.
They are derived by considering both singleton and non-singleton iposets
subsumption clauses. Therefore, the proofs of iposets under subsumption
orders are open for more complex iposet languages theory compared to the
restricted class of iposets language given by the hierarchy in Definition 40.
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In Chapter 5, we axiomatised domain operations for iposet languages. They
generalise a missing link between the algebraic model of iposet languages
and their relational semantics. Furthermore, domain axiomatisation of iposets
leads to a simple algebraic approach to modal operators based on equational
reasoning. In program analysis and verification tasks, modal operators are
known to be suitable for automated reasoning [8]. Therefore, these prelimi-
nary results on domain definitions of iposet languages might provide a uni-
form hierarchical and modular reasoning framework for concurrency reason-
ing.

6.1 Future work

We project fundamental theory of iposets in the trajectory of a language
model for Higher dimension automaton [31] and Concurrent Kleene alge-
bra. We set our motivation for the free model of Concurrent Kleene algebra
inspired by recent literature [17, 23, 24] in that direction. We also seek for an
operational model of iposets language that allows a decision procedure for
language equivalence inspired by recent literature [18].
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