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Abstract

EVA is the main support system used by municipalities and counties
in Norway to hold and implement elections. As such, it is critical to soci-
ety that the system behaves as expected. By using formal methods it can
be proven that the system behaves as expected, and that it cannot fail to
behave as expected. This work will present EVA and its central aspects,
specify the critical properties using the specification language Java Mod-
eling Language [50], and prove those properties using a formal technique
known as automated theorem proving [5] with the assistance of the KeY
System [17]. In addition, the Java Modeling Language and the KeY Sys-
tem will be sufficiently presented such that the most prominent features
and theories can be implemented into other verification efforts, whereas
the limitations of the KeY System will be presented and discussed. The
sequential, non-distributed nature of the implementation of EVA makes
this system a prime target for using deductive verification in an environ-
ment were library methods and external frameworks are extensively used.
En masse, this work may serve as a guide for others who seek to start a
verification project of their own, or to continue and extend the presented
work.

Sammendrag

EVA er hovedstøttesystemet for valggjennomføring for kommunene og
fylkeskommunene i Norge. Som s̊adan er det kritisk for samfunnet at sys-
temet oppfører seg som forventet. Ved å bruke formelle metoder kan det
p̊avises at systemet oppfører seg som forventet, og ogs̊a at det ikke kan
unnlate å oppføre seg som forventet. Dette arbeidet vil presentere EVA
og dets sentrale aspekter, spesifisere de kritiske egenskapene ved bruk av
spesifikasjonsspr̊aket Java Modeling Language [50], og bevise disse egen-
skapene ved å bruke en formell teknikk kjent som automated theorem
proving [5] med assistanse fra KeY Systemet [17]. I tillegg vil Java Mo-
delling Language og KeY-systemet bli tilstrekkelig presentert slik at de
mest fremtredende funksjonene og teoriene kan implementeres i andre ve-
rifiseringsinnsatser, og begrensningene til KeY-systemet vil bli presentert
og diskutert. Den sekvensielle, ikke-distribuerte karakteren av implemen-
teringen av EVA gjør systemet til et utmerket mål for å vise deduktiv
verifisering i et miljø der bibliotekmetoder og eksterne rammeverk blir
mye brukt. I det store og hele kan dette arbeidet fungere som en veiled-
ning for andre som er ute etter å starte sitt eget verifiseringsprosjekt, eller
ute etter å fortsette og utvide det presenterte arbeidet.
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1 Introduction

1.1 Formal Methods for Software Verification

Formal verification is the use of mathematical techniques to ensure that a design
conforms to some precisely expressed notion of correctness [6]. It does not suffice
to show that a system meets its requirements; one has to prove that the system
cannot fail to meet its requirements. In a software setting, formal verification
has the ability to prove that certain properties hold for a program regardless
of supplied input. Further, in the case where a property does not hold, most
formal verification approaches provide rigorous counterexamples that can guide
system designers towards the flaw in the system.

Currently in industry, measures to increase software quality are in use to
different degrees, where prominent methods for establishing that the software
fulfills its functional requirements include runtime testing, static code reviews,
and, to some degree, formal methods. Testing is the most widely accepted form
of quality assurance [37], and is a part of all software development projects to
some degree [66]. However, as Dijkstra famously wrote [18]:

Program testing can be used to show the presence of bugs, but never
to show their absence!

This is especially true with bugs caused by numerical calculations; bugs of
this type have a tendency to be silent, meaning they often occur without the
program throwing exceptions or terminating abruptly. For instance, in some
programming languages such as C, the function in Listing 1.1 will return true
for a specific input due to the obscure semantics of integer overflow. There are
ways to reduce the possibility of errors caused by numerical calculations, such as
utilizing compiler-specific options [25], adapting a more defensive programming
approach [68], or, the approach taken in this work, proving formally that they
cannot occur.

In domains such as aviation, medicine, or telecommunications, where soft-
ware failure is linked with catastrophic costs, formal methods have become an
indispensable part of the development process. However, in the domain of gen-
eral software development, formal methods have not received a similar warm
welcome. Still, with the advent of verification tools, the increased abundance
of computational resources, the growth in application areas, the importance of
software quality for marketing [45], and the general satisfaction reported by de-
velopers working with formal methods [24], the attitude towards formal methods
are turning for the better [42].
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� �
// Should always return FALSE.

2 // Returns TRUE for x = 2 147 483 648.

int overflowSemantics(int x){

4

int MAX_INT = 2147482647;

6 int MIN_INT = -2147483648;

int TRUE = 1;

8 int FALSE = 0;

10 if (x-1 > x && x == -x

&& x != 0

12 && x * 2 == 0

&& x <= MAX_INT

14 && x >= MIN_INT){

return TRUE;

16 } else {

return FALSE;

18 }

}� �
Listing 1.1: Function that should always return FALSE, but returns TRUE

for specific inputs due to integer overflow semantics.

This thesis will demonstrate the capabilities of formal methods by deductively
verifying parts of EVA1 [53]. EVA is the main support system for electoral
implementation for municipalities and counties in Norway. All the basic data
needed to conduct elections in Norway are recorded in this system, including
the parties’ list proposals and the electoral figure. It is also in EVA that the
municipalities and constituencies register voting on election day and report their
election results.

EVA is continuously operated and developed by the Electoral Directorate.
The version of the EVA that is presented in this thesis was started already
before the Storting and Sami Parliament elections in 2017, and the Electoral
Directorate is planned to start work on the newest version to be used for the
elections in 2021 [19].

1.2 Research Goals

This work will concern itself with parts of the EVA-system [53] — the official
software system used for administrating municipal-, county-, and parliamen-
tary elections in Norway. Specifically, the primary verification target is the
systems implementation of the central algorithm known as Sainte-Laguë’s mod-
ified method [69].

The work presented in this thesis seeks to achieve three principal goals:

1EVA is an acronym for Elektronisk Valg Administrasjon, which translates to Electronic
Election Administration
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1. The primary goal is to increase the confidence in EVA by proving certain
properties about its code. It is of great importance that the calculated result
of the election is equivalent to the expected, correct result, as an error of
a single representative may have severe consequences [74]. EVA is continu-
ously operated and the newer version builds upon the previous version, and
as such, any undetected errors present in previous versions may propagate
into later versions. The longer an error goes undetected, the more resources
will be required to resolve it. Also, the error’s impact on the system may
increase drastically as the system evolves. Furthermore, as electronic elec-
tions are becoming the new standard, it is vital that the electors trust the
new processes and the software that implements them. By mathematically
proving that the system cannot fail to meet its expectations, at least one
possible source of scepticism can be eliminated.

2. Secondly, this thesis will attempt to be as transparent as possible when reach-
ing the primary goal. The goal is that the steps taken, and more importantly,
the reasoning behind them, will be understood throughout the verification
effort. If accomplished, this work may assist in implementing formal verifi-
cation into other similar projects. Furthermore, fundamental and relevant
tools, techniques and paradigms will be presented and discussed. When put
together, this work may help in reducing the initial effort required to start a
formal verification effort. In turn, this might alleviate the concerns of com-
plexity that one might encounter when starting out, and, as a consequence,
less people are deterred from the field.

3. Finally, there is a lack of examples of KeY [17] being deployed for the verifi-
cation of real-world systems; most of the cases presented in [17] are based on
trivial programs, systems that were designed for verification, or for academic
competitions such as VerifyThis [33]. This work will demonstrate how one
can formalize and verify certain properties of a complicated system that is
being actively used and developed, in order to eliminate any unwarranted
mistrust one might have in the system’s behavior. Furthermore, several of
the verification artifacts presented throughout this thesis may be reused and
implemented for other projects.

1.3 Research Methodology

According to the 2002 article Scientific Methods in Computer Science [21] the
field of Computer Science is divided into three distinct categories, each with
their own preferred methodologies. The three categories are can be summarized
as follows:

• Theoretical computer science seeks largely to understand the limits
on computation and the power of computational paradigms, and attempts
to develop general approaches to problem solving [21].

• Experimental computer science is concerned with extracting results
from real world implementations, in order to test the veracity of theories

3



or obtaining new knowledge. Methodologies in this category are used for,
among others, automated theorem proving [26].

• Computer simulations make it possible to investigate regimes that are
beyond current experimental capabilities and to study phenomena that
cannot be replicated in laboratories, such as the evolution of the uni-
verse [21].

In this thesis, the methodologies from experimental computer science are ap-
plied. The real-world implementation of EVA is specified and transformed into
proof obligations in order to prove that the implementation conforms to the
specification. The methodology of automated theorem proving with assistance
of the proof assistant of the KeY System is used to complete the proofs. The
verification effort is presented in Chapter 4, while the results are summarized
in Chapter 5.

1.4 Main Contribution

Section 1.2 presented the three main goals of this thesis. The first is to increase
confidence in that EVA behaves as expected according to Electoral Law [52], the
second is to present the theoretical foundation necessary to verify other Java-
based systems, and the third goal is to provide an example of a verification effort
from start to finish and thereby displaying the capabilities of the KeY System.

1. The first goal is reached through proving properties of EVA Resultat in
Chapter 4.

2. The second goal is reached in Chapters 2 and 3 by presenting the speci-
fication language JML, the logical language JDL, and the theory behind
the KeY System.

3. The third goal is reached through the first goal and Section 4.5.5, as
Chapter 4 discusses the verification process and problems encountered.

1.5 Related Work

• The work in [46] explains the process of formally verifying the seL4 microker-
nel utilizing interactive theorem proving and the Isabelle/HOL proof assis-
tant [60]. The property proved was refinement : a refinement proof establishes
a correspondence between a high-level (abstract) and a low-level (concrete,
or refined) representation of a system. To show this property, they imple-
mented both an abstract and executable specification in Isabelle/HOL code,
and proved that the C code implementing the kernel conformed to those spec-
ifications. The verification effort in Chapter 4 will adopt a similar approach
where the verification target is implemented in Java, not C, and the proof
assistant is part of the KeY Project [17] as opposed to Isabelle/HOL.
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• A case study displaying functional verification and information flow analysis
of an electronic voting system is found in [34]. The verification target in this
study is a simplified Java-implementation of the protocols discussed in [48].
The authors of [34] have themselves implemented the verification target, and
their implementation utilizes no external libraries. The goal of the verification
process was to prove that the system preserved privacy of votes, i.e., individual
votes were not attributable to a particular voter. They were able to verify
that their implementation upholds the specified functional and dependency
properties, and thereby conclude that the goal was reached. Their work does
well in illustrating how one can create a formal specification for verification
of a system created by one-selves. However, it is often of interest to verify
artifacts that one has not created one-selves, such as verifying properties of
external libraries. In this respect, this thesis attempts to illustrate how one
can apply the verification process to systems where one has no control over
the development process.

1.6 Outline

The remainder of this thesis is structured in the following manner:

• Chapter 2 contains introductory sections on the fundamental terms, concepts,
definitions, and notions used throughout this work. This includes a presen-
tation of deductive verification, proof obligations, and the design-by-contract
paradigm. Further, the specification language JML, and the corresponding
dynamic logic JavaDL, will be introduced due to them being vital aspects of
the deductive verification methodology employed in later chapters.

• Chapter 3 will present the KeY System — a tool used for translating JML
annotations into JavaDL contracts, extracting proof obligations from con-
tracts, and then assisting in discharging the obligations. Here the focus will
be primarily on the formalism and processes that KeY employs, along with
the proof assistant inherent in the system.

• Chapter 4 demonstrates the capabilities of the KeY System by formally verify-
ing parts of the electoral software employed for Norwegian elections, EVA [53].
The software will be presented along with an introduction to the Norwegian
electoral process. Further, the system’s behavior will be formally specified,
and the system’s implementation will be proved to conform to the specifica-
tion.

• Chapter 5 concludes the thesis by discussing the results of verification effort,
and by giving an outlook on further ideas and future work related to the topic.
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2 Fundamentals

In the following, a presentation of some fundamental concepts, upon which this
work is based, will be given. Starting of, in Section 2.1, the reader will become
familiar with the concepts of formal software verification, with emphasis on
deductive verification. In addition, the concepts of proof obligations and a de-
ductive system, Hoare logic, will be introduced. The section will conclude with
a discussion on software correctness and the necessity of specification languages.
In Section 2.3 and 2.4 the Java Modeling Language (JML) and Java Dynamic
Logic (JavaDL) will be presented respectively. JavaDL is a dynamic logic lan-
guage [38] suitable for writing proof obligations for Java code, while JML is
a specification language intended to be used for annotating programs written
in Java. JML annotations can be mechanically translated into JavaDL proof
obligations, which can later be discharged automatically or interactively. Spec-
ifications written in JML are largely based on the design-by-contract paradigm,
which will be introduced in Section 2.2.

2.1 Deductive Verification

2.1.1 Proof Obligations, Properties and Correctness

Deductive verification [3, 23] is a formal verification approach based on extract-
ing mathematical statements from a component so that proving the statements
also proves properties of the component. Such mathematical statements will,
from now on, be refereed to as proof obligations:

Definition 2.1 - Proof Obligations

A proof obligation for a component comp is a mathematical formula to be proven/dis-
charged, in order to ensure that comp upholds specified properties, and is thereby
correct with regard to a given specification.

The term ”component” may be used to refer to software, hardware, spec-
ifications, protocols, or other artifacts, that may itself run several concurrent
processes while deployed in either a local or distributed environment. In addi-
tion, there are multiple types and categories for properties the may be beneficial
to verify for a given component depending on the components type, function,
and environment. Further, there are two main notions of correctness, partial
and total correctness, that will be discussed shortly.

KeY and JML are suitable for proving two types of properties of components,
where the components are methods and classes of sequential Java programs
running in a local Java virtual machine (JVM) [57]. These two property-types
are functional properties and dependency properties. Functional properties for
methods verify that the result of invoking a method adheres to a given specifi-
cation, while dependency properties verify that the result of a method depends
at most on a given set of locations on the JVM heap. Properties for classes are
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very similar, but may in addition verify certain aspects of objects created from
a class.

The process of mathematically proving properties of programs is far from
new; one of the very first proofs was presented by Alan Turing in 1949 [11],
and in 1969, Hoare suggested in [40] a deductive system for rigorously proving
program properties. Hoare’s system is interesting for historical reasons, but it
is also presented to illustrate the core ideas behind deductive verification. As
such, the following section is devoted to his system.

2.1.2 Hoare Logic

Hoare logic is a formal system that consists of a set of axioms and inference
rules for reasoning rigorously about the correctness of computer programs. The
system itself is based on Hoare triples, which are defined informally as:

Definition 2.2 - Hoare Triples for Partial Correctness

A Hoare triple for partial correctness is a triple {p}S {q}, where S is a program
segment, and p and q are predicates called the precondition and postcondition, re-
spectively. S is partially correct with respect to p and q, written |=PAR {p}S {q}, iff:

If S is started in a state where p is true and if the computation of S
terminates, then it terminates in a state where q is true.

Hoare’s original approach could prove partial correctness, i.e., the result is cor-
rect only when the program terminates. Programs may also not terminate, as
we know from Turing [70], either intentionally, as in the case of a web server
or a reactive system[2], or unintentionally, e.g., by a mistake made by the pro-
grammer which leads the execution in an infinite loop.

Hoare’s approach was extended by Manna and Pnueli in 1974 [54] to support
proving both correctness and termination by one unified formalism. This was
done, in part, by extending Definition 2.2 into the following:

Definition 2.3 - Hoare Triples for Total Correctness

A Hoare triple for total correctness is a triple {p(x) | S | q(x, x̂)}, where S is a pro-
gram segment, and p and q are predicates called the precondition and postcondition,
respectively. S is totally correct with respect to p and q, written |=TOT {p}S {q}, iff:

If, for every x, S is started in a state where p(x) is true, then the execution
of S terminates and q(x, x̂) holds between the initial values x and the
resulting values x̂.

For a system to be considered totally correct, termination has to be guaranteed;
a program that runs indefinitely is by definition partially correct irregardless
of its computation. Unsurprisingly, total correctness is preferred to, and often
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more difficult to prove than, partial correctness. When unconcerned with the
type of correctness, or the type is clear from context, the notation |= {p}S {q}
is used without specifying the correctness type.

Hoare’s system consists of several axioms describing the transforming effect
that simple statements have on program variables, and a set of inference rules for
combining theorems for smaller segments into one theorem for a larger segment.
The system has rules for assignment, concatenation, conditionals and while-
loops. For instance, the first rule, the axiom of assignment, reads

|= P0 {x := f}P (1)

where, x is an identifier for a simple program variable, f is a side-effect free
expression, possibly containing x, and P0 is obtained from P by substituting all
occurrences of f by x, i.e., P0 = P [f ← x].

The rule states that, in order for the assertion P on the right-hand side of
the assignment to be true for the value of x after the assignment, it also has
to be true for the value of f before the assignment. Thus, if P (x) is to be true
after the assignment, the P (f) has to be true before the assignment.

Theoretically, there are no restrictions on the size of programs that Hoare’s
system is applicable to. However, as Hoare’s proposed process involves proving
validity of several conditions, the process is considered tedious, time-consuming
and prone to error. As such, it is limited by the mathematical skill of the
user. Fortunately, half a century has passed, and there are now a plethora
of tools, such as automatic theorem provers (ATPs) or satisfiability-modulo-
theories (SMT) solvers, providing assistance with some portion of the verifica-
tion process. Examples of tools include Sledgehammer [55] for the Isabelle proof
assistant [60], the Z3 [15] SMT-solver, and the KeY System [17] for verifying
Java programs. KeY works with proof obligations written in a dynamic logic,
JavaDL, which is based on a first-order dynamic logic closely related to Hoare
logic; in JavaDL, the Hoare triple {p}S {q} can be expressed as p → [S] q,
where → is logical implication, and [.] is a modal operator (see Section 2.4 for
details). In contrast to Hoare logic, where formulas are purely first-order, for-
mulas in JavaDL are more expressive, as they can contain programs. JavaDL is
presented further in Section 2.4, and the KeY System in Section 3.

2.1.3 The Importance of Specifications

Tools are only assistants for reaching a specific goal; in this case, the goal is
proving program correctness. A program is defined to be correct only if it
meets the requirements of its specification. Therefore, a program can only be
correct in accordance to a given specification. As such, it is of equal importance
that the specification is correct. To illustrate, consider the follow specification
for a sorting algorithm:
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Specification 2.1 - Sorting Algorithm

The sorting algorithm should comply with the following:

1. The length of the input and the output should be equal.

2. Every element in the output should be sorted, i.e., output [i] ≤ output [i+ 1].

3. The sorting algorithm must assume that elements of the input can be
equal.

4. The algorithm should provide stable sorting, i.e., if input [i] = input [j],
i < j, input [i] is sorted into output [k] and input [j] is sorted into
output [r], then k < r.

One attempt at implementing the specification is seen in Listing 2.1 be-
low. The implementation is ”correct” as it does fulfill all the requirements of
its given specification. Or does it? Requirement 4 might seem formal, but it
is ambiguous as it can be argued either way if the requirement is fulfilled by
the method in Listing 2.1. One can argue that the requirement has not been
fulfilled as the input contains two instances of the element 2, while the output
contains a single instance of the element. Contrary, the requirement can be
considered fulfilled due to the if -condition, ”input [i] is sorted into output [k]
and input [j] is sorted into output [r]”, being falsified by input [j] not being
sorted into output [r]. Finally, one has to take user expectations into consid-
eration when creating and/or fulfilling a specification; it is common to expect
that a sorting algorithm fulfills the retention criteria such that the output is a
permutation of the input, i.e., all elements of input must be present in output.

This example displays a key challenge in the process of formal verification:
if an error exists, is the error rooted in the code or the specification? As the
software industry evolves, it has become increasingly clear that specifications
play an important part in the verification process. Events such as the disas-
ters caused by the Boeing software scandal [63] further displays that even if a
specification is correct according to some stakeholders, e.g., system designers, it
might not be correct according to other stakeholders, e.g., end-users.

In conclusion, in order to formally verify a system according to a specifica-
tion, even when proving simple properties, the specification needs to correctly
and unambiguously capture the system’s behavior as intended and as expected
by the stakeholders of the system. To achieve such goals, expressive formal spec-
ification languages are a necessity. Roughly speaking, a specification language
consists of a mathematical language in which proof obligations and components
of the specification is written, and its integration with a programming language.
The choice of specification language is tightly coupled with both the method-
ology used to generate the proof obligations and the techniques used to prove
them. One such language central to this thesis is the Java Modeling Language
(JML), introduced in Section 2.3.
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� �
public class Sort {

2 public static void main(String args []) {

int[] input = {5, 2, 98, 2, 48, 99, 23, 184};

4 int[] output = sort(input);

6 // Prints 0 1 2 3 4 5 6 7

for (int i : output){

8 System.out.print(i + " ");

}

10 }

12 // Input: 5 2 98 2 48 99 23 184

// Expected output: 2 2 5 23 48 98 99 184

14 // Actual output: 0 1 2 3 4 5 6 7

// Correct according to specification , not necessarily

16 // correct according to user expectations.

public static int[] sort(int[] input){

18 int length = input.length;

int[] output = new int[length ];

20 for (int i = 0; i < length; i++){

output[i] = i;

22 }

return output;

24 }

}� �
Listing 2.1: Sorting algorithm without retention criteria.

2.2 Design by Contract

The term ”design by contract” was coined by Bertrand Meyer in [56], where
he describes an approach to software design based on the central idea that
modules of a software system collaborate with each others on the basis of mutual
obligations and benefits. At the core lies the notion of method contracts:

Definition 2.4 - Method Contracts

Contracts of methods are an agreement between the caller and the callee, describing
what guarantees they provide to each other. They describe what is expected from
the code that calls the method, and it provides guarantees about what the method
will actually do. The expectation on the caller are called the preconditions, while
guarantees provided by the callee are called the postconditions.

Any contract for a module can require that certain conditions be guaranteed by
the client modules that calls it, guarantee certain properties on module termi-
nation, and guarantee that certain properties are maintained. In other words,
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the contract defines the preconditions, postconditions and invariants2 of their
respective modules. Preconditions and invariants are obviously a benefit to the
callee and a obligation to the caller, and the converse is true for postconditions.
Further, the obligations of contracts can be formalised in e.g. Hoare triples as
they are semantically equivalent.

The principle of design by contract promotes modularization and abstrac-
tion, which are both key techniques for scaling up large software systems. In
the case of formal verification, modularization and abstraction is achieved by
method contracts; once a method contract has been separately verified there is
no need to inspect the methods code again, but instead rely on the postcon-
ditions ensured by the contract. In addition, method contracts enable system
developers to program more offensively; that is, they can assume that the sup-
plied input to the method in question is always well-defined and in the required
range. When validating the application, one checks that every call to the method
conforms to the methods contract, and thus explicit checks inside the methods
body are not necessary.

2.3 Java Modeling Language (JML)

The Java Modeling Language, JML, is an increasingly popular specification
language for Java source code, that has been developed by the community since
1999 [17]. The language is still changing and growing, both in features and
users, and as such there is no accepted ultimate reference. Fortunately, for
the elements addressed during this thesis, there exist a gold standard created
by Gary T. Leavens and his colleagues [50]. This references manual explains
how the language is designed to have the required expressivity to document
the behavior of special aspects of the Java programming language, e.g., object
creation, abstraction, inheritance or throwable exceptions, while being readily
understandable to Java programmers and amenable to tool support. The rest of
Section 2.3 will present the principal elements of the JML syntax and semantics.

An example JML method contract is displayed in Listing 2.2. The elements
of the contract will be explained throughout sections 2.3.1-2.3.6.� �

1 class StringSet {

3 /*@ spec_public @*/ private String [] strArr;

/*@ spec_public @*/ private int limit;

5

//@ public ghost \bigint size;

7 //@ instance invariant size <= limit;

9 //@ public instance model String first;

//@ represents first = strArr [0];

11

2An invariant is a property that does not change after certain transformations. In other
words, an invariant is a formula (or expression, predicate) that should always be true for a
given module (e.g., class, method, program, loop).
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public StringSet(int limit){

13 this.limit = limit;

strArr = new String[limit ];

15 //@ set size = 0;

}

17

/*@ public normal_behavior

19 @ requires size < limit && !contains(elem);

@ ensures \result == true;

21 @ ensures contains(elem);

@ ensures (\ forall int i;

23 @ 0 <= i && i < size &&

@ strArr[i] != elem;

25 @ strArr[i] == \old(strArr[i]));

@ ensures size == \old(size) + 1;

27 @ assignable strArr [*];

@

29 @ also

@

31 @ public exceptional_behavior

@ requires strArr.length >= limit;

33 @ signals_only ArrayIndexOutOfBoundsException;

@ signals (ArrayIndexOutOfBoundsException e) true;

35 @ assignable \strictly_nothing;

@*/

37 public boolean add( /*@ non -null @*/ String elem) {

/*...

39 // Branch where elem was added

//@ set size = size + 1;

41 ...*/

}

43

/*@ public normal_behavior

45 @ ensures

@ \result == (\ exists int i;

47 @ 0 <= i && i < strArr.length;

@ strArr[i] == elem);

49 @*/

public /*@ pure @*/ boolean contains(String elem) {/*...

*/}

51 }� �
Listing 2.2: Example of a JML method contract.

2.3.1 Visibility

In Java, it is a common design philosophy to encapsulate the behavior of objects
by declaring their fields private. However, this limits their use in specifications.
JML follows access rules identical to Java, meaning that elements within specifi-
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cations have to be visible to it and that a specification itself also has a visibility.
The access modifiers public, protected, and private are explicitly used to de-
fine the visibility of specifications and fields. If no modifiers are present, JML
defaults to package-private visibility. In addition, in order to not expose im-
plementation details, it is not possible to use private variables directly within
protected or public specifications. To change the visibility of a variable only
for the specification layer the modifiers spec_protected or spec_public may be
applied.

2.3.2 Purity

The last method in Listing 2.2 is annotated as a pure3 method. This notion is
defined next.

Definition 2.5 - Pure Methods

A method is weakly pure if it terminates unconditionally and has no visible side
effects. A method is strictly pure if it terminates unconditionally and alters no
memory locations whatsoever.

A weakly pure method may not alter the state that was allocated on the heap
before the method call; they are only allowed to alter fields of objects they
initialize. Similarly, constructors are weakly pure if they only operate on the
fields of the objects that they initialize. The wording ”no visible side effects” is
not accidental; if the method temporarily alters memory locations, but reverts
them back before termination, it will still be considered pure in a sequential
setting. It will, however, not be considered strictly pure; a strictly pure method
may not alter any heap locations. Specifying that a method is weakly pure is
done through the clause assignable \nothing, or by annotating it as pure as
in Listing 2.2. Annotating methods as strictly pure is done by appending the
clause assignable \strictly_pure to the method.

Non-pure method specifications often have a restricted set of locations they
are allowed to alter, as decided by the keyword assignable. The default clause
for an assignable-expression is \everything, meaning that the method may
alter any location. The default clause should be avoided when possible. Speci-
fying that a method may only alter the value of a variable var is done through
assignable var, and specifying that a method may only alter the value of ele-
ments of array arr is done through assignable arr[*] for all elements, assignable
arr[i] for a specific element at index i, or through assignable arr[i..u] for

the range of elements from index i to index u.

3The JML-annotation pure is used for weakly pure methods.
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2.3.3 Normal Behavior

The notation normal_behavior4 denotes a specification case modelling the ex-
pected behavior of a method. Normal method behavior indicates that the
method terminates, but never never terminates unexpectedly by raising any
errors or throwing any exceptions. The keyword requires specifies a precondi-
tion, while ensures specifies a postcondition. The keyword also is used to bind
together specification cases.

2.3.4 Exceptional Behavior

In some cases, exceptions cannot be avoided. Therefore JML allows users to
annotate exception-prone methods accordingly, by annotating the method with
an exceptional_behavior specification case. Clauses starting with the keyword
signals introduces exceptional postconditions, and has the form
signals (E e) P, where E is a subtype of Throwable. The intention behind
such a clause is to specify that if the annotated method throws an excep-
tion of type E, then the expression P has to hold. Specification cases anno-
tated with normal_behavior have an implicit signals (Throwable e) false ex-
ceptional postcondition implying they may never throw exceptions or errors,
while specification cases annotated with exceptional_behavior have an implicit
ensures false implying they may never terminate normally. If no behavior
type is specified, the method is allowed to both throw exceptions or terminate
normally.

2.3.5 Specification-Only Elements

Both model- and ghost fields can be utilized to, respectively, abstract or ex-
tend the state of an object, class or interface. Model fields, such as first in
Listing 2.2, abstract some part of the state, which might be useful in many
cases, such as when specifying interfaces or creating less verbose specifications.
The behavior of an interface may be specified in terms of model variables, and
the classes implementing the interface define represents clauses for these model
variables, relating them to their own concrete implementation. Similarly, ghost
fields, such as size in Listing 2.2, extend the state of an object. Ghost fields are
able to provide useful information for specification purposes, even when that
information is not provided directly by the source code. The value of a ghost
field var is updated through the statement set var = expr, where expr is any
side-effect free expression with a type conforming to var.

2.3.6 Special Constructs

In addition to the aforementioned elements of the JML syntax, the JML lan-
guage offers a set of special constructs that are useful when creating clauses in
specification cases. Some of the most common constructs have been applied in

4The non-American spelling behaviour may also be used.
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Listing 2.2, including old, result, invariant and forall. The names of these
constructs do well at disclosing their semantics; old refers to the field’s state
prior to the method call, result refers to the result returned by the method,
invariant specifies an invariant, and forall is equivalent to the first-order logical
quantifier ∀.

During Chapter 4 the reader might encounter elements of the JML syntax
that have not been defined in Section 2.3. In such a case, the elements will be
explained at a later time. However, the reader is encouraged to study the JML
reference manual [50] for further specific details of the language.

2.3.7 Loop Invariants

A loop invariant for a loop is a formula that is valid prior to executing the loop
and is maintained valid by the loop body. Loop invariants play a vital part in
the verification of programs [22], as verification tools typically require guidance
in the presence of loops due to the general impossibility to statically evaluate
the loop body repeatedly until the loop condition evaluates to false [17]. If
a formula is proven to be an invariant for some loop, then the formula may
”replace” the loop during symbolic execution.

Finding suitable loop invariants is considered to be one of the most difficult
tasks in formal program verification and it is arguably the one that is least
amenable to automation [17]. There exists plenty of resources on generating loop
invariants, such as [22, 51], and the strategies used to generate loop invariants
for the verification effort in this work are presented in Section 16.3 of [17].
Understanding the processes and strategies of generating loop invariants is not
required to enjoy the rest of this thesis, but it is recommended that anyone
planning to carry out a verification effort familiarizes themselves with the theory
and relevant litterature.

JML offers the ability to annotate Java programs with loop invariants di-
rectly through the keyword loop invariant or maintaining. In addition, in
order to prove that a loop terminates, the loop can be annotated with an ex-
pression starting with the JML keyword decreasing. A formula evaluating to a
decreasing value must follow the keyword, and the loop has to terminate when
the value of the formula reaches 0. Finally, a loop must be annotated with
an assignable-clause specifying the locations that may be altered by the loop
body5. An example of method containing a loop annotated with loop invariants
are presented in Listing 2.3 below:� �
/*@ public normal_behavior

2 @ ensures

@ (\ forall int i;

4 @ 0 <= i && i < \result.length;

@ \result[i] == i*i);

6 @ assignable \nothing;

@*/

5Local variables need not be explicitly added to the loop’s assignable-clause; KeY adds
them automatically.
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8 public int[] loopInvariantExample (){

int[] square = new int [10];

10 int i;

/*@ maintaining 0 <= i && i <= square.length;

12 @ maintaining

@ (\ forall int u;

14 @ 0 <= u && u < i;

@ square[u] == u*u);

16 @ decreasing square.length - i;

@ assignable square [*];

18 @*/

for (i = 0; i < square.length; i++){

20 square[i] = i*i;

}

22 return square;

}� �
Listing 2.3: Example of method with loop annotated with loop invariants.

JML also supports enhanced for-loops [75] — the index can then be referred to
by the JML keyword \index. Finally, it should be noted that the set of valid
loop invariants is closed under conjunction [17]: if A and B are loop invariants
for the same loop, then A ∧B is also a loop invariant.

2.4 Java Dynamic Logic (JavaDL)

Java Dynamic Logic (JavaDL) [4] is an instance of first-order logic [7, 38, 39]
specially suited for reasoning about sequence of states of Java programs. The
application of JavaDL is largely invisible to the user when working with KeY.
This is primarily due to KeY’s ability to automatically convert JML specifi-
cations into JavaDL proof obligations, which the inherent proof assistant can
discharge. As such, this section will only explain the elements necessary to enjoy
the rest of this thesis; the interested reader is referred to chapter 2 and 3 of [17]
for in-depth details.

2.4.1 First-Order Dynamic Logic

This thesis assumes that the reader is to some degree familiar with formal logic.
As such, the syntax and intuitive meaning of first-order dynamic logic, the foun-
dation of JavaDL, is primarily given for the sake of completeness. Additionally,
in order to reason formally about Java-programs, there is a need to introduce
some founding concepts. Most later definitions will build on the following fun-
damental definitions. First, the notion of type hierarchies is defined. Type
hierarchies enables reasoning around types and subtypes.
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Definition 2.6 - Type Hierarchies

A type hierarchy is a pair T = (tsym,v), where tsym is a set of type symbols and
v is the subtype relation. Each type is a subtype of itself (i.e., v is reflexive), and
every subtype may have several other subtypes as long as the transitive property of
v is kept.

Definition 2.7 - Global Type Symbols

There are two global type symbols present in all type hierarchies: the empty type
⊥ ∈ tsym and the universal type > ∈ tsym. ⊥ is a subtype of all types, and all
types are subtypes of >, i.e., ⊥ v A v > for all A ∈ tsym.

Further, the vocabulary for first-order dynamic logic is given by its signature.
Signatures are defined for a given type hierarchy.

Definition 2.8 - Signatures

A signature Σ = (fsym,psym,vsym) for a given type hierarchy T consists of

1. a set of typed function symbols, fsym. The arity of the function is defined by
its number of input parameters, while the domain, and co-domain of the func-
tion specifies the types of the input and output, respectively. For instance, for
f ∈ fsym the function f : X × Y → A takes two input parameters. There-
fore, its arity is 2, and the function is 2-ary/binary. Further, the functions
domain is the Cartesian product X × Y , with the corresponding co-domain
being A.

2. a set of typed predicate symbols, psym. For p ∈ psym the predicate
p(A1, ..., An) takes n arguments of types A1, ..., An in that given order. Pred-
icates evaluate to true or false.

3. a set of typed logical variable symbols, vsym. The declaration v : A for
v ∈ vsym states that variable v is of type A.

A symbol may not have several instances in fsym ∪ psym ∪ vsym with different
typing, and all types Ai are different from ⊥.

Further, we inductively define syntactic categories of terms and formulas for
a given type hierarchy and signature.

Definition 2.9 - Terms

Let T be a type hierarchy, and Σ a signature for T . The set TRMA contains the
terms of type A ∈ T , and A 6= ⊥. TRMA is inductively defined as follows:
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• For every variable v : A ∈ VSYM, we have v ∈ TRMA.

• For every function f(t1, ..., tn) for f : A1 × ...×An → A ∈ FSYM and ti ∈
TRMBi

where Bi v Ai for all 1 ≤ i ≤ n, we have f(t1, ..., tn) ∈ TRMA.

Definition 2.10 - Formulas

Let T be a type hierarchy, Σ a signature for T , v : A ∈ VSYM, and α be an
action6 or event. The set FML contains the formulas for T and Σ. Formulas are
inductively defined as follows:

• p(t1, ..., tn) for p ∈ psym and t ∈ trm, is a formula.

• If φ, ψ are formulas, then (¬φ) and (φ ∧ ψ) are both formulas.

• If φ is a formula, then ∀v;φ and ∃v;φ are both formulas.

• If φ is a formula, then [α]φ and 〈α〉φ are both formulas.

The syntax is neither minimal nor maximal. The operators ¬ and ∧ consti-
tutes the propositional part of the language, and operators such as ∨, → or ↔
are syntactic sugar, as semantically equivalent formulas can be expressed using
only ¬ and ∧. The always false term false can be expressed as φ∧¬φ, and the
always true term true can be expressed as ¬false. The first-order quantifiers
∀ (read for-all) and ∃ (read exists) are used to quantify over variables. The
formula ∀A v;φ intuitively states that for all variables v of type A, φ holds.
Similarly, ∃A v;φ states that there exist a variable v of type A such that φ
holds. Finally, the dynamic modalities [ ] and 〈 〉 will be used when actions are
replaced by legal program fragments (see Section 2.4.2), and may then be seen
as variations of if-then statements. If p is a legal program fragment, the formula
[p]φ expresses that if p terminates, then φ holds in the final state. Conversely,
〈p〉φ expresses that the program p terminates in a state where φ holds.

2.4.2 Extending First-Order Dynamic Logic to JavaDL

Definition 2.8 can be extended to cover Java program variables by defining
signatures specifically for the Java type hierarchy displayed in Figure 2.1.

Definition 2.11 - JavaDL Signatures

A JavaDL signature Σjdl = (fsym,psym,vsym,progsym) for the JavaDL type
hierarchy TJDL for a Java program prog consists of

• a logical signature (fsym,psym,vsym) as defined in Definition 2.8,

6The formal definition of actions have been omitted, as they will later on be replaced by
Java program fragments.
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• and a set of nullary nonrigid function symbols, progsym, called program
variables. The set contains all local variables a declared in prog, where the
type of a : A ∈ progsym is given by the declared Java type T as follows:

– A = T if T is a reference type,

– A = boolean if T =boolean,

– A = int if T ∈ {byte, short, int, long, char}.

In addition, progsym contains the special program variable

heap : Heap ∈ progsym

used to refer to the program heap.

Figure 2.1: Mandatory type hierarchy TJDL for JavaDL.

The reader should be aware of the distinction between logical variables in
vsym and the program variables present in progsym. Logical variables must
be quantified, but may never occur in programs. Program variables cannot be
quantified, but may occur in programs. Terms and formulas are called rigid if
they do not contain any occurrences of program variables. Conversely, they are
nonrigid if they do contain occurrences of program variables.
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The definition of legal, or well-defined, programs are left out. The reasoning
behind this decision is that the Java compiler will be able to sort out program
fragments that do not conform to the Java syntax. As such, a Java program that
is ill-defined will not compile, and therefore it cannot be executed. Consequently,
this thesis will only consider executable programs, as there is little merit to
verifying programs that cannot be executed.

The formal definition of legal program fragments is given in Definition 3.2
in section 3.2.3 of [17], while the formal definition of terms and formulas are
extended to conform to JavaDL in Definition 3.3 in Section 3.2.4 of the same
book. Intuitively, terms and formulas of JavaDL are similar to those for first-
order dynamic logic, with the only difference being in Definition 2.10 where
action α are replaced by legal program fragments (often denoted p).

Before continuing, a final syntactical category is introduced, namely updates.
Updates are side-effect free expressions denoting state changes. The notation
{u}t, where u is an update and t is a term, restricts the term t to be evaluated
in the state produced by update u. Updates can occur in parallel, denoted
(u1||u2). If updates occurring in parallel clash, i.e., they attempt to assign
different values to the same variable, then the value written by u2 prevails.
Updates always terminate.

2.4.3 Sequent Calculus for JavaDL

The sequent calculus [28, 29, 30, 31] are based on the algorithmic manipulation
of sequents.

Definition 2.12 - Sequents

A sequent has the form Γ =⇒ ∆ in which Γ and ∆ are finite (possibly empty)
multisets of formulas. The left side of the sequent is the antecedent, while the right
side is the succedent. Γ∪{A} or ∆∪{B} are written as Γ, A and ∆, B respectively.

Intuitively, a sequent represents ”provable from”, where Γ are assumptions for
the set of formulas ∆ to be proven. If all of the formulas in Γ are true, then
some of the formulas in ∆ are true. Sequents are manipulated by applying rules
of a calculus, and sequents with JavaDL formulas are manipulated by rules of
the JavaDL calculus. Rule applications to sequents have the form

premisse1, ...,premissen
ruleName

conclusion

For an example of a rule from the JavaDL sequent calculus, consider the
basic assignment-rule in the calculus:

=⇒ {loc := value} 〈π ω〉φ
assignment

=⇒ 〈π loc = value; ω〉φ
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Here, (loc = value;) is the active statement, while the symbols π and ω are
program constructs. π refers to nonactive prefix of Java code, while ω refers to
the remainder of the Java code after the active statement. The rule expresses
that evaluating {loc := value}φ in a state is equivalent to valuating only φ in a
modified state where loc has the value value, i.e., it turns the assignment into
an update.

Some rules of the JavaDL calculus have restrictions. For instance, the
assignment rule is subject to the restrictions placed on rules of equality. The
restrictions placed on rules of equality ensures that an equality t1 = t2 may
only be used for rewriting if both t1 and t2 are rigid, i.e., they do not contain
program variables, or the term being replaced is (1) not in the scope of two
different program modalities, (2) not in the scope of two different updates.

In KeY, rules of the JavaDL calculus are implemented as taclets, which are
presented in Section 3.3.
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3 The KeY System

KeY is well-documented in [17], and the reader is advised to study this book for
a thorough understanding of the tool. The purpose of this section is to present
the most central concepts that the KeY System is built upon.

3.1 Introduction

As mentioned in Section 2.1, deductive verification is based on discharging proof
obligations extracted from software. The KeY System creates proof obligations
from JML annotated Java source code by converting JML contract annotations
into JavaDL contracts before turning JavaDL contracts into proof obligations.
This process is the focus of Section 3.2.

When proof obligations have been extracted through the aforementioned
process, they can be automatically or interactively discharged with the help of
KeY’s implemented proof assistant. This proof assistant is based largely on a
formalism known as taclets. Therefore, an introduction to taclets and their role
in the verification process in given in Section 3.3.

3.2 From JML Annotations to Proof Obligations

The first step towards converting JML annotations to proof obligations is to
translate JML contract annotations into JavaDL contracts. These contracts
can be further encoded into proof obligations in the shape of JavaDL formulas.

JML is a feature-rich specification language designed with redundancy, i.e.,
keywords can be syntactically different while being semantically equal. This
often improves the readability of specifications, while toughening the task of
the verifier. Therefore, to make things simpler for the verifier, the initial JML
contract annotations go through a normalization process before being translated
into JavaDL contracts. The normalization process consists of the following:

1. expand nested specifications by creating specification cases where each
sub-clause are extended with the shared clauses,

2. make implicit non-null, object invariants, behavior and signals_only spec-
ifications explicit,

3. expand purity modifiers with the clauses assignable \nothing and diverges

false,

4. add default clauses,

5. contract multiple clauses, and

6. separate verification aspects by separating functional and dependency con-
tract, and splitting possibly diverging contracts.
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The normalization process may return one or more separate JavaDL contracts
for a given JML contract in which all needs to be satisfied. For instance, the
normalization process for the JML contract specification� �

/*@ behavior

2 @ requires expr;

@ ensures expr;

4 @ assignable loc;

@ accessible loc;

6 @*/� �
will return a behavior operation contract and an accessible clause. The JML
keyword accessible loc defines the set of locations loc that the observable
result of the method can be reliant on. In order to prove that some method
conforms to the JML contract specification, the method has to conform to both
the behavior operation contract and the accessible clause.

After the normalization process concludes, the special cases of contracts for
constructors, model methods and model fields are dealt with. Eventually, the
end-product will be one or more JavaDL contracts. As with JML contracts,
there are separate JavaDL contracts for the behavioral effects of a method and
the dependency of a query method. These are categorized as functional method
contracts and dependency method contracts, respectively. Their definitions are
given as:

Definition 3.1 - Functional Method Contracts

A functional JavaDL method contract for a method or constructor ReturnType

method(Type1 param1, ..., TypeN paramN) declared in some class C is a quadruple

(pre, post,mod, term)

where

• pre is a formula in dynamic logic representing a precondition,

• post is a formula in dynamic logic representing a postcondition,

• mod is a modifier set that is either a term describing the set of heap locations
that may be changed by the method, or the string StrictlyNothing,

• and term is a termination witness providing an argument for the method’s
termination.

All contract components may refer to the special program variables self (unless
method is static), heap and to the program variables param1, ..., paramN.
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Definition 3.2 - Dependency Contracts

A dependency JavaDL method contract for a method ReturnType method(Type1

param1, ..., TypeN paramN) is a triple

(pre, term, dep)

where

• pre is a formula in dynamic logic representing a precondition,

• term is a termination witness providing an argument for the method’s termi-
nation,

• and dep is a term describing the set of heap locations in which the method
dependens on.

All contract components may refer to the special program variables self (unless
method is static), heap and to the program variables param1, ..., paramN.

To verify JML and JavaDL method contracts, they are encoded into proof
obligations, i.e., formulas of JavaDL. The corresponding proof obligations are
valid iff the method implementation is correct with respect to the method con-
tract. In fact, KeY defines a method implementation as correct when all its
proof obligations are valid. Otherwise, if the formula is falsified, the counterex-
ample is a proof that the contract is not correct. Proof obligations thus define
a semantics for JavaDL contracts: A method implementation fulfills its formal
contract if and only if the corresponding JavaDL proof obligation is universally
valid. The general idea of JavaDL proof obligations is to show that the precon-
dition implies that the postcondition holds after the execution of the method,
as introduced in Section 2.1.2. A simplified formula illustrating the idea is given
in 3.3 below. The definitions employed by KeY are found in Section 8.3 of [17].

Definition 3.3 -
Simplified Proof Obligations for Functional Correctness

Given the functional method contract

(pre, post,mod, term)

for functional correctness of method m, the simplified proof obligation for the method
contract is expressed as the following formula in JavaDL:

pre→ 〈res = self.m(p1,...,pn);〉 post ∧ frame

The formula frame, called the framing condition, ensures that the method does
not change any locations that are not in the modifier set mod.
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3.3 Taclets

In order to reason in any given logic, a class of tools known as calculi is em-
ployed. A calculus allows us to determine the validity of a logical formula
utilizing purely syntactic operations. As mentioned in Section 2.1, Hoare pro-
posed in [40] a deductive system, i.e., a calculus consisting of a set of inference
rules and axioms for reasoning about the correctness of computer programs.
Having such a calculus at hand enabled, in theory, to prove the validity of com-
plex software. The first proofs were completed by applying inference rules to
annotated programs using pen and paper. However, the field of formal verifica-
tion has matured immensely [35] over the decades. Parts of this growth can be
attributed to the advent of automated tools, such as SMT-solvers [16], model
checkers [36], and various proof assistants [8, 17, 60, 61].

The KeY Project comes with a proof assistant, the KeY System, that is
able to automatically apply inference rules of the JavaDL sequent calculus 2.4.3
to formulas of JavaDL. Furthermore, the proof assistant is designed to comply
with the following requirements:

1. First, as there is a a need for a considerable number of rules in a full-scale
verification effort, the proof assistant must understand a language where
new rules can easily be written or derived, as opposed to hard-coded.

2. Second, when supplementing the verifier with a new rule (or lemma), there
must not be any uncertainty about whether the rule is unsound. Therefore,
the proof assistant needs to be able to determine whether a new rule is
sound.

3. Third, to allow for interactive theorem proving, the complexity of any
given rule has to be restricted in such a manner that the user interaction
is kept clear and concise.

4. Finally, the formalization has to enable the automation of as many proof
tasks as possible. This includes simplification, symbolic execution and
automated proofs or decision procedures for simpler fragments of the logic
and theories.

In order to meet these requirements, KeY implements calculus rules in a formal-
ism known as taclets. In the coming section, this formalism will be introduced
through example.

3.3.1 A Taclet Tutorial

Taclets are a domain specific language for programming proof modification
steps, developed as part of the KeY Project. A taclet schematically describes
a set of sequent calculus rules, and by instantiating the schema variables with
concrete syntactical elements, the taclet itself becomes a concrete applicable
rule. Once a complete taclet instantiation has been found applicable, it can be
used to perform a step in the sequent calculus.

Taclets are used in the KeY System for
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1. defining first-order calculus rules,

2. defining rules of the JavaDL calculus,

3. introducing data types and decision procedures, and

4. to give users the possibility to define and reason about new logical theories.

Theories are introduced by giving a vocabulary of types and functions, a set of
axioms defining the semantics, and a set of derived rules that are suitable for
the construction of actual proofs. Both axioms and derived rules are formulated
as taclets in KeY.

In order to provide a more practical introduction to taclets, the following presents
an example by implementing a taclet for a basic theory of lists. A list is defined
through a type List, and the two constructor symbols

nil : List

cons : int× List→ List.

The properties of types are expressed through axioms, which eliminate all inter-
pretations of the constructor symbols that are inconsistent with said properties.
The desired properties for a type is specified on a case-by-case basis. In this
example, the two desired properties of type List are

1. every list can be represented as a term consisting of nil and cons, and

2. the representation of a list is unique assuming a unique representation of
the integers.

The axioms needed can be formalized as such:

Axiom 3.1 - Induction on type List(
φ [List← nil] ∧ ∀List l, ∀int a;

(
φ→ φ [l← cons(a, l)]

))
→ ∀List l;φ

Axiom 3.2 - List containing an element is not nil

∀List l;∀int a;
(
nil 6= cons(a, l)

)
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Axiom 3.3 - List is injective

∀List l1, l2;∀int a1, a2;
(
cons(a1, l1) = cons(a2, l2)→ a1 = a2 ∧ l1 = l2

)

Axiom 3.2 expresses that the ranges of cons and nil do not overlap, i.e.,
a list containing an element cannot be nil, and Axiom 3.3 states that cons is
injective. Together, the axioms imply that two lists are equal if and only if
they have the same number of elements, and the elements coincide. Axiom
3.1 is the induction axiom reflecting that any element of the list data type can
be constructed using nil and cons. The notation φ [List← nil] represents the
result of replacing every occurrence of type List in formula φ with nil, i.e., it
represents the empty list. In full, the axiom states that if a formula φ holds for
the empty list and holds for any a, then φ holds for all lists. Furthermore, the
axiom represents an axiom schema, as it is formulated with schematic variable
φ representing an arbitrary formula.

The taclet for the simplified theory of lists in Listing 3.1 contains the princi-
pal elements of taclets. The block \sorts declares the theory type, whereas
\functions declares the available function symbols and their signature. The
keyword \unique declares a function to be unique; a unique function is defined
to be injective, meaning the values of two distinct \unique functions are never
equal. Further, \find defines a pattern that must occur in the sequent to which
the taclet is supposed to be applied. The expression matched by \find is called
the focus of a taclet application. The keyword \replacewith creates a new
proof goal by replacing the expression matched in \find with the expression in
\replacewith. The operator {\subst x; t} expresses substitution of a variable x

with a term t. Finally, \schemaVar states that the variable is a schema variable,
and \varcond specifies conditions that have to hold for admissible instantiations
of the schema variable of a taclet.� �
\sorts {

2 List;

}

4

\functions {

6 \unique List nil;

\unique List cons(any , List);

8 }

10 \axioms {

list_induction {

12 \schemaVar \formula phi;

\schemaVar \variable List l;

14 \schemaVar \variable int a;
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16 \find( ==> \forall l; phi )

\varcond (\ notFreeIn(a, phi))

18

\replacewith( ==> {\ subst l; nil} phi

20 & \forall l; \forall a;

(phi -> {\ subst l;

22 cons(a, l)}

phi) )

24 };

}� �
Listing 3.1: Taclet for simplified theory of lists.

Appending more functionality and lemmas to a taclet is simple. Listing 3.2
displays the result of adding new rules and axioms to support the addition of
the new function int length(List). Keep in mind that the taclet in Listing 3.2
should be seen as an extension to the taclet in Listing 3.1, and does not alone
represent a valid taclet.� �
\functions {

2 int length(List);

}

4

\axioms {

6 length_nil {

length(nil) = 0

8 };

10 length_cons {

\forall List l; \forall any a;

12 length(cons(a, l)) = 1 + length (1)

};

14 }

16 \rules {

length_nil_rw {

18 \find ( length(nil) )

\replacewith( 0 )

20 };

22 length_cons_rw {

\schemaVar \term any a;

24 \schemaVar \term List l;

\find( length(cons(a, l)) )

26 \replacewith( 1 + length (1) )

};

28 }� �
Listing 3.2: Taclet for simplified theory of lists with length.
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3.3.2 Soundness of Taclets

For the proofs generated by KeY’s proof assistant to be of value, the rules
applied by the proof assistant must be sound. As the rules applied by the proof
assistant are represented as taclets, there is an inherent need to be able to reason
about and prove soundness of taclets.

In order to reason about the soundness of taclets, KeY’s proof assistant
implements a two-step translation for encoding taclets into first-order soundness
proof obligations. The translation consists of

1. translation of taclets into meaning formulas, such that a taclet is sound
iff its meaning formula is valid, and

2. a second transformation that handles the elimination of schema variables
in meaning formulas.

Formulas in point (1) above are named meaning formulas as they capture the
semantic meaning of the different clauses composing a given taclet. These for-
mulas still contain schema variables, meaning that to prove validity, higher-order
proof methods are needed. Therefore, the second transformation removes the
schema variables such that the end result is a purely first-order formula which
is valid if the original formula is valid. However, one cannot simply remove such
variables; schema variables are placeholders for syntactic construct like terms,
programs or formulas.

In order to prove soundness of a given taclet, one must prove that the taclet’s
meaning formula is valid for all possible instantiations. Albeit somewhat com-
plicated, well-known techniques such as induction over terms [14] are applicable.
However, more preferable methods such as replacing quantification through the
introduction of Skolem symbols [65] are possible to some degree: variables can be
replaced by a fresh logical variable, terms can replaced by Skolem functions [65],
and formulas can be replaced flexible predicate symbol.

Unfortunately, soundness proof obligations cannot be generated for all taclets
in KeY. Specifically, taclets containing (1) program modalities in any clause,
(2) variable conditions other than \new and \notFreeIn, (3) meta-functions, (4)
generic sorts, or (5) schema variables other than \term, \formula and \variable,
are not guaranteed to be verifiable with respect to soundness. As such, these
artifacts should be avoided when creating custom taclets.

3.4 Limitations

KeY’s proof assistant imposes some limitations on the target code, as there
are some common elements of Java programs that are not supported. These
limitations are listed in Table 3.1 below. For a thorough review of elements
supported by KeY, the reader is refereed to [17].
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Library Methods KeY will throw an error when libraries outside of
KeY’s classpath are used. The recommended work-
around is to create stubs for constructors, fields and
methods of deployed library code.

Generics Generics are unsupported by KeY. The purpose of
generics in Java is to enable types to be parameters
when defining classes, interfaces and methods [13].
The benefits are (1) stronger compiler-time type-
checking, (2) eliminating casts, and (3) generics al-
gorithms and methods. However, when a system
has been created, any generic classes, interfaces and
methods that have been utilized, can be statically
substituted for the concrete types used.

Floating Point
Types

Floats are unsupported by KeY. The creators have
not given any specific reason, but it can be specu-
lated that complexity is one of the primary reasons;
floating points are generally considered difficult to
formally verify [58].

Multi-threading KeY does not handle multiple threads in programs.
However, there exist other tools that assist in veri-
fying concurrent properties of Java programs. One
prominent tool is Java PathFinder [72].

try-with-

resources and
multi-catch

Both unsupported. Reason unknown.

Java 8 Features Not supported. Reason unknown.

Table 3.1: Unsupported features of the KeY System.
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4 Verifying EVA Resultat

4.1 Introducing EVA Resultat

The target of verification, EVA Resultat [53], is presented in this section. EVA
is the fundamental IT-system used by municipalities and counties to prepare for
and implement elections in Norway. The system was first deployed and utilized
in 10 municipalities during the 2011 election, and has since 2013 been used for
all government elections in Norway. In short, all municipalities, counties and the
Sami parliament collect all the information regarding practical implementation
aspects of the election process using EVA, including the location and opening
hours of polling stations and details of electoral lists submitted by disparate
political parties/groups. Collectively, this information constitutes the basis for
ballots and voting cards, and is a deciding factor in how EVA will further assist
the municipalities and counties in tallying the election. Finally, EVA provides
election forecasts and calculates how many representatives are to be returned
from each electoral list. EVA is split into three separate software applications:

EVA Admin The core support system for administrating the elec-
toral process in municipalities and counties. All core
data taking part in executing the election is regis-
tered in this system, as well as the registration of
votes and tally. EVA Resultat retrieves the data
used for calculating the seat allocation from EVA
Admin.

EVA Scanning The software managing the tally of the votes given
by electors.

EVA Resultat Responsible for providing forecast of election re-
sults, as well as calculating the election results based
on the data received from EVA Admin. This appli-
cation will be the principal verification target of this
thesis.

Considering that EVA constitutes the primary machinery responsible for
calculating the result of an election, a profound understanding of the electoral
process would be required when designing the system. As this thesis is mainly
focused on verifying distinct system properties, only a superficial review will
be presented with the focal point being Sainte-Laguës’s modified method. For
more specific details and more in-dept explanations, the reader is referred to [1]
and [69].

The system itself considers the electoral process as part of its specification,
and the behavior of the system is expected to conform to the description writ-
ten in the Election Act [52]. The official implementation, EVA-Resultat, has
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been implemented in Java where external libraries such as Spring [73], Hiber-
nate [62] and JavaX [32] has been utilized extensively. As this system is the
primary verification target of this thesis, a presentation of the architecture and
implementation will be the primary focus of Section 4.3.

4.2 The Norwegian Electoral Process

The electoral term in Norway is four years both for members of parliament,
and for members of municipal and county councils. Elections to municipal and
county councils are conducted at the same time, and are held midway in the
parliamentary electoral term. Parliamentary elections occur every four years,
and local elections, i.e., elections for municipal councils and county councils,
occur two years after each parliamentary election. As a consequence, Norwegian
governmental elections occur every two years.

To keep consistent with the wording used in the Electoral Law [52], state-
ments of the form ”county seat X is awarded to electoral list Y” will be used to
express that ”the political party that submitted electoral list Y will decide who
becomes representative number X for the county council”. At times, the term
”constituency representative” may be used instead of ”county seat”.

The electoral process itself is based on two central principles:

1. Direct election; electors vote directly for their preferred representatives
by casting their votes for an electoral list. The various political parties
or groups submit their own electoral lists specifying their favored candi-
dates, which, when applicable, are arranged in prioritized order. Such an
arrangement is in contrast to other electoral processes, such as the U.S.
presidential election [20, 44], where voting is performed indirectly through
the Electoral College.

2. Proportional representation; representatives are assigned to the electoral
lists in relation to the number of votes received by the respective political
parties and groups. Proportional representation is an attempt to guar-
antee that each electoral list gets its ”fair share” of representatives; if an
electoral list receives half of all the votes cast in an election, then half of
the resulting governing body will consist of representatives belonging to
the corresponding political party. The result of the election is therefore
independent of the localization of voters within the region, thereby ren-
dering gerrymandering irrelevant. Again, this is in contrast to the U.S.
election where the election is dependent on the localization of voters within
a region [10].

The Norwegian parliamentary election is held to decide representatives for the
169 seats of Stortinget, i.e., the legislative branch of Norway. During the parlia-
mentary election Norway is divided into 19 separate constituencies, one for each
county, and each constituency is responsible for assigning a given number of
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representatives to Stortinget. This number of members may differ between con-
stituencies, as it is dependent on the population and area of the constituency. Of
the 169 representatives elected, 150 are elected as constituency representatives
while the remaining 19, one seat from each constituency, are elected as rep-
resentatives at-large. Constituency representatives and representatives at-large
hold the exact same power. The constituency representatives are partitioned
in accordance to Sainte-Laguës’s modified method, and the representatives at-
large are decided by an electoral committee, the National Electoral Committee,
appointed by the King in the same year as the parliamentary election [43, 52].
However, the allocation of representatives at-large does have strict procedural
guidelines in place, and must follow the procedure represented by the pseu-
docode in Listing 4.3. Further, each municipal and county council is responsible
for appointing Municipal Electoral Committees and County Electoral Commit-
tees.

Sainte-Laguës’s modified method implies that the total vote polled by each
electoral list is divided by the odd numbers starting with 1.4, i.e., 1.4, 3, 5, 7
and so forth. Each total vote polled shall be divided as many times as necessary
to find the number of seats the electoral list shall have. The first seat is awarded
to the electoral list that has the largest quotient. The second seat is awarded
to the electoral list that has the second largest quotient and so forth. If two or
more electoral lists have the same quotient, the seat is awarded to the electoral
list that has polled the largest number of votes. If they have polled the same
number of votes, it is determined by lot to which electoral list the seat shall be
awarded.

Pseudocode for Sainte-Laguës’s modified method is found in Listing 4.1 and
Listing 4.2.� �
SainteLaguesModifiedMethod (R, C)

2 input: R, the number of representatives to give/the

number of available seats.

4 C, constituency to return representatives from.

output: M, map with key -value pairs

6 <Electoral List , Number of representatives given >

begin

8 M← ∅;
Q : Stack of pairs <Electoral List , Quotient > ← ∅;

10 Q ← CalculateQuotients(C, R);

Q ← Q.sortDesc ();
12

while Q.size() < R do

14 pair ← Q.pop();
M.insertOrIncrement(pair.getKey ());

16 end

18 return M;

end� �
Listing 4.1: Pseudocode for Sainte-Laguë’s modified method.

33



� �
1 CalculateQuotients (C)

input: C, constituency to return representatives from.

3 R, the number of representatives to be awarded.

output: Q, stack of pairs <Electoral List , Quotient >.

5 R number of quotients are calculated for every

electoral list in constituency C in case an

7 electoral list has received enough votes to win

all representatives.

9 begin

Q ← ∅;
11 L : Electoral lists for the

given constituency ← C.getElectoralLists ();
13

quotientsToCalculate ← L.length × R;

15 i : iteration counter ← 0;

17 while i <= quotientsToCalculate do

divisor ← (i == 0) ? 1.4 : (2*i + 1);

19 foreach el ∈ L do

quotient ← el.getVotes ()/divisor;

21 pair ← <el ,quotient >;

Q.push(pair);
23 end

i ← i + 1;

25 end

27 return Q;
end� �

Listing 4.2: Pseudocode for calculating quotients.

There is one element in the pseudocode that is not self-explanatory, mainly
insertOrIncrement. The function insertOrIncrement either inserts a new key
(i.e., electoral list) or, if the key is already present in the map, increments the
key’s value to represent that the electoral list is awarded a new representative.
As such,M functions as a counter of the number of representatives awarded for
each electoral list. Further, it is assumed that the function sort sorts based on
number of votes received in the case where two quotients are equal.

It is important to calculate enough quotients. To illustrate why the term
enough is rather dynamic, consider the example in Table 4.7. Here, one could
stop at iteration 4 and award the 16th seat to the Yellow Party. However, this
would be a mistake, as during the 5th iteration it becomes clear that the correct
decision is to award the 16th seat to the Green Party. One possible solution is
to terminate only when enough quotients to fill all seats are calculated, and the
highest quotient in the current iteration is lower than the lowest quotient in the
previous iteration. However, the solution implemented in EVA is to calculate
as many quotients as there are seats available for every electoral list. That is,
following the example in Table 4.7, 16 quotients would be calculated for every
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electoral list, totalling in a total of 64 quotients.

When concerned with parliamentary elections, 19 of the 169 representatives are
elected for seats at-large. Recall that according to electoral law, the represen-
tatives will be decided by the National Electoral Committee appointed by the
King based on transcripts that are sent in from the County Electoral Commit-
tees. These transcripts contain the number of constituency representatives that
has been assigned each electoral list in the County Electoral Committees’ given
counties. Further, The National Electoral Committee determines how many
seats at-large are allocated to each electoral list as follows:

1. Allocate, using Sainte-Laguës’s modified method, all 169 representatives
among the electoral lists when the entire nation is considered as a single
constituency. The number of representatives rep awarded for an electoral
list EL using this method is denoted EL.rep.

2. For each electoral list, compare EL.rep to the number of constituency seats
that has been given electoral list EL, denoted EL.con.

(a) If EL.rep is lower than EL.con, then the electoral list has been overly
represented. Redo the allocation in Point 1 for the remaining repre-
sentatives, and disregard the overly represented electoral list EL.

(b) If EL.rep is higher than or equal to EL.con, then the electoral list will
be awarded a number of representatives at-large corresponding to the
difference between EL.rep and EL.con.

Note the distinction between allocating constituency representatives and rep-
resentatives at-large: constituency representatives are allocated based on votes
tallied in each distinct constituency, while representatives at-large are allocated
based on all7 tallied votes.

After it has been decided how many representatives at-large each electoral
list shall have, then it has to be decided in which constituencies they shall be
awarded from. This is decided by the following process:

1. First, calculate the county factor for each constituency by dividing the
total tallied votes cast in the constituency by the number of constituency
representatives returned from the constituency.

2. Secondly, a quotient shall be calculated for each electoral list in each
constituency.

(a) If an electoral list has not received any constituency representatives
from a given constituency, then the quotient for the electoral list in
the given constituency shall be based on the number of votes tallied
for the electoral list in the constituency. The quotient for the given
electoral list in a given constituency is then

Votes tallied for the electoral list in the constituency

The constituency’s county factor
.

7All votes except protest votes.
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(b) If a electoral list has received X number of constituency representa-
tives from a given constituency, then the quotient for the electoral
list in the given constituency shall be based on the number of votes
tallied for the electoral list in the constituency divided by (X ×2)+1.
The quotient for the given electoral list in a given constituency is then

Votes tallied for the electoral list in the constituency

((X × 2) + 1)× The constituency’s county factor
.

3. Collect all quotients — each constituency will supply one quotient for each
electoral list. The first representative at-large is awarded the electoral list
and constituency that has the highest quotient. The second representative
at-large is awarded the electoral list and constituency that has the second
highest quotient. Every constituency will receive only one representative
at-large, and an electoral list cannot receive any representatives at-large
if it has tallied less than 4% of the total votes tallied nationwide.

Pseudocode for the at-large calculation is presented in the following Listing 4.3.� �
SeatAtLargeAllocation (C)

2 input:

C : Transcript from constituencies.

4 The statement C.getCons(EL) returns number of total

constituency representatives awarded to electoral list

EL.

The statement C.getAllCons () returns a list of all

constituencies that has awarded constituency

representatives.

6 Further , each constituency con has information

regarding total number of votes cast in constituency for

the election and number of constituency representatives

awarded. This information is retrieved through con.

getVotes () and con.getReps () respectively.

The statements con.getVotes () and con.getReps () can

take an electoral list as a parameter , and will then

return the number of votes cast for that electoral list

in the constituency , and the number of constituency

representatives awarded that electoral list in the

constituency , respectively.

8

output:

10 Void method; no return value. Method allocates

representatives at-large from each constituency among

the electoral lists.

12 begin

/* Determine how many representatives at-large each

14 * electoral list shall have. */

tot : Number of total representatives ← 169;
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16 REP : Map with key -value pairs

<Electoral List , Number of representatives > ← ∅;
18 REP ← SainteLaguesModifiedMethod(tot , NORWAY);

20 foreach el ∈ REP do

diff ← REP.get(el) - C.getCons(el);
22 if diff < 0 do

tot ← tot - C.getCons(el);
24 /* The expression NORWAY\el means "consider Norway

* as a single constituency , but disregard

26 * electoral list el from calculations ". */

REP ← SainteLaguesModifiedMethod(tot , NORWAY\el);

28 redo loop;

else

30 REP.put(el , diff);

/* REP now contains how many at-large

32 * representatives (diff) each

* electoral list (el) shall have. */

34 end if

end foreach

36

// Calculate county factors

38 CONS : List with all constituencies ← C.getAllCons ();
C_FAK : Map with key -value pairs

40 <Constituency , County Factor > ← ∅;

42 foreach con ∈ CONS do

totalVotesCast ← con.getVotes ();

44 consRepsGiven ← con.getReps ();

factor ← totalVotesCast / consRepsGiven;

46 C_FAK.put(con , factor);

end foreach;

48

// Calculate quotients

50

/* The notation Q[con][el] denotes the quotient for

52 * electoral list el in constituency con */

Q : Map for quotients ← ∅;
54 foreach con ∈ CONS do

foreach el in REP do

56

if (REP.get(el) = 0) do

58 continue;

end if;

60

62 if con.getReps(el) = 0 do

Q[con][el] ← con.getVotes(el) / C_FAK.get(con);

64

else
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66 denom ←
(
(con.getReps(el)×2) + 1

)
×C_FAK.get(con);

Q[con][el] ← con.getVotes(el) / denom;

68

end if

70

end foreach;

72 end foreach;

74 // Award representatives at-large

Q ← Q.sortDesc ();
76 foreach quotient ∈ Q do

con ← quotient.getCon ();

78 el ← quotient.getEl ();

if hasReceivedAtLargeRepresentative(con) do

80 continue;

else if hasLessThanFourPercent(el) do

82 continue;

else

84 awaredSeatAtLarge(con , el);

end if;

86 end foreach;

88 end� �
Listing 4.3: Pseudocode for seat at-large allocation

4.2.1 Seat At-Large Calculation Example

The following example illustrates how the at-large allocation would occur for a
parliamentary election for a nation with 5 counties/constituencies and 3 polit-
ical parties. The process is extendable to as many constituencies and political
parties as necessary. Pseudocode for the at-large allocation process is found in
Listing 4.3 starting on Page 36.

Consider a scenario where 3 political parties — Red Party, Blue Party and
Yellow Party — are running for the 155 parliamentary seats, of which 5 are
seats at-large. During the election, the nation is divided into 5 constituencies
— North, East, Middle, South and West.

The tallied votes are displayed in Table 4.1, and according to the transcripts
sent from the County Electoral Committees the constituency representatives
have been allocated as displayed in Table 4.2. The result of applying Sainte-
Laguës’s modified method for all 155 representatives with the votes tallied in
Table 4.1 is displayed in Table 4.3.
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North East Middle South West Total
Red Party 603 27 288 217 861 1996
Blue Party 769 98 67 202 790 1926
Yellow Party 33 73 27 52 210 395
Total 1405 198 382 471 1861 4317

Table 4.1: Tallied votes from parliamentary election.

North East Middle South West Total
Red Party 20 2 4 6 34 66
Blue Party 25 7 1 5 31 69
Yellow Party 1 5 0 1 8 15
Total 46 14 5 12 73 150

Table 4.2: Number of constituency representatives awarded to the political par-
ties from each constituency.

Party Representatives
Red Party 71
Blue Party 69

Yellow Party 15
Total 155

Table 4.3: Result of applying Sainte-Laguës’s modified method for 155 repre-
sentatives based on data in Table 4.1.

Constituency County Factor

North 1405
46 = 30.54

East 198
14 = 14.14

Middle 382
5 = 76.4

South 471
12 = 39.25

West 1861
73 = 25.49

Table 4.4: County factors for each constituency.

When comparing the result displayed in Table 4.3 with the allocation of
constituency representatives in Table 4.2, it becomes clear that the Red Party
will be awarded all 5 representatives at-large. As the Blue Party and Yellow
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Party shall receive no representatives at-large, they should be disregarded during
further calculations. However, to better demonstrate the at-large allocation,
their quotients will still be calculated.

The next step in the process is to calculate all county factors and all quo-
tients. The resulting county factors are displayed in Table 4.4, while the result-
ing quotients are displayed in Table 4.5.

North East

Red Party 603
((20×2)+1)×30.54 = 0.4815 27

((2×2)+1)×14.14 = 0.3818

Blue Party 706
((25×2)+1)×30.54 = 0.4532 98

((7×2)+1)×14.14 = 0.4620

Yellow Party 33
((1×2)+1)×30.54 = 0.3601 73

((5×2)+1)×14.14 = 0.4693

Middle South

Red Party 288
((4×2)+1)×76.4 = 0.4188 217

((6×2)+1)×39.25 = 0.4252

Blue Party 67
((1×2)+1)×76.4 = 0.2923 202

((5×2)+1)×39.25 = 0.4678

Yellow Party 27
76.4 = 0.3534 52

((1×2)+1)×39.25 = 0.4416

West

Red Party 861
((34×2)+1)×25.49 = 0.4895

Blue Party 790
((31×2)+1)×25.49 = 0.4919

Yellow Party 210
((8×2)+1)×25.49 = 0.4846

Table 4.5: Quotients from all constituencies for each electoral list.

Finally, the quotients calculated in Table 4.5 can be sorted in descending
order, and the representatives at-large can be decided. In the following list,
the quotients are listed together with the corresponding constituency, political
party and a comment.

1. 0.4919 — West — Blue Party — Disregarded.

2. 0.4895 — West — Red Party — First representative.

3. 0.4846 — West — Yellow Party — Disregarded.

4. 0.4815 — North — Red Party — Second representative.

5. 0.4693 — East — Yellow Party — Disregarded.

6. 0.4678 — South — Blue Party — Disregarded.
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7. 0.4620 — East — Blue Party — Disregarded.

8. 0.4532 — North — Blue Party — Disregarded.

9. 0.4416 — South — Yellow Party — Disregarded.

10. 0.4252 — South — Red Party — Third representative.

11. 0.4188 — Middle — Red Party — Fourth representative.

12. 0.3818 — East — Red Party — Fifth representative.

13. 0.3601 — North — Yellow Party — All seats allocated.

14. 0.3524 — Middle — Yellow Party — All seats allocated.

15. 0.2923 — Middle — Blue Party — All seats allocated.

It can then be concluded that the Red Party is allocated one representative
at-large from each constituency, for a total of five. The quotients partaking in
this decision are quotients 2, 4, 10, 11 and 12 above.

4.2.2 Local Government Election Example

Local government elections for municipal councils and county councils are simi-
lar to the parliamentary rendition. The preeminent dissimilarity arise from how
each constituency themselves decide the number of seats. However, this decision
is restricted by statutory guidelines. Further, the representatives for the mu-
nicipal counties are decided by the numbers of votes received by the electoral
list in that municipality, and are calculated in accordance to Sainte-Laguës’s
modified method. When it has been decided how many representatives each
electoral list shall have, the Municipal Electoral Committee allocates the seats
to the candidates on the electoral list.

Consider a scenario where there is a local election in an arbitrary municipality
where 16 seats are up for election. The tallied results are displayed in Table
4.6, the application of Sainte-Laguës’s modified method is displayed in Table
4.7, and finally, the summary of the election result is displayed in Table 4.8.

Each party/group can give an increased share of the poll to a limited num-
ber of candidates; these candidates are written at the top of the list in boldface.
When it has been decided how many representatives each party/group is allo-
cated, the returning of the members is based on the personal votes8 of each
candidate. Candidates whose names appear in boldface get an increase in their
personal poll corresponding to 25 per cent of total tally of the party/group they
represent. After the increased share of the poll has been calculated, the personal

8When casting a vote for an electoral list, the elector can choose to cast a personal vote
for a candidate they believe should be the representatives for the electoral list. Personal votes
can be cast both for candidates that the electoral list has listed for itself and for candidates
that other electoral lists have listed for themselves.
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votes given to each candidate are added. Personal votes received from the elec-
toral list’s own voters and personal votes received from other lists’ voters count
equally. The members are returned in order of who has the highest personal
poll. To illustrate, the scenario from above is continued; Table 4.9 displays the
returning of council members from the Red Party. All factors considered, the
municipal council will consist of four members from the Red Party: Alice, Eve,
Bob and Boris.

Party Votes
Red Party 200
Blue Party 198

Yellow Party 140
Green Party 217

Table 4.6: Tallied votes from local election.

Red Party Blue Party Yellow Party Green Party
Total Votes 200 198 140 217

1.4 142 (2) 141 (3) 100 (4) 155 (1)
3 66 (6) 66 (7) 46 (8) 72 (5)
5 40 (10) 39 (11) 28 (15) 43 (9)
7 28 (13) 28 (14) 20 31 (12)
9 22 22 15 24 (16)
11 18 18 12 19

Table 4.7: Result from local election after applying Sainte-Laguës’s modified
method.

Party Seats No.
Red Party 2, 6, 10, 13
Blue Party 3, 7, 11, 14

Yellow Party 3, 8, 15
Green Party 1, 5, 9, 12, 16

Table 4.8: Tallied votes from local election.
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Name of
candidate

Increased
party
share

Personal
votes

SUM per-
sonal poll

Returning
of mem-
bers

1. Alice 50 13 63 1. Alice
2. Bob 50 2 52 2. Eve
3. Eve 0 56 56 3. Bob
4. Vladimir 0 37 37 4. Boris
5. Boris 0 48 48 5. Vladimir
6. Donald 0 2 2 6. Donald

Table 4.9: Returning of members for the Red Party.

4.3 System Description

The architecture of EVA Resultat is separated into a five core modules com-
posing the system. These modules and a summary of their functionality is
given in Table 4.10. The back-end calculates the election result. As such, the
functional correctness of the module is crucial; the other modules are primar-
ily auxiliary, e.g., utility-, database-, or web-modules. Although these modules
are also prone to error, the type of errors experienced here are generally more
noisy, e.g., throws exceptions or causes abrupt termination. However, errors
in numerical calculations can be more demanding to identify as they are often
more silent.

Considering the importance of the back-end module, and the fact that it im-
plements both integer- and floating-point calculations to calculate the quotients
of each electoral list, the primary focus will be on this component. The class
diagrams for the classes composing the seat-allocation functionality is displayed
in Figure 4.1.

Back-end The central machinery of the application. It handles parsing of
JSON-documents from the database, computes the seat alloca-
tion according to Sainte-Laguës’s modified method, and creates
reports for the media and the public. The module is shielded
from exterior processes, and interacts only with the database.

Common Some common utilities, e.g., JSON helpers and custom excep-
tions.

Database There are primarily two types of data stored in the database:
static data and dynamic data. Static data is comprised of core
data from EVA Admin, historical data, and data categorized as
other. The dynamic data can be more or less mapped to the
three functions of the back-end; (1) the parser reads from the
database table modified by the receptor, (2) the seat distribution
process writes its result to the database, and (3) the reports
generated are also written to the database.
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Front-end The front-end is a server responsible for (1) retrieving batches of
reports created by the back-end, and (2) divides the batches into
singular reports while caching and making them more readable.

Receptor A web-application/servlet that retrieves information from EVA
Admin, and stores the data in a database table. This module
is new in the 2019 version; previously EVA Admin stored the
data directly into the database itself. This was changed due to
performance- and security concerns.

Table 4.10: Summary of core modules of EVA Resultat.

4.3.1 Implementation Details

The system itself is implemented in Java with the help of the Spring Boot
framework [73]. This framework contains libraries that do not have any formal
specification, and contains features that are not supported by the KeY System.
In addition, the implementation utilizes external packages such as Lombok [76],
and the usage of Java 8 [32] features are common . The former causes few issues
as the features used from the Lombok package, i.e., the annotations @Getter and
@Setter, are purely syntactic sugar used to create less verbose source code. The
annotations can be rewritten to standard Java. As for the latter, Java 8 features
are fully unsupported. This is not to be confused with Java 8 libraries, as it is
possible to create stubs with default contracts for unfamiliar library methods.
However, features such as Lambda-functions have to be dealt with by either
adding support for such features to KeY, or removing them by downgrading the
system to conform to Java 7.

One of the Java libraries that is used extensively in the seat-allocation cal-
culation, is java.math.BigDecimal [12]. The two principal reasons for using the
BigDecimal-class are: (1) eliminating the risk of errors arising due to integer
calculations (e.g. overflows), and (2) to provide a scale of type 32-bit integer.
According to the BigDecimal-documentation, the scale, if zero or positive, is the
number of digits to the right of the decimal point. This is a massive increase in
the number of available decimals compared to using floats or doubles.

However useful the BigDecimal-class might seem, one can argue that the
usage is superficial. Advents of integer calculation overflows are unlikely in
this particular closed system; the number of votes in Norwegian election rarely
exceeds the value of Integer.MAX_VALUE. Also, according to specifications, the
implementation is set to have a maximal precision of 20. A maximal precision of
20 ensures that quotients are only considered equal if they are equal up to and
including 20 digits right of the decimal point. The idea here is to ensure that
two quotients are treated as equals only if they are based on the same divisor
and number of votes. However, this seems superfluous as the Electoral Law [69]
states that two quotients may be similar. In such a scenario, the seat is awarded
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Figure 4.1: UML class diagram of seat-allocating functionality.
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to the electoral list that polled the most votes. Further, a scenario where 20
decimal places are actually necessary seems unlikely. When reviewing the result
of prior elections, this becomes increasingly clear. For instance, in the result
for the 2019 municipal election for Oslo, there was only a single case where
quotients were not able to be decided by the first decimal point for the first 21
divisors (i.e., the odd numbers from 1.4 to 41). The quotients in question were
the 175th and 176th highest quotients, meaning they had no effect on deciding
the 58 municipal seats to be awarded.

Another vital Java library is java.util.Arrays, as the method Arrays.sort(

Object[] a) is used to sort the quotients. The elements of array a implements
the interface java.lang.Comparable<T>, meaning that all elements of array a has
implemented a int compareTo(T o)-method. This method is utilized by Arrays.

sort(Object[] a) to sort the elements of the array. In EVA, the quotients are re-
alized by the class PartiKvotient which implements Comparable<PartiKvotient>.
Further, the method that creates and sorts quotients is MandatberegningFelles

.sorterteKvotienter(...). The latter method returns an array PartiKvotient

[]. It is vital that the quotients in this array is sorted in descending order,
otherwise representatives might be awarded to the wrong electoral lists. The
sorted order is, as mentioned above, controlled by the method PartiKvotient.

compareTo(PartiKvotient pk), which again is based in the method BigDecimal

.compareTo(BigDecimal val). In fact, the latter method is the only method
from the BigDecimal-class that is used to extract information. All other uti-
lized methods from the BigDecimal-class are used to manipulate the result of
the compareTo(...)-method.

4.3.2 Verification Goals and Limitations

This chapter will attempt to reach the research goals listed in Section 1.2 by
creating specifications for all methods and classes of the EVA Resultat back-end
that concerns seat allocation, and verifying methods and classes that concern
the allocation of constituency representatives in an incremental and transparent
fashion. Ideally, every desired property of the system should be specified and
verified. Unfortunately, when constrained by available time and resources, a
subset of methods and classes has be to selectively chosen as verification tar-
gets. This work has opted to limit its focus on what is considered the most
fundamental aspects of the system’s seat allocation functionality. Specifically,
the parts of the system that are required for calculating constituency represen-
tatives9 will be subject to verification. The specifications are written to be as
prone to automatic theorem proving as possible; some of the proof trees that are
deduced from the specifications will be exceptionally large meaning they become
increasingly difficult to prove interactively. Further, during the following veri-
fication effort, the most central techniques and tools for behavioral verification
will be presented, with two exceptions:

9The same part of the system is used to calculate results of local elections.
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1. Exceptional behavior method specifications are not utilized as part of the
verification effort. Instead, stubs and method specifications are annotated
with preconditions ensuring that the method may not throw exceptions.
As a consequence, it can be ensured that if all preconditions of method
specifications are upheld, then the system will not terminate due to an
exception. This is not to say that exceptions are always unwanted, as
exceptions can be a powerful tool in the arsenal of programmers, but the
verification effort in this work will focus on eliminating silent errors. Silent
errors are errors that do not leave any obvious trace. This is in contrast
to noisy errors, such as exceptions or errors, which are designed to leave
informative traces as to what caused them. If the EVA system is used
live to calculate the result of an election an exception or error would be
unfortunate, but it would alert officials of some flaw in the system or user.
It could be far more devastating if the system terminated successfully,
while providing the wrong result. It should also be noted that none of the
methods specified during the verification effort were implemented to throw
exceptions; the Java keywords throws, throw or try-catch are nowhere to
be found.

2. Dependency contracts for proving properties related to information flow
is disregarded entirely. Information flow is specified through expressions
starting with the JML keywords accessible and determines by, and can
be used to prove that a program does not introduce information flows be-
tween resources in a way that is in violation of a security or privacy policy.
There are no such requirements for the verification targets in this work.
However, it could be beneficial to prove that the result of certain meth-
ods rely entirely on a specific set of locations. This was omitted mainly
due to concerns regarding time and available computational resources, as
proving dependency contracts are computationally heavy and time con-
suming. The reader is referred to Chapter 13 of [17] for further details on
information flow analysis.

The part of the system that concerns calculating representatives at-large will be
presented, and the core methods of the calculation will be specified formally; the
source code will not be prepared for verification, and stubs and domain elements
that are exclusive to the at-large calculation will not be presented. Still, the
presented specifications of the at-large calculations displays how one could go
about specifying similar methods and classes, and will create a foundation to
build upon. It is believed that the verification of the at-large calculation could be
completed by the tools and techniques presented and utilized during Section 4.5.
That is, given enough computational resources and time to deal with the size and
complexity of the classes and methods involved in the representatives at-large
calculation.
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4.4 Formal Specification

4.4.1 Representing the Quotients

There are two classes that are used to represent the quotients — Kvotient and
PartiKvotient. The former are used for doing mathematical calculations on the
quotients, while the latter are mainly used to store information. The summaries
for the relevant constructors and methods in the two classes are displayed in
Tables 4.11 - 4.14. Getter- and setter methods are only mentioned if their
functionality is not immediately apparent from the name, or if they are of special
importance.

Constructor Description
Kvotient(int k) Creates a quotient that has the same value as k.

Kvotient(BigDecimal

kvotient)

Creates a quotient that is equal to BigDecimal

kvotient.

Kvotient(int teller,

int nevner)

Creates a quotient from a numerator ( teller) and
a denominator (nevner)

Table 4.11: Constructor summary for class Kvotient.

Constructor Description
PartiKvotient(String

partikode, Kvotient

kvotient, BigDecimal

delingstall)

Creates a quotient for a political party. Inputs are,
in order of appearance, the political party’s ”party-
code” (i.e., the political party’s identifier), the cal-
culated quotient, and the divisor used to calculate
the quotient (e.g. 1.4, 3, 7, ...).

Table 4.12: Constructor summary for class PartiKvotient.
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Modifier and Type Method and Description
BigDecimal getKvotient() — Returns the quotient of the ob-

ject.

Kvotient add(Kvotient k) — Returns a new Kvotient whose
value is (this + k).

Kvotient subtract(Kvotient k) — Returns a new Kvotient

whose value is (this - k).

Kvotient multiply(BigDecimal bd) — Returns a new
Kvotient whose value is (this * bd).

Kvotient divide(BigDecimal bd) — Returns a new Kvotient

whose value is (this * bd).

Table 4.13: Method summary for class Kvotient.

Modifier and
Type

Method and Description

int compareTo(PartiKvotient pk) — Compares one party-
quotient to another, by calculating the difference (this -

pk). If the difference is positive, then the method returns -1.
If the difference is negative, it returns 1. If the difference is
0, then the difference is recalculated to (pk.getStemmetall

()-this.getStemmetall()). Note that this logic is opposite
of the expected behavior of a class implementing Comparable

<T>. This is done to have Arrays.sort(Object[] a) sort in
descending order.

Integer getStemmetall() — Returns the number of votes received
by the electoral list.

Table 4.14: Method summary for class PartiKvotient.

The specification for class Kvotient in Listings 4.4-4.6 bases the correctness of
the class predominately on the correctness of methods in BigDecimal, in that the
specification utilizes the abstraction provided by the specification of BigDecimal.
Concretely, the arithmetic methods of Kvotient are correct if they produce the
same result as their equivalent methods in BigDecimal.

The following specification of class Kvotient displays how one could use
ghost fields in specification. Specifically, the ghost field rValue residing in
class BigDecimal has been utilized. The advantage here is that is makes the
specifications more concise and readable, the implementation of the original
class can be ignored, and it helps reduce the size of the proof tree during ver-
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ification. The disadvantage is that the specification relies on elements that do
not necessarily exists in the class that the stub represents. This disadvantage is
removed if using model fields instead of ghost fields, but then the implementa-
tion of the original class cannot necessarily be ignored as the model fields then
have to be represent actual fields.

The type of the ghost field is bigint as opposed to the ideal type real —
the JML-type \real is not (yet) supported by KeY [17]. During the verification
effort in Section 4.5 a discussion will be held surrounding the correctness of
the model resulting from the usage of the ghost field; for now, one can intu-
itively think of rValue as a variable holding the mathematical number that the
BigDecimal-object represents.

When using contracts as the primary means of verification, the verification is
modular in the sense that a proof remains valid even if the program is extended
conservatively. As such, a contract in a non-final class is not valid as the implicit
pre-condition requires \invariant_for(this) is not guaranteed to hold if the
class is extended. Therefore, by declaring \inv to only base its value on this

.*, the specification does not consider sub-classes. As class Kvotient is never
extended, this has no effect in this case; however, if the class is to be extended,
the specification is not necessarily valid for the sub-classes. Further, the KeY-
JML10 keyword invariant_for(o) is used extensively. In KeY, invariants are
not explicitly added to the specifications; the specifier must make explicit which
invariants are included, and which are not. The expression invariant_for(o)

refers to the invariant of object o. By the clause requires \invariant_for(o),
a method can require that the invariant of a given object o holds before being
passed as a parameter or utilized in the method. Similarly, the clause ensures \

invariant_for(o) specifies that the invariant of object o holds at the termination
of the method. Requiring and ensuring that an invariant holds might seem
redundant, as invariants are supposed to always hold. However, methods are
allowed to temporarily break invariants as long as they are established before
method termination. This can cause problems if invariants are broken for objects
that are passed as parameters, or if other methods utilizes the same objects. If
a method does not have to ensure invariants, it can be annotated as a helper

method similarly to how pure methods are annotated.
The elements in the specification for class Kvotient contains the most fun-

damental JML elements. Most are presented in Section 2.3, but they will be
briefly presented once again in Table 4.15 due to their importance.

JML Keyword Description

spec public The field can be accesses directly in JML expres-
sions, but does not override the visibility of the field
for other Java expressions.

10In KeY’s JML, all objects for which the invariants hold must be stated explicitly using the
operator \invariant for [17]. This differs from standard JML [50], and as such the language
is referred to as KeY-JML.
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normal behavior The following method contract is a behavioral con-
tract that has to terminate, and may not throw ex-
ceptions.

requires Represents a precondition. The keyword is followed
by an expression that has to be true for the post-
conditions to be guaranteed. To specify explicitly
that a method contract does not have any precon-
ditions, the clause requires true may be used. If
the method contract does not have any requires

clauses, then the clause requires true is implicit.

ensures Represents a postcondition. The keyword is fol-
lowed by an expression; if the preconditions are true
prior to method execution, then the expression is
guaranteed to be true after the method terminates.

\fresh(o) The object denoted by o is fresh, i.e., it did not
exists prior to method execution.

\result Refers to the result of the method.

assignable Specifies the fields that the method may modify.
The keyword is followed by a field, multiple fields
separated by a comma, or one of the JML keywords
nothing or strictly_nothing. The JML keyword
nothing specifies that the method may create new
objects, but not modify any existing objects. The
JML keyword strictly_nothing specified that the
method may not create new objects, nor may it it
modify any existing objects.

\old(o) The expression refers to the object o prior to method
execution. For instance, ensures i == \old(i) + 1

is used to specify that the value of an integer i is
incremented by the method.

Table 4.15: Fundamental JML elements.

� �
/*@ spec_public @*/ private BigDecimal kvotient;

2

//@ public accessible \inv: this .*;

4

// Constructors

6

/*@ public normal_behavior

51



8 @ requires true;

@ ensures kvotient.rValue == n;

10 @ ensures \fresh(kvotient);

@ assignable kvotient;

12 @*/

public Kvotient(int n);

14

/*@ public normal_behavior

16 @ requires \invariant_for(bd);

@ ensures kvotient == bd;

18 @ ensures \invariant_for(bd);

@ ensures \invariant_for(kvotient);

20 @ assignable kvotient;

@*/

22 public Kvotient(BigDecimal bd);

24 /*@ public normal_behavior

@ requires nevner != 0;

26 @ ensures \fresh(kvotient);

@ ensures kvotient.rValue == teller / nevner;

28 @ ensures \invariant_for(kvotient);

@ assignable kvotient;

30 @*/

public Kvotient(int teller , int nevner);� �
Listing 4.4: JML specification for constructors of class Kvotient.� �

/*@ public normal_behavior

2 @ requires \invariant_for(k);

@ ensures \fresh (\ result);

4 @ ensures

@ \result.kvotient.rValue ==

6 @ (this.kvotient.add(k.kvotient)).rValue;

@ ensures \invariant_for(k);

8 @ ensures \invariant_for(kvotient);

@ assignable \nothing;

10 @*/

public Kvotient add(Kvotient k);

12

/*@ public normal_behavior

14 @ requires \invariant_for(k);

@ ensures \invariant_for(k);

16 @ ensures \invariant_for(k.kvotient);

@ ensures \invariant_for(kvotient);

18 @ ensures \fresh (\ result);

@ ensures

20 @ \result.kvotient.rValue ==

@ (this.kvotient.subtract(k.kvotient)).rValue;

22 @ assignable \nothing;

@*/
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24 public Kvotient subtract(Kvotient k);

26 /*@ public normal_behavior

@ requires \invariant_for(bd);

28 @ requires bd.rValue != 0;

@ ensures \fresh (\ result);

30 @ ensures

@ \result.kvotient.rValue ==

32 @ (this.kvotient.divide(bd , 20, 4)).rValue;

@ ensures \invariant_for(bd);

34 @ ensures \invariant_for(kvotient);

@ ensures \invariant_for (\ result.kvotient);

36 @ assignable \nothing;

@*/

38 public Kvotient divide(BigDecimal bd);

40 /*@ public normal_behavior

@ requires \invariant_for(bd);

42 @ ensures \fresh (\ result);

@ ensures

44 @ \result.kvotient.rValue ==

@ (this.kvotient.multiply(bd)).rValue;

46 @ ensures \invariant_for(bd);

@ ensures \invariant_for(kvotient);

48 @ assignable \nothing;

@*/

50 public Kvotient multiply(BigDecimal bd);� �
Listing 4.5: JML specification for arithmetic methods of class Kvotient.� �

/*@ public normal_behavior

2 @ requires true;

@ ensures \result == kvotient;

4 @ assignable \strictly_nothing;

@*/

6 public BigDecimal getKvotient ();

8 public /*@ pure @*/ String toString ();� �
Listing 4.6: JML specification for helper methods of class Kvotient.

The specifications for class PartiKvotient follows. The class-level specification in
Listing 4.7 introduces a new specification artifact, namely the instance invariant.
An instance invariant contains an expression that must be true in all states in
which a method is called or terminates [17]. The instance invariant in Listing 4.7
states that the number of votes that a party-quotient is based on cannot be
negative.

In the original source-code, the method PartiKvotient.compareTo utilizes
the constant BigDecimal.ZERO to check if an object of BigDecimal was greater
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than 0; a proposed model that does not utilize this constant will be presented in
Section 4.5.1. Further, the type of field stemmetall was changed to the primitive
int. These changes will be discussed further in Section 4.5.1.

Displayed in Listing 4.8 is the method contract for the method that Array.

sort in Listing 4.35 utilizes to sort the quotients. For the quotients to be sorted
in descending order, it is vital that the method returns a negative number if this
is larger than partiKvotient and returns a positive number for the converse. The
method contract assumes that BigDecimal.compareTo(BigDecimal val) is correct
according to its specification [12].� �
import java.math.BigDecimal;

2 import Kvotient;

4 public class PartiKvotient{

6 /*@ spec_public @*/

private final static BigDecimal ZERO = new BigDecimal (0);

8

/*@ spec_public @*/ private final BigDecimal delingstall;

10 /*@ spec_public @*/ private final String partikode;

/*@ spec_public @*/ private final Kvotient kvotient;

12 /*@ spec_public @*/ private int stemmetall;

14 //@ public accessible \inv: this .*;

//@ public instance invariant stemmetall >= 0;

16

/*@ public normal_behaviour

18 @ ensures this.delingstall == delingstall;

@ ensures this.partikode == partikode;

20 @ ensures this.kvotient == kvotient;

@ ensures

22 @ \old(\ invariant_for(delingstall))

@ ==> \invariant_for(delingstall);

24 @ ensures

@ \old(\ invariant_for(partikode))

26 @ ==> \invariant_for(partikode);

@ ensures

28 @ \old(\ invariant_for(kvotient))

@ ==> \invariant_for(kvotient);

30 @ assignable delingstall , partikode , kvotient;

@*/

32 public PartiKvotient(BigDecimal delingstall , String

partikode , Kvotient kvotient);� �
Listing 4.7: JML specification for constructor of class PartiKvotient.� �

/*@ public normal_behavior

2 @ requires \invariant_for(partiKvotient);

@ requires \invariant_for(partiKvotient.getKvotient ());

4 @ requires \invariant_for(this.kvotient);
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@ ensures \invariant_for(partiKvotient);

6 @ ensures \invariant_for(partiKvotient.getKvotient ());

@ ensures \invariant_for(this.kvotient);

8 @ ensures

@ getKvotient ().getKvotient ().compareTo(

10 @ partiKvotient.getKvotient ().getKvotient ()) < 0

@ ==> \result == 1;

12 @

@ ensures

14 @ getKvotient ().getKvotient ().compareTo(

@ partiKvotient.getKvotient ().getKvotient ()) > 0

16 @ ==> \result == -1;

@

18 @ ensures

@ getKvotient ().getKvotient ().compareTo(

20 @ partiKvotient.getKvotient ().getKvotient ()) == 0

@ ==> \result == partiKvotient.getStemmetall () -

22 @ this.getStemmetall ();

@

24 @ assignable \nothing;

@*/

26 public int compareTo(PartiKvotient partiKvotient);

28 /*@ public normal_behaviour

@ requires \invariant_for(partiKvotient);

30 @ requires \invariant_for(partiKvotient.getKvotient ());

@ ensures \result ==

32 @ partiKvotient.getStemmetall () - stemmetall;

@ ensures \invariant_for(partiKvotient);

34 @ ensures \invariant_for(partiKvotient.getKvotient ());

@ assignable \strictly_nothing;

36 @*/

private int sammenlignHvisKvotienterErLike(PartiKvotient

partiKvotient);� �
Listing 4.8: JML specification for compareTo()-method of class PartiKvotient.� �
// Getters

2

/*@ public normal_behaviour

4 @ requires true;

@ ensures \result == delingstall;

6 @ assignable \strictly_nothing;

@*/

8 public BigDecimal getDelingstall ();

10 /*@ public normal_behavior

@ requires true;

12 @ ensures \result == kvotient;

@ assignable \strictly_nothing;
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14 @*/

public Kvotient getKvotient ();

16

/*@ public normal_behaviour

18 @ requires true;

@ ensures \result == partikode;

20 @ assignable \strictly_nothing;

@*/

22 public String getPartikode ();

24 /*@ public normal_behavior

@ requires true;

26 @ ensures \result == stemmetall;

@ assignable \strictly_nothing;

28 @*/

public /*@ nullable @*/ int getStemmetall ();

30

32 // Setters

/*@ public normal_behavior

34 @ requires stemmetall >= 0;

@ ensures this.stemmetall == stemmetall;

36 @ assignable this.stemmetall;

@*/

38 public void setStemmetall(int stemmetall);� �
Listing 4.9: JML specification for helper methods of class PartiKvotient.

4.4.2 Representing the Representatives

The representatives themselves are represented by class Mandater, which is present
in package no.valg.valgnatt.database. The reader is advised to familiarize
themselves with Figure 4.1 for a better understanding on the separated archi-
tecture of the seat allocation. In short, all seat allocating calculations are done
in package no.valg.valgnatt.backend.mandatberegning, while the results of said
calculations are stored in instances of classes in package no.valgnatt.database.
For instance, in method beregnOgOppdater(...)11, the calculated result is stored
as Mandater-objects that represents representatives.

It should be noted that classes MandatData and Mandater only concerns how
many representatives each electoral list shall have, and not who should be rep-
resentatives. The electoral lists themselves decide which candidates should be-
come representatives. Candidates are represented by class Kandidat in package
no.valg.valgnatt.database.hibernate, and each electoral list has a map of all
its candidates in class PartiMandater. The map with electoral lists and votes
casts that the seat allocation is based on, is retrieved from class Valgdistrikt

. The class represents a constituency, and the returned map is generated by

11Method displayed in Listing 4.14 in Section 4.4.4.
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iterating over all instances of PartiMandater in the constituency.
Classes Mandater, MandatData and PartiMandater have all been specified and ver-
ified to conform to their specifications, but are not presented in this document;
the specifications and proofs can be found in the Git repository EVA-KeY [47].
Class Valgdistrikt, however, is presented in Listing 4.10.
The specification of class Valgdistrikt contains the first occurrences of quanti-
fied expressions. The quantified expressions forall and exists have the same
syntax, and represent the first-order quantifies ∀ and ∃, respectively. Both ex-
pressions have the same syntax:

(Q T v ; range(v) ; exp(v)) (2)

where Q is either \forall or \exists, v is the quantified variable, T is the type of
v (e.g., int, Object), range(v) is the range of the variable (e.g., 0 ≤ v∧v ≤ 10),
and exp(v) is an expression containing v. Intuitively, expressions starting with
\forall are true if exp(v) is true for all v in range, and expressions starting with
\exists are true if exp(v) is true for some v in range. The former is vacuously
valid, while the latter is vacuously unsatisfiable.� �
package no.valg.valgnatt.database.hibernate;

2

import no.valg.valgnatt.database.geografi.MandatData;

4 import no.valg.valgnatt.database.geografi.PartiMandater;

6 import java.util.Map;

import java.util.TreeMap;

8

public class Valgdistrikt {

10

private final transient Map <String , PartiMandater >

partiMap = new TreeMap ();

12 private final static String BLANKE = "BLANKE";

14 /*@ public normal_behavior

@ requires \invariant_for(pmArr);

16 @ requires pmArr.length > 0;

@ requires

18 @ (\ forall int i; 0 <= i &&

@ i < getPartiMandater ().length;

20 @ \invariant_for(getPartiMandater ()[i]) &&

@ \invariant_for(getPartiMandater ()[i]

22 @ .resultatData) &&

@ \invariant_for(getPartiMandater ()[i]

24 @ .prognoseData));

@

26 @ ensures

@ fjernBlanke ==> !(\ result.containsKey(BLANKE));

28 @

@ ensures fjernBlanke ==>
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30 @ (\ forall int i; 0 <= i && i < \result.size() &&

@ !( getPartiMandater ()[i]. partikode.equals(BLANKE));

32 @ \result

@ .containsKey(getPartiMandater ()[i]. partikode));

34 @

@ ensures !fjernBlanke ==>

36 @ (\ forall int i; 0 <= i && i < \result.size();

@ \result.containsKey(getPartiMandater ()[i]

38 @ .partikode)

@ &&

40 @ (( getPartiMandater ()[i]. isStillerliste () &&

@ borBenytteListestemmer &&

42 @ listestemmerFinnes(getPartiMandater ()[i]

@ .resultatData))

44 @ ==>

@ (\ result.get(getPartiMandater ()[i]. partikode) ==

46 @ getPartiMandater ()[i]

@ .resultatData.getListestemmer ()))

48 @ &&

@ (!( getPartiMandater ()[i]. isStillerliste () &&

50 @ borBenytteListestemmer &&

@ listestemmerFinnes(getPartiMandater ()[i]

52 @ .resultatData))

@ ==>

54 @ (\ result.get(getPartiMandater ()[i]. partikode) ==

@ getPartiMandater ()[i]

56 @ .resultatData.getStemmer ())));

@

58 @ assignable \nothing;

@*/

60 public Map <String , Integer >

getStemmerPrPartiTilMandatberegning(boolean

borBenytteListestemmer , boolean fjernBlanke , boolean

prognose);

62 /*@ public normal_behavior

@ requires \invariant_for(partiMap);

64 @ ensures \result == partiMap.values ();

@ ensures \invariant_for(partiMap);

66 @ assignable \strictly_nothing;

@*/

68 public PartiMandater [] getPartiMandater ();

70 /*@ normal_behavior

@ requires \invariant_for(md);

72 @ ensures \result == md.getListestemmer () > 0;

@ ensures \invariant_for(md);

74 @ assignable \strictly_nothing;

@*/

76 private boolean listestemmerFinnes(MandatData md);
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78 /*@ public normal_behavior

@ requires \invariant_for(partiMap);

80 @ requires partiMap.containsKey(partikode);

@ ensures \result == partiMap.get(partikode);

82 @ assignable \strictly_nothing;

@

84 @ also

@

86 @ public normal_behavior

@ requires \invariant_for(partiMap);

88 @ requires !( partiMap.containsKey(partikode));

@ ensures \result == null;

90 @ assignable \strictly_nothing;

@*/

92 public PartiMandater getPartiMandater(String partikode);

}� �
Listing 4.10: Signatures and specifications for relevant methods and fields of
class Valgdistrikt.

The method getStemmerPrPartiTilMandatberegning is the most interesting one,
as this is the method that is called to retrieve maps for calculating the seat
allocation. The parameter fjernBlanke specifies whether or not the electoral
list with the party-code specified by field BLANKE should be part of further cal-
culations. Parties with the party-code ”BLANKE” represent protest parties; a
protest party is a party that receives the protest votes cast during the election.
A protest vote (also called a blank or ”none of the above” vote) is a vote cast in
an election to demonstrate dissatisfaction with the choice of candidates or the
current political system [67]. The postconditions to the methods are as follows:

1. If the parameter fjernBlanke is true, then the resulting map will not con-
tain the electoral list for the protest party.

2. In addition, if the parameter fjernBlanke is true, then the resulting map
will contain all electoral lists in the constituency except those for the
protest party.

3. If the parameter fjernBlanke is false, then the resulting map will contain
all electoral lists, even for the protest party. Further, the type of votes for
the electoral list will be the personal votes if they are requested and they
exists; otherwise the type of votes will be regular. The specification lacks
a similar postcondition for the case where fjernBlanke is true, as this is
considered trivial.

4.4.3 Calculating the Sorted Quotients

The calculation of the sorted quotients is one of the most central aspects of
Sainte-Laguës’s modified method. As was briefly mentioned in Section 4.3.1, the

59



logic realizing the calculation is implemented in the method sorterteKvotienter

(...) in class MandatberegningFelles. The JML specification for the method can
be found in Listing 4.11. The preconditions for the method are

1. all invariants for the supplied map must hold initially,

2. the supplied map must be initialized,

3. the invariants for the map’s key-set and the invariants for all keys must
hold initially,

4. all values are non-null and larger than 0,

5. the map has at least one element, and

6. the number of representatives to assign is greater than 0.

If the preconditions are met, the method will ensure that

1. neither the returning array nor any of its elements are null,

2. the length of the result, i.e., the number of returned quotients, are decided
by the parameter antReturKvotienter; if the parameter is larger than the
parameter antallMandater then all representatives calculated are returned,
otherwise they are limited by antReturKvotienter,

3. for every PartiKvotient in the returning array

(a) the object’s partikode is a key in the map,

(b) the object’s stemmetall is the value of that key,

(c) the object’s delingstall is a Sainte-Laguë divisor, and

(d) the value of the object’s kvotient is calculated by taking dividing
stemmetall with that divisor.

4. every key/value-pair in the map is present in the result. When combining
this postcondition with the prior postcondition it is guaranteed that the
result consists only of PartiKvotient-objects that are created based on a
key/value-pair of the map, and PartiKvotient-objects are created for all
the map’s key/value-pairs,

5. all elements in the result are sorted according to PartiKvotient.compareTo,

6. the invariants hold for the map after termination.� �
/*@ public normal_behavior

2 @ requires \invariant_for(partiStemmeMap);

@ requires partiStemmeMap != null;

4 @

@ requires

6 @ (\ forall int i; 0 <= i && i < partiStemmeMap.size();
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@ partiStemmeMap.keySet () != null &&

8 @ \invariant_for(partiStemmeMap.keySet ()) &&

@ \invariant_for(partiStemmeMap.keySet ()[i]));

10 @

@ requires

12 @ (\ forall int i; 0 <= i && i < partiStemmeMap.size();

@ partiStemmeMap.values () != null &&

14 @ partiStemmeMap.values ()[i] >= 0);

@

16 @ requires partiStemmeMap.size() > 0;

@ requires antallMandater > 0;

18 @

@ ensures

20 @ (( antallMandater < antReturKvotienter &&

@ antReturKvotienter > 0 &&

22 @ antReturKvotienter > partiStemmeMap.size() *

@ antallMandater)

24 @ ==> \result.length == antReturKvotienter)

@ ||

26 @ \result.length == partiStemmeMap.size() *

@ antallMandater;

28 @

@ ensures (\ forall int i; 0 <= i && i < \result.length;

30 @ partiStemmeMap.containsKey (\ result[i]. getPartikode ())

@ && partiStemmeMap.get(\ result[i]. getPartikode ()) ==

32 @ \result[i]. getStemmetall () &&

@ (\ exists int n; 0 <= n && n <= antallMandater;

34 @ \result[i]. getDelingstall ()

@ .compareTo(getSainteLagueDelingstall(n))

36 @ == 0 &&

@ \result[i]. kvotient.kvotient.rValue ==

38 @ \result[i]. getStemmetall () /

@ getSainteLagueDelingstall(n).rValue));

40 @

@ ensures

42 @ (\ forall int i; 0 <= i && i < partiStemmeMap.size();

@ (\ exists int j; 0 <= j && j < \result.length;

44 @ partiStemmeMap.keySet ()[i]

@ .equals (\ result[j]. getPartikode ()) &&

46 @ partiStemmeMap.get(partiStemmeMap.keySet ()[i]) ==

@ \result[j]. getStemmetall ()));

48 @

@ ensures

50 @ (\ forall int i; 0 <= i && i < \result.length;

@ (\ forall int j; 0 <= j && j < i;

52 @ \result[i]. compareTo (\ result[j]) >= 0));

@

54 @

@ ensures \invariant_for(partiStemmeMap);

56 @
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@ ensures \result != null;

58 @ assignable \nothing;

@*/

60 static PartiKvotient [] sorterteKvotienter(int

antallMandater , Map <String , Integer > partiStemmeMap ,

Integer antReturKvotienter) {/*...*/}� �
Listing 4.11: Signature and JML specification for method responsible for
calculating the sorted quotients.� �
static BigDecimal getSainteLagueDelingstall(int n) {

2 return n == 0 ? new BigDecimal (1.4) :

new BigDecimal (2 * n + 1);

4 }� �
Listing 4.12: Method for calculating the Sainte-Laguë divisor for the iteration
specified by parameter int n.

In addition to calculating quotients, class MandatberegningFelles offers the
ability to limit the number of quotients to correspond to the number of represen-
tatives to award thorough method begrensAntallKvotienter seen in Listing 4.13.
If the parameter antallKvotienter exceeds the number of available quotients in
kvotienter, the parameter kvotienter will simply be returned. Otherwise, in
the normal use-case, the result will be a new array in which the first elements,
i.e., the elements from 0 to antallKvotienter, will equal the first elements of
kvotienter.

� �
/*@ public normal_behaviour

2 @ requires \invariant_for(kvotienter);

@ requires antallKvotienter < kvotienter.length

4 @ && antallKvotienter > 0;

@ ensures \result.length == antallKvotienter;

6 @ ensures

@ (\ dl_seqPerm(

8 @ \dl_array2seq (\old(kvotienter))

@ [0.. antallKvotienter],

10 @ \dl_array2seq (\ result)));

@ assignable \nothing;

12 @

@ also

14 @

@ public normal_behavior

16 @ requires \invariant_for(kvotienter);

@ requires antallKvotienter >= kvotienter.length

18 @ || antallKvotienter <= 0;

@ ensures \result == kvotienter;

20 @ assignable \strictly_nothing;
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@*/

22 static PartiKvotient [] begrensAntallKvotienter(

PartiKvotient [] kvotienter , int antallKvotienter);� �
Listing 4.13: Signature and JML specification of method
begrensAntallKvotienter from class MandatberegningFelles.

4.4.4 Calculating the Constituency Representatives

The system offers calculations of constituency- and representatives at-large in
classes Distriktsmandat and Utjevningsmandat, respectively. As constituency
representatives and representatives for local councils are elected in equal fashion,
there is no logical need to distinguish them. However, representatives at-large
are calculated by a separate algorithm, and therefore they are represented by
their own class. Class Distriktsmandat will be presented first, as it is inherently
less complex, and the presentation of class Utjevningsmandat will be the focus
of Section 4.4.5.

The only public method of Distriksmandat is presented in Listing 4.14. The
method returns an object of DistriktmandatResultat, which contains the result
along with forecasts. As this verification effort is not concerned with forecasts,
the class is can be considered to simply containing a map with number of con-
stituency representatives awarded to any given electoral list.

The method retrieves a map from parameter omrade12 by calling the method
getStemmerPrPartiTilMandatberegning on the parameter’s Valgdistrikt-object.
The entries of the map represents the number of votes cast (value) for a given
electoral list (key). Next, the method calculates the sorted quotients through the
methods in Listing 4.11 and 4.13, summarizes the number of resulting quotients
for each electoral list by the method in Listing 4.15, and stores the sum in
Mandater-objects nested inside parameter omrade.

Due to the dependency on internal methods and the nested complexity of
class Omrade, creating a formal specification of non-trivial properties for the
method beregnOgOppdater was exceptionally difficult. As such, this work will
focus on formalizing and verifying the methods that the method bases its result
on, i.e., the methods in Listings 4.10, 4.11, 4.13, and 4.15. Even though the
method itself does not have any explicitly specified properties, all methods that
the method uses to calculate quotients have explicitly specified properties. This
will not completely verify the method, but it will increase confidence that the
method behaves as expected.� �
public static DistriksmandatResultat beregnOgOppdater(

Omrade omrade , int antallMandater , boolean

stortingsDistriktsmandaterIFYValg , boolean prognose);� �
Listing 4.14: The method beregnOgOppdater in class Distriksmandat calculates
the number of constituency representatives awarded to each electoral list.

12Class Omrade was originally called ”Omr̊ade”, the Norwegian word for ”area”.
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As mentioned above, the method in Listing 4.15 below is responsible for sum-
marizing the number of resulting quotients for each electoral list. The method
returns a map where the keys represent an electoral list and the values represent
the number of quotients in parameter kvotienter that belongs to the electoral
list. The two postconditions ensure that there are no duplicate keys, and that
the value for any given key is the number of quotients belonging to the key in
the parameter kvotienter.

To summarize the number of resulting quotients for each electoral list, the
specification utilizes a new JML keyword, namely \num_of. The keyword is an
alias for a specific application of another JML keyword \sum. Their relationship
and syntax is seen in Equation 3.

(\num of T x; R(x); P(x)) == (\sum T x; R(x) && P(x); 1L) (3)

Here, T is the type of variable x, R(x) is the range of x that the expression will
consider, and P(x) is a predicate containing x. The expression num_of returns
the number of values for its variables for which the range and the predicate are
true. That is, the value returned by num_of is the amount of values for x that
satisfy both the range and the predicate. For example, the expression� �

(\ num_of int i; 0 <= i && i <= 10; i < 5)� �
will return 5, i.e., the amount of numbers from 0 to 10, including 0 and 10, that
are less than 5. As defined by Equation 3, the expression� �

1 (\sum int i; 0 <= i && i <= 10 && i < 5; 1L)� �
would be equivalent. The expression adds 1 to the current sum for every value
of i that satisfies all three conditions in the range.� �
/*@ public normal_behavior

2 @ requires \invariant_for(kvotienter);

@ requires kvotienter.length > 0;

4 @

@

6 @ ensures

@ (\ forall int i; 0 <= i && i < \result.size();

8 @ !(\ exists int j; i < j && j < \result.size();

@ \result.keySet ()[i]

10 @ .equals (\ result.keySet ()[j])));

@

12 @ ensures

@ (\ forall int i; 0 <= i && i < \result.size();

14 @ \result.values ()[i] ==

@ (\ num_of int j; 0 <= j && j < kvotienter.length &&

16 @ kvotienter[j]. getPartikode ()

@ .equals (\ result.keySet ()[i])));

64



18 @

@ ensures \invariant_for(kvotienter);

20 @ assignable \nothing;

@*/

22 private static Map <String , Integer > mandatFordeling(

PartiKvotient [] kvotienter);� �
Listing 4.15: Method mandatFordeling returns a map where the keys represent
an electoral list and the values represent the number of quotients in parameter
kvotienter that belongs to the electoral list

4.4.5 Calculating the At-Large Representatives

Class Utgjevningsmandat is approximately four times as large as Distriksmandat

when comparing lines of code, but the public interfaces are nearly identi-
cal. The only public method in class Utgjevningsmandat is the static method
beregnOgOppdater(...) in Listing 4.16.� �
public static UtjevningsmandatResultat beregnOgOppdater(

Land land , Map <String ,Integer > distriktsmandaterPrFylke ,

boolean prognose) {/*...*/}� �
Listing 4.16: The method beregnOgOppdater in class Utgjevningsmandat

calculates the number of representatives at-large awarded to each electoral
list.

The method attempts to capture the at-large allocation process as described and
exemplified in Section 4.2. The algorithm implemented in the method computes
the at-large allocation in the following manner:

1. Create a new map. Retrieve total votes cast for all electoral lists through-
out the nation. Store the result in the newly created map.

2. Create a new map where the keys are constituencies and the values are
maps with number of constituency representatives allocated for each elec-
toral list.

3. Create a similar map, except constituency representatives are substituted
for number of votes cast for each electoral list.

4. Create a set with party codes for local electoral lists.

5. Prepare data for calculations; for each constituency in parameter land,

(a) create a new map, populate it with party codes, and for each party
code, add the number of constituency representatives the party re-
ceived from the constituency. Add the constituency number and
newly created map to the map in Step 2;
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(b) create a new map, populate it with party codes, and for each party
code, add the number of votes cast for the party in the constituency.
Add the constituency number and newly created map to the map in
Step 3;

(c) add the party code to the set of party codes from Step 4.

6. Calculate the seat at-large allocation.

(a) Create a map of electoral lists above the electoral threshold13 with
the total numbers of votes cast for the corresponding electoral list.

(b) With the map from the previous sub-step, calculate the quotients
when considering the nation as one constituency. The number of
quotients calculated are limited to (number of electoral lists × num-
ber of representatives to allocate).

(c) Summarize the total number constituency representatives received
for each electoral list.

(d) For every constituency representative, remove the highest quotient
from the first sub-step for the electoral list which the constituency
representative was allocated.

(e) Create a new map. For the 19 highest remaining quotients, allocate
the representatives at-large to the electoral lists the quotient is for.
Store the result in the newly created map.

(f) Create a new list containing quotients for all electoral lists that re-
ceived representatives at-large during the previous step. This list of
quotients will decide the constituencies that will receive the repre-
sentatives at-large. The formula for the quotients is

Votes cast for electoral list in a constituency
(2×Constituency representatives won for electoral list)+1

Ratio of votes per representative in the constituency

(g) Allocate the representatives at-large, one for each constituency.

i. Allocate a representative to the highest quotient in (f).

ii. Allocate the next representative to the second highest quotient
in (f). If the quotient belongs to a constituency that has been
allocated a representative at-large, disregard the quotient and
move to the highest quotient thereafter. If the quotient belongs
to an electoral list that has received all their representatives at-
large, disregard the quotient and move to the highest quotient
thereafter.

After this step, all representatives at-large have been allocated; one
for each constituency, and a correct number of representatives for
each electoral list.

13The electoral threshold is the minimum percentage of total votes any electoral list must
have in order to receive representatives; 4% for parliamentary elections, 8% for constituency
elections [52, 69].
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To assist in the computation, the method utilizes several private methods. In
fact, most calculations are done inside these methods. Therefore, the correctness
of the public method beregnOgOppdater(...) is based primarily on the correct-
ness of the private methods. As such, a similar approach will be taken as for the
method in Listing 4.14 where the method will not receive any explicit specifica-
tion, but all the methods that method calls will receive explicit specifications.
The private and package-private method signatures of class Utgjevningsmandat

are seen in Listings 4.17-4.30 along with their JML specifications.

The method in Listing 4.17 has to fulfill the following requirements, listed in
order of specification:

1. Both of the supplied maps, distriktsmandaterPrPartiPrFylke and
stemmerPrPartiPrFylke, must have all counties in country land in their
respective key-set, and all keys must have a corresponding county. A
string that does not represent a county cannot be a key, and all strings
that represent a county must be a key in both maps.

2. For all parties in all counties in distriksmandatPrPartiPrFylke, there ex-
ists a corresponding party in the corresponding county in country land,
and the corresponding parties have the same number of constituency rep-
resentatives.

3. For all parties in all counties in stemmerPrPartiPrFylke, there exists a
corresponding party in the corresponding county in country land, and the
corresponding parties have the same number of votes.

4. All strings in set lokalePartikoder represent the code of a local party.
A party is local if the party’s category is 3. All items of the set must
represent a party in a constituency that is in category 3, and all strings
that represent such a party must be in the set.

5. The invariants for all the parameters are upheld. This is, of course, given
that they hold initially as specified by the precondition.

The assignable-clause specified that the method may only alter the footprint of
the parameters that are maps and sets. When implementing the JML-interfaces
or stubs for the maps and sets, the footprint will be the sequence that the
keys/values or objects are stored in. For instance, in the JML implementation
of java.util.TreeMap in Listing 4.38 on Page 100, the footprint of the class
would be the set union of the set of locations of sequences keys and values.
In other words, the assignable clause of the method specification ensures that
the method may only alter the objects stores in the parameters that are sets
and maps, and not the pointers themselves. Neither may the method alter the
parameters land or prognose, or anything else for that matter, as these are not
mentioned.� �
/*@ public normal_behaviour

2 @ requires
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@ \invariant_for(land) &&

4 @ \invariant_for(distriktsmandaterPrPartiPrFylke) &&

@ \invariant_for(stemmerPrPartiPrFylke) &&

6 @ \invariant_for(lokalePartikoder);

@

8 @ ensures

@ (\ forall Fylke f;

10 @ land.getFylker ().containsValue(f);

@ distriktsmandatPrPartiPrFylke.containsKey(f.getNr())

12 @ && stemmerPrPartiPrFylke.containsKey(f.getNr()));

@

14 @ ensures

@ (\ forall String fylkeNr;

16 @ distriktsmandatPrPartiPrFylke.containsKey(fylkeNr);

@ (\ exists Fylke f;

18 @ land.getFylker ().containsValue(f);

@ f.getNr ().equals(fylkeNr)));

20 @

@ ensures

22 @ (\ forall String fylkeNr;

@ stemmerPrPartiPrFylke.containsKey(fylkeNr);

24 @ (\ exists Fylke f;

@ land.getFylker ().containsValue(f);

26 @ f.getNr ().equals(fylkeNr)));

@

28 @ ensures

@ (\ forall String fylkeNr;

30 @ distriktsmandatPrPartiPrFylke.containsKey(fylkeNr);

@ (\ forall String partiKode;

32 @ ((Map) distriktsmandatPrPartiPrFylke.get(fylkeNr))

@ .containsKey(partiKode);

34 @ (\ exists PartiMandater pm;

@ (\ exists Fylke f;

36 @ land.getFylker ().containsValue(f) &&

@ f.getNr().equals(fylkeNr);

38 @ f.getValgdistrikt ().getPartiMandater ()

@ .contains(pm));

40 @ pm.getPartikode ().equals(partiKode) &&

@ pm.finnBesteMandatData(prognose)

42 @ .getDistriktsmandater ()

@ .getAntall ()

44 @ .equals(

@ ((Map) distriktsmandatPrPartiPrFylke

46 @ .get(fylkeNr))

@ .get(partiKode)))));

48 @

@ ensures

50 @ (\ forall String fylkeNr;

@ stemmerPrPartiPrFylke.containsKey(fylkeNr);

52 @ (\ forall String partiKode;
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@ ((Map) stemmerPrPartiPrFylke.get(fylkeNr))

54 @ .containsKey(partiKode);

@ (\ exists PartiMandater pm;

56 @ (\ exists Fylke f;

@ land.getFylker ().containsValue(f) &&

58 @ f.getNr().equals(fylkeNr);

@ f.getValgdistrikt ().getPartiMandater ()

60 @ .contains(pm));

@ pm.getPartikode ().equals(partiKode) &&

62 @ pm.finnBesteMandatData(prognose)

@ .getStemmer ()

64 @ .equals( ((Map) stemmerPrPartiPrFylke

@ .get(fylkeNr))

66 @ .get(partiKode)))));

@

68 @ ensures

@ (\ forall PartiMandater pm;

70 @ (\ exists Fylke f;

@ land.getFylker ()

72 @ .containsValue(f);

@ f.getValgdistrikt ()

74 @ .getPartiMandater ()

@ .contains(pm));

76 @ (pm.getPartikategori ().intValue () == 3) ==>

@ (lokalePartikoder.contains(pm.getPartikode ())));

78 @

@ ensures

80 @ \invariant_for(land) &&

@ \invariant_for(distriktsmandaterPrPartiPrFylke) &&

82 @ \invariant_for(stemmerPrPartiPrFylke) &&

@ \invariant_for(lokalePartikoder);

84 @

@ assignable

86 @ stemmerPrPartiPrFylke.footprint ,

@ distriktsmandaterPrPartiPrFylke.footprint ,

88 @ lokalePartikoder.footprint;

@*/

90 private static void klargjorDataTilBeregning(Land land , Map

<String , Map <String , Integer >>

distriktsmandaterPrPartiPrFylke , Map <String , Map <String ,

Integer >> stemmerPrPartiPrFylke , Set <String >

lokalePartikoder , boolean prognose);� �
Listing 4.17: Method signature and JML specification of method
klargjorDataTilBeregning in class Utgjevningsmandat.

The method beregn in Listing 4.18 below is similar to method beregnOgOppdater

in Listing 4.14 in that the result of the method is calculated based on a variety
of other methods. As such, creating a formal specification for the method would
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be a cumbersome task, that would be of little significance. Instead, the effort is
placed on creating specifications for the methods that are used throughout the
calculation. As a consequence, if the methods utilized are verified to conform
to their specifications, greater confidence can be held in the method’s behavior
to be as expected.� �
private static UtjevningsmandatResultat beregn(Map <String ,

Integer > stemmerPrParti , Set <String > lokalePartikoder ,

Map <String , Map <String , Integer >>

distriktsmandaterVunnetPrPartiPrFylke , Map <String , Map <

String , Integer >> stemmerPrPartiPrFylke , Map <String ,

Integer > distriktsmandaterTilValgPrFylke);� �
Listing 4.18: Method signature and JML specification of method
beregn in class Utgjevningsmandat.

The method in Listing 4.19 removes all entries from parameter partiStemmeMap

where the key of the entry is ”BLANKE”. The code ”BLANKE” is used to
represent protest-parties, i.e., made-up parties that electors can cast their vote
for if displeased with the other options14. As such, the result of this method
must contain all entries from the supplied map, except for the entries with key
”BLANKE”. Also, the supplied map should be copied over, but not altered.� �
/*@ public normal_behaviour

2 @ requires

@ \invariant_for(partiStemmeMap);

4 @

@ ensures

6 @ !(\ result.containsKey (" BLANKE "));

@

8 @ ensures

@ (\ forall String s;

10 @ partiStemmeMap.containsKey(s) &&

@ !(s.equals (" BLANKE "));

12 @ \result.containsKey(s) &&

@ \result.get(s).equals(partiStemmeMap.get(s)));

14 @

@ ensures

16 @ \invariant_for(partiStemmeMap);

@

18 @ assignable \nothing;

@*/

20 private static Map <String , Integer > fjernBlankePartiet(Map <

String , Integer > partiStemmeMap);� �
Listing 4.19: Method signature and JML specification of method
fjernBlankePartiet in class Utgjevningsmandat.

14Protest votes do not count towards the total number of votes cast in the election.

70



The method in Listing 4.20 removes all parties from map stemmerPrParti that
do not pass the electoral threshold, as well as all local parties. This corresponds
to Point 6-(a) on page 66. The second term in the \forall-clause starting on
line 13 ensures that only parties that are in map stemmerPrParti and that have
more than 4% of all votes tallied, are considered further in the ensures-clause.
The remaining ensures-clauses are for proving retention, proving that no new
elements have been added to the result, and proving that invariants are upheld.� �
/*@ public normal_behaviour

2 @ requires

@ \invariant_for(stemmerPrParti) &&

4 @ \invariant_for(lokalePartikoder);

@

6 @ ensures

@ (\ forall

8 @ String s;

@ \result.containsKey(s);

10 @ !( lokalePartikoder.contains(s)));

@

12 @ ensures

@ (\ forall

14 @ String s;

@ stemmerPrParti.containsKey(s) &&

16 @ ( (( Integer) stemmerPrParti.get(s)).intValue () * 100

@ / (\sum String s;

18 @ stemmerPrParti.containsKey(s);

@ (( Integer) stemmerPrParti.get(s))

20 @ .intValue ()) ) >= 4 ;

@ \result.containsKey(s) &&

22 @ \result.get(s).equals(stemmerPrParti.get(s)));

@

24 @ ensures

@ (\ forall

26 @ String s;

@ \result.containsKey(s);

28 @ stemmerPrParti.containsKey(s) &&

@ \result.get(s).equals(stemmerPrParti.get(s)));

30 @

@ ensures

32 @ \invariant_for(stemmerPrParti) &&

@ \invariant_for(lokalePartikoder);

34 @

@ assignable \nothing;

36 @*/

private static Map <String , Integer >

beregnStemmerPrPartiOverSperregrensen(Map <String ,

Integer > stemmerPrParti , Set <String > lokalePartikoder);� �
Listing 4.20: Method signature and JML specification of method
beregnStemmerPrPartiOverSperregrensen in class Utgjevningsmandat.
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As the name suggests, the method in Listing 4.21 removes a given number of
quotients from parameter landsKvotienter for the electoral list in seatsParty.
Parameter landsKvotienter was calculated by method sorterteKvotienter(...)

in Listing 4.11 to complete Point 6-(b) on page 66. The number of quotients
removed are given from the value of seatsParty, while the electoral list that
should have quotients removes are given in the key of seatsParty. This method
is used for every electoral list to complete Point 6-(d) on page 66. The JML
specification cases specifies, in order of the ensure-clauses, the following:

1. The number of quotients to be removed are given by the value of parameter
seatsParty, and that number of quotients are removed.

2. If a quotient is removed, then there are no remaining quotients for the
electoral list higher than the one removed.

3. All quotients for other electoral lists than the one specified by the key of
parameter seatsParty remain.

4. Invariants for the parameters are upheld.� �
/*@ public normal_behaviour

2 @ requires

@ \invariant_for(seatsParty) &&

4 @ \invariant_for(landsKvotienter);

@

6 @ ensures

@ \result.length == (landsKvotienter.length -

8 @ (( Integer) seatsParty.getValue ())

@ .intValue ());

10 @

@ ensures

12 @ (\ forall

@ int i;

14 @ i <= 0 && i < landsKvotienter.length;

@ !(\ exists

16 @ int u;

@ u <= 0 && u < \result.length;

18 @ \result[u] == landsKvotienter[i])

@ &&

20 @ landsKvotienter[i]

@ .getPartikode ()

22 @ .equals(seatsParty.getKey ())

@ ==>

24 @ (\ forall

@ int y;

26 @ y <= 0 && y < \result.length;

@ landsKvotienter[i]

28 @ .getKvotient ()

@ .compareTo(result[y]. getKvotient ()) == 1));
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30 @

@ ensures

32 @ (\ forall

@ int i;

34 @ i <= 0 && i < landsKvotienter.length;

@ !( landsKvotienter[i]. getPartikode ()

36 @ .equals(seatsParty.getKey ()))

@ ==>

38 @ (\ exists

@ int u;

40 @ u <= 0 && u < \result.length;

@ \result[u] == landsKvotienter[i]));

42 @

@ ensures

44 @ \invariant_for(seatsParty) &&

@ \invariant_for(landsKvotienter);

46 @

@ assignable \nothing;

48 @*/

private static PartiKvotient []

fjernHoyesteKvotienterTilsvarendeAntallDistriktsmandater

(Entry <String , Integer > seatsParty , PartiKvotient []

landsKvotienter);� �
Listing 4.21: Method signature and JML specification of method
fjernHoyesteKvotienterTilsvarendeAntallDistriktsmandater

in class Utgjevningsmandat.

The method in Listing 4.22 is similar to some of the other methods, in that the
correctness of the method is based on other methods. Specifically, the method
in Listing 4.22 bases its correctness on the methods in Listings 4.23 and 4.24.
Therefore, this thesis limits itself to creating specifications for the auxiliary
methods in those listings.� �
private static Map <String , String >

fordelUtjevningsmandatenePrFylkeOgParti(Map <String ,

Integer > antallUtjevningmandaterPrParti , List <

PartiFylkeKvotient > partiFylkeKvotienter , Map <String ,

Map <String , Integer >> mandatnrPrPartiPrFylke);� �
Listing 4.22: Method signature and JML specification of method
fordelUtjevningsmandatenePrFylkeOgParti in class Utgjevningsmandat.

The parameters to the method in Listing 4.23 are

1. a quotient that may decide a representative at-large,

2. a set of counties that have received all their representatives at-large, and
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3. a set of electoral lists that have received all the representatives at-large
they are entitled.

The method determines whether or not the county and electoral list behind
quotient partiFylkeKvotient have received all their entitled representatives at-
large. If so, returns false; else, returns true. This method is used once as part
of method fordelUtjevningsmandatenePrFylkeOgParti in Listing 4.22. As the re-
quirements for method kanFordeles is not rooted in electoral law, or elsewhere,
the specification is based on what method
fordelUtjevningsmandatenePrFylkeOgParti requires of method kanFordeles in
order to fulfill its own requirements. As mentioned previously, the requirements
of method fordelUtjevningsmandatenePrFylkeOgParti is rooted in electoral law.� �
/*@ public normal_behaviour

2 @ requires

@ \invariant_for(partiFylkeKvotient) &&

4 @ \invariant_for(fjernedeFylker) &&

@ \invariant_for(fjernedePartier);

6 @

@ ensures

8 @ (\ exists String s;

@ fjernedeFylker.contains(s);

10 @ s.equals(partiFylkeKvotient.getFylkeNr ()))

@ ==> \result == false;

12 @

@ ensures

14 @ (\ exists String s;

@ fjernedePartier.contains(s);

16 @ s.equals(partiFylkeKvotient.getPartikode ()))

@ ==> \result == false;

18 @

@ ensures

20 @ !(\ exists String s;

@ fjernedeFylker.contains(s);

22 @ s.equals(partiFylkeKvotient.getFylkeNr ())) &&

@ !(\ exists String s;

24 @ fjernedePartier.contains(s);

@ s.equals(partiFylkeKvotient.getPartikode ()))

26 @ ==> \result == true;

@

28 @ ensures

@ \invariant_for(partiFylkeKvotient) &&

30 @ \invariant_for(fjernedeFylker) &&

@ \invariant_for(fjernedePartier);

32 @

@ assignable \strictly_nothing;

34 @*/

private static boolean kanFordeles(PartiFylkeKvotient

partiFylkeKvotient , Set <String > fjernedeFylker , Set <

String > fjernedePartier);
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� �
Listing 4.23: Method signature and JML specification of method
kanFordeles in class Utgjevningsmandat.

The JML specification of the method in Listing 4.23 is divided into four ensures

-clauses:

1. If the quotient belongs to a county that has received a representative at-
large, then return false.

2. If the quotient belongs to an electoral list that has received all their entitled
representatives at-large, then return false.

3. If the quotient does not belong to a county that has received a represen-
tative at-large, and the quotient does not belong to an electoral list that
has received all their entitled representatives at-large, then return true.

4. The invariants of the parameters are upheld.

The third clause is a stronger default-clause. A weaker default would be to
state that if neither the second nor the third clause is applicable, then true is
returned. Instead, the third clause states that the result of the method must
be true if the quotient does not belong to a county or an electoral list that have
been allocated all their entitled representatives at-large.

The method oppdaterFjernedePartier in Listing 4.24 ensures that the electoral
list specified by parameter partikode is added to the set fjernedePartier if the
electoral list has received all its entitled representatives at-large. The specifica-
tion is divided into separate ensure-clauses. The clauses respectively specify

1. the parameter fjernedePartier may not be altered if the electoral list
specified by parameter partikode has not received all its entitled repre-
sentatives at-large,

2. if the electoral list has received all its representatives at-large, then it must
be added to parameter fjernedePartier; there are no requirements that
partikode cannot be in set fjernedePartier prior to execution, and

3. the invariants of the parameters are upheld.� �
/*@ public normal_behaviour

2 @ requires

@ \invariant_for(utjevningmandaterPrParti) &&

4 @ \invariant_for(partiPrFylke) &&

@ \invariant_for(fjernedePartier) &&

6 @ \invariant_for(partikode);

@

8 @ ensures
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@ !( utjevningmandaterPrParti.containsKey(partikode)) ||

10 @ ((( Integer) utjevningmandaterPrParti.get(partikode))

@ .intValue () != (\ num_of

12 @ String s;

@ partiPrFylke.containsValue(s);

14 @ s.equals(partikode)))

@ ==>

16 @ fjernedePartier == \old(fjernedePartier);

@

18 @ ensures

@ utjevningmandaterPrParti.containsKey(partikode) ||

20 @ ((( Integer) utjevningmandaterPrParti.get(partikode))

@ .intValue () == (\ num_of

22 @ String s;

@ partiPrFylke.containsValue(s);

24 @ s.equals(partikode)))

@ ==>

26 @ fjernedePartier.contains(partikode);

@

28 @ ensures

@ \invariant_for(utjevningmandaterPrParti) &&

30 @ \invariant_for(partiPrFylke) &&

@ \invariant_for(fjernedePartier) &&

32 @ \invariant_for(partikode);

@

34 @ assignable

@ fjernedePartier.footprint;

36 @*/

private static void oppdaterFjernedePartier(Map <String ,

Integer > utjevningmandaterPrParti , Map <String , String >

partiPrFylke , Set <String > fjernedePartier , String

partikode);� �
Listing 4.24: Method signature and JML specification of method
oppdaterFjernedePartier in class Utgjevningsmandat.

The method in Listing 4.25 creates a new map which it populates based on
the firstN = (antallUtjevningsmandater) quotients in parameter landsKvotienter
. Each electoral list will be awarded the same number of representatives at-large
as they have quotients in the first N elements of landsKvotienter. This corre-
sponds to Point 6-(e) on page 66.

For the specification case for method in Listing 4.25 there is only need for two
ensure-clauses; the first clause states that

1. the result contains the codes of all electoral lists that any of the first N
quotients belongs to,

2. the total number of representatives at-large calculated equals parameter
antallUtjevningsmandater, and
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3. each electoral list is awarded the same number of representatives at-
large as the number of quotients they have in the first N quotients of
landsKvotienter,

while the second clause states that the invariants of the parameters are upheld.� �
/*@ public normal_behaviour

2 @ requires

@ \invariant_for(antallUtjevningsmandater) &&

4 @ \invariant_for(landsKvotienter);

@

6 @ ensures

@ (\ forall

8 @ int i;

@ i <= 0 && i < antallUtjevningsmandater.intValue ();

10 @ \result.containsKey(landsKvotienter[i]

@ .getPartikode ())

12 @ &&

@ (\sum String s;

14 @ \result.containsKey(s);

@ (( Integer) \result.get(s)).intValue ())

16 @ ==

@ antallUtjevningsmandater.intValue ()

18 @ &&

@ (( Integer) \result.get(landsKvotienter[i]

20 @ .getPartikode ()))

@ .intValue () == (\ num_of

22 @ String s;

@ true;

24 @ landsKvotienter[i]

@ .getPartikode ().equals(s)));

26 @

@ ensures

28 @ \invariant_for(antallUtjevningsmandater) &&

@ \invariant_for(landsKvotienter);

30 @

@ assignable \nothing;

32 @*/

private static Map <String , Integer >

beregnAntallUtjevningmandaterPrParti(Integer

antallUtjevningsmandater , PartiKvotient []

landsKvotienter);� �
Listing 4.25: Method signature and JML specification of method
beregnAntallUtjevningmandaterPrParti in class Utgjevningsmandat.

Method getKvot displayed in Listing 4.26 implements the formula in Point 6-(f)
on page 66. The first ensures-clause checks the case where the ratio has not been
calculated, or if the ratio is zero. The second clause ensures that the returned
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quotient equals the formula when calculated using the class BigDecimal. The
third clause ensures that the invariants of the parameters are upheld.� �
/*@ public normal_behaviour

2 @ requires

@ \invariant_for(stemmerBakEtMandatPrFylke) &&

4 @ \invariant_for(fylkeNr) &&

@ \invariant_for(stemmer);

6 @

@ ensures

8 @ stemmerBakEtMandatPrFylke.get(fylkeNr) == null

@ ==>

10 @ \result.getKvotient ().intValue () == 0;

@

12 @ ensures

@ stemmerBakEtMandatPrFylke.get(fylkeNr) != null

14 @ ==>

@ \result.getKvotient ()

16 @ .equals(

@ createBigDecimal(stemmer)

18 @ .divide(

@ createBigDecimal(

20 @ (2* antallDistriktsmandaterVunnet)+1)

@ .divide(

22 @ (java.math.BigDecimal)

@ stemmerBakEtMandatPrFylke

24 @ .get(fylkeNr),

@ 20, 4),

26 @ 20, 4));

@

28 @ ensures

@ \invariant_for(stemmerBakEtMandatPrFylke) &&

30 @ \invariant_for(fylkeNr) &&

@ \invariant_for(stemmer);

32 @

@ assignable \nothing;

34 @ */

private static Kvotient getKvot(Map <String , BigDecimal >

stemmerBakEtMandatPrFylke , String fylkeNr , Integer

stemmer , int antallDistriktsmandaterVunnet);� �
Listing 4.26: Method signature and JML specification of method
getKvot in class Utgjevningsmandat.

Listing 4.27 features two methods. The first method is a slightly modified
version of original implementation; it has received an additional parameter,
stemmerPrFylke, and the method body has had a single line of code altered —
the original has been commented out in the listing. The second method has
identical signature of the original method, but is set to call the first method.
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Theses changes are to cope with KeY’s lacking support of creating new objects
in the specification cases.

The specification case itself states that the following holds for the method:

1. All counties represented in parameter mandaterPrFylke are also represented
in the result.

2. For all counties in parameter stemmerPrPartiPrFylke, the map stemmerPrFylke

contains, for every key (county), the total number of votes cast for all
electoral lists in that county.

3. All counties in the result have had their votes per representative ratio
calculated by method stemmerBakEtMandat(...) in Listing 4.29.� �

/*@ public normal_behaviour

2 @ requires

@ \invariant_for(mandaterPrFylke) &&

4 @ \invariant_for(stemmerPrPartiPrFylke);

@

6 @ ensures

@ (\ forall String fylkeNr;

8 @ mandaterPrFylke.containsKey(fylkeNr);

@ \result.containsKey(fylkeNr));

10 @

@ ensures

12 @ (\ forall String fylkeNr;

@ stemmerPrPartiPrFylke.containsKey(fylkeNr);

14 @ stemmerPrFylke.containsKey(fylkeNr) &&

@ (( Integer) stemmerPrFylke.get(fylkeNr)).intValue ()

16 @ ==

@ (\sum Integer stemmetall;

18 @ ((Map) stemmerPrPartiPrFylke

@ .get(fylkeNr))

20 @ .containsValue(stemmetall);

@ stemmetall.intValue ()));

22 @

@ ensures

24 @ (\ forall String fylkeNr;

@ \result.containsKey(fylkeNr);

26 @ \result

@ .get(fylkeNr)

28 @ .equals(stemmerBakEtMandat(mandaterPrFylke ,

@ stemmerPrFylke ,

30 @ fylkeNr)));

@

32 @ ensures

@ \invariant_for(mandaterPrFylke) &&

34 @ \invariant_for(stemmerPrPartiPrFylke);

@
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36 @ assignable

@ stemmerPrFylke ,

38 @ stemmerPrFylke.footprint;

@*/

40 private static Map <String , BigDecimal >

beregnStemmerBakEtMandatPrFylke(Map <String , Integer >

mandaterPrFylke , Map <String , Map <String , Integer >>

stemmerPrPartiPrFylke , /*@ nullable @*/ Map <String ,

Integer > stemmerPrFylke) {

42 // Original

// Map <String , Integer > stemmerPrFylke = new TreeMap <>();

44

// Modification

46 stemmerPrFylke = new TreeMap <>();

48 /*...*/

}

50

private static Map <String , BigDecimal >

beregnStemmerBakEtMandatPrFylke(Map <String , Integer >

mandaterPrFylke , Map <String , Map <String , Integer >>

stemmerPrPartiPrFylke) {

52 beregnStemmerBakEtMandatPrFylke(mandaterPrFylke ,

stemmerPrPartiPrFylke , null);

}� �
Listing 4.27: Method signature and JML specification of method
beregnStemmerBakEtMandatPrFylke in class Utgjevningsmandat.

The method in Listing 4.28 implements Point 6-(f) on page 66. The method
itself contains nested map-iterations, which impacts the readability of its speci-
fication. More precisely, the specification case states that for all electoral lists in
all counties, if the electoral list has been awarded representatives at-large then
the following holds:

1. Parameter kvotienterPrPartiPrFylke will, for every electoral list in each
county, be updated to have correct quotient; it is assumed that method
getKvot(...) in Listing 4.26 always returns the correct quotient. Further,
method getKvot(...) requires a map of the ratios of votes per represen-
tative in the county. This map is calculated by the assumed to be correct
method beregnStemmerBakEtMandatPrFylke in Listing 4.27. The specifica-
tion case checks if the electoral lists have received any constituency repre-
sentatives. If it has, and alters the last parameter to method getKvot(...)

thereafter. That is, the last parameter to getKvot is either 0 or the number
of constituency representatives received.

2. The list returned contains a single element — a PartiFylkeKvotient with
data that corresponds to the data in the parameters, and with the same
quotient that was retrieved by method getKvot(...) in the previous item.
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� �
/*@ public normal_behaviour

2 @ requires

@ \invariant_for(antallUtjevningsmandaterPrParti) &&

4 @ \invariant_for(distriktsmandatPrPartiPrFylke) &&

@ \invariant_for(stemmerPrPartiPrFylke) &&

6 @ \invariant_for(kvotienterPrPartiPrFylke) &&

@ invariant_for(mandaterPrFylke);

8 @

@ ensures

10 @ (\ forall String fylkeNr;

@ (\ forall Map stemmerPrParti;

12 @ stemmerPrPartiPrFylke.containsKey(fylkeNr) &&

@ stemmerPrPartiPrFylke.get(fylkeNr)

14 @ == stemmerPrParti;

@ (\ forall String partikode;

16 @ (\ forall Integer stemmer;

@ stemmerPrParti.containsKey(partikode) &&

18 @ stemmerPrParti.get(partikode) == stemmer;

@ antallUtjevningsmandaterPrParti

20 @ .containsKey(partikode)

@ ==>

22 @ ((( distriktsmandatPrPartiPrFylke

@ .get(fylkeNr) != null

24 @ &&

@ ((Map) distriktsmandatPrPartiPrFylke

26 @ .get(fylkeNr)).get(partikode) != null)

@ ==>

28 @ ( ((Map) kvotienterPrPartiPrFylke

@ .get(fylkeNr)).containsKey(partikode)

30 @ &&

@ ((Map) kvotienterPrPartiPrFylke

32 @ .get(fylkeNr))

@ .get(partikode)

34 @ ==

@ getKvot(

36 @ beregnStemmerBakEtMandatPrFylke(

@ mandaterPrFylke ,

38 @ stemmerPrPartiPrFylke),

@ fylkeNr , stemmer ,

40 @ (( Integer)

@ ((Map) distriktsmandatPrPartiPrFylke

42 @ .get(fylkeNr))

@ .get(partikode))

44 @ .intValue ())))

@ &&

46 @ ((( distriktsmandatPrPartiPrFylke

@ .get(fylkeNr) == null

48 @ ||

@ ((Map) distriktsmandatPrPartiPrFylke
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50 @ .get(fylkeNr))

@ .get(partikode) == null)

52 @ ==>

@ ( ((Map) kvotienterPrPartiPrFylke

54 @ .get(fylkeNr)).containsKey(partikode)

@ &&

56 @ ((Map) kvotienterPrPartiPrFylke

@ .get(fylkeNr))

58 @ .get(partikode)

@ ==

60 @ getKvot(

@ beregnStemmerBakEtMandatPrFylke(

62 @ mandaterPrFylke ,

@ stemmerPrPartiPrFylke),

64 @ fylkeNr , stemmer , 0)))

@ &&

66 @ \result.size() == 1

@ &&

68 @ (( PartiFylkeKvotient) \result.get(0))

@ .getStemmetall () == stemmer

70 @ &&

@ (( PartiFylkeKvotient) \result.get(0))

72 @ .getPartikode () == partikode

@ &&

74 @ (( PartiFylkeKvotient) \result.get(0))

@ .getFylkeNr () == fylkeNr

76 @ &&

@ (( PartiFylkeKvotient) \result.get(0))

78 @ .getKvotient () ==

@ ((Map) kvotienterPrPartiPrFylke

80 @ .get(fylkeNr))

@ .get(partikode))))));

82 @

@ ensures

84 @ \invariant_for(antallUtjevningsmandaterPrParti) &&

@ \invariant_for(distriktsmandatPrPartiPrFylke) &&

86 @ \invariant_for(stemmerPrPartiPrFylke) &&

@ \invariant_for(kvotienterPrPartiPrFylke) &&

88 @ invariant_for(mandaterPrFylke);

@

90 @ assignable

@ kvotienterPrPartiPrFylke.footprint;

92 @*/

private static List <PartiFylkeKvotient >

beregnPartiFylkeKvotienter(Map <String , Integer >

antallUtjevningsmandaterPrParti , Map <String , Map <String ,

Integer >> distriktsmandatPrPartiPrFylke , Map <String ,

Map <String , Integer >> stemmerPrPartiPrFylke , Map <String ,

Map <String , Kvotient >> kvotienterPrPartiPrFylke , Map <

String , Integer > mandaterPrFylke);
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� �
Listing 4.28: Method signature and JML specification of method
beregnPartiFylkeKvotienter in class Utgjevningsmandat.

Method stemmerBakEtMandat in Listing 4.29 is used exclusively as part of method
beregnStemmerBakEtMandatPrFylke in Listing 4.27 to, for every county, calculate
the votes per representative ratio for the county. This is reflected in the speci-
fication case, where the returned BigDecimal represents the ratio

Votes cast

Representatives awarded

The specification case employs a helper method createBigDecimal represent-
ing the construction of a new BigDecimal-object. Such a helper method is
necessary as KeY-JML does not support the JML-keyword new. The method
createBigDecimal is not displayed, and can be substituted for any similar rep-
resentation.� �
/*@ public normal_behaviour

2 @ requires

@ \invariant_for(mandaterPrFylke) &&

4 @ \invariant_for(stemmerPrFylke) &&

@ \invariant_for(fylkeNr) &&

6 @ stemmerPrFylke.containsKey(fylkeNr) &&

@ mandaterPrFylke.containsKey(fylkeNr);

8 @

@ ensures

10 @ \result.equals(

@ createBigDecimal (( Integer) stemmerPrFylke

12 @ .get(fylkeNr))

@ .divide(createBigDecimal(

14 @ (Integer) mandaterPrFylke

@ .get(fylkeNr)),

16 @ 20, 4));

@

18 @ ensures

@ \invariant_for(mandaterPrFylke) &&

20 @ \invariant_for(stemmerPrFylke) &&

@ \invariant_for(fylkeNr) &&

22 @ \fresh (\ result);

@

24 @ assignable \nothing;

@*/

26 private static BigDecimal stemmerBakEtMandat(Map <String ,

Integer > mandaterPrFylke , Map <String , Integer >

stemmerPrFylke , String fylkeNr);� �
Listing 4.29: Method signature and JML specification of method
stemmerBakEtMandat in class Utgjevningsmandat.
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The method beregnDistriktsmandaterPrParti displayed in Listing 4.30 above
was implemented to fulfill Point 6-(c) on page 66. The method iterates through
all counties and summarized the number of constituency representatives given to
each electoral list. This is captured by the specification case, where the resulting
map must contain keys representing electoral lists that appears in any of the
counties, and the value of the key must be the sum of all numbers of constituency
representatives for the represented electoral list throughout the counties. The
first ensure-clause restricts the keys, while the second ensure-clause restricts the
values of those keys.� �
/*@ public normal_behaviour

2 @ requires

@ \invariant_for(distriktsmandaterPrPartiPrFylke);

4 @

@ ensures

6 @ (\ forall String fylkeNr;

@ distriktsmandaterPrPartiPrFylke

8 @ .containsKey(fylkeNr);

@ (\ forall String partikode;

10 @ ((Map) distriktsmandaterPrPartiPrFylke

@ .get(fylkeNr))

12 @ .containsKey(partikode);

@ \result.containsKey(partikode)));

14 @

@ ensures

16 @ (\ forall String partikode;

@ \result.containsKey(partikode);

18 @ (( Integer) \result.get(partikode)).intValue () ==

@ (\sum String fylkeNr;

20 @ distriktsmandaterPrPartiPrFylke

@ .containsKey(fylkeNr)

22 @ &&

@ ((Map) distriktsmandaterPrPartiPrFylke

24 @ .get(fylkeNr))

@ .containsKey(partikode);

26 @ (( Integer)

@ ((Map) distriktsmandaterPrPartiPrFylke

28 @ .get(fylkeNr))

@ .get(partikode))

30 @ .intValue ()));

@

32 @ ensures

@ \invariant_for(distriktsmandaterPrPartiPrFylke) &&

34 @ \fresh (\ result);

@

36 @ assignable \nothing;

@*/

38 private static Map <String , Integer >

beregnDistriktsmandaterPrParti(Map <String , Map <String ,
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Integer >> distriktsmandaterPrPartiPrFylke);� �
Listing 4.30: Method signature and JML specification of method
beregnDistriktsmandaterPrParti in class Utgjevningsmandat.
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4.5 Formal Verification

The first step in the verification process is to prepare the source code. As
discussed in Section 3.4, there are some limitations to the KeY System that
cannot be disregarded. In order to prepare the source code, measures were
taken in the following order:

1. Partition the system based on dependency, in a bottom-up approach; the
parts of the system that contain the least internal dependencies should be
verified first.

2. Replace all non-ASCII characters (e.g. æ/Æ, ø/Ø, å/Å) from the source
code. For instance, class Omr̊ade had to be renamed to Omrade.

3. Create stubs for functionality imported from external libraries. There
exists an Eclipse-extension for creating generic stubs, which can later be
refined.

4. Remove generics, and cast the objects to type specified by the generic.

5. Re-write any unsupported Java features (e.g. Lambda-functions).

6. Create auxiliary verification artifacts, such as loop invariants and block
contracts.

Then, if the implementation conforms to the specification, KeY will be able
to automatically prove it. This is assumed that KeY has sufficient computational
resources available, and assumed that KeY does not crash. For some contracts,
the computational resources required becomes immense due to the number of
branches in the resulting proof tree that has to be closed. Further, during the
verification effort some issues with KeY regarding automatic theorem proving
was discovered; these issues are discussed in Section 4.5.5.

For the verification effort in this thesis, the proof search strategy selected in KeY
has been Java verif. std., with the exceptions that Stop at is set to Uncloseable,
and the Max. Rule Applications-slider is set to the highest setting.

KeY was run on a computer with the following hardware and specifications.

Processor Intel® Core™ i5-4210M CPU @ 2.60GHz
Memory 8GB RAM
OS Windows 10 Enterprise v1803
Graphics Card Intel® HD Graphics 4600
Storage Liteon Zeta 256GB SSD SATA3

Table 4.16: Computer Specifications
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4.5.1 Verifying the Quotients

The classes with the least dependencies in package no.valg.valgnatt.backend

are the classes that represent the quotients — Kvotient and PartiKvotient. As
such, these will be the leading verification targets.

Both classes made use of the BigDecimal-class from package java.math. Stubs
for BigDecimal was generated by the Eclipse-extension. However, as the method
BigDecimal.compareTo(...) are only ever utilized as part of specifications, it was
not automatically generated. As such, the following signature was appended at
the end of the generated BigDecimal-stub:� �
public int compareTo(java.math.BigDecimal param0);� �

The generic stubs were modified to more precisely represent BigDecimal as im-
plemented in java.math. The stubs used for the verification effort are displayed
in Listing 4.31 below.� �
package java.math;

2

public final class BigDecimal {

4

//@ public instance ghost \bigint rValue;

6

/*@ public normal_behavior

8 @ ensures rValue == n;

@ assignable rValue;

10 @*/

public BigDecimal(int n);

12

/*@ public normal_behavior

14 @ ensures \result == rValue;

@ assignable \strictly_nothing;

16 @*/

public int intValue ();

18

/*@ public normal_behavior

20 @ ensures \fresh(\ result);

@ ensures \result.rValue == rValue * bd.rValue;

22 @ ensures \invariant_for(bd);

@ assignable \nothing;

24 @*/

public BigDecimal multiply(BigDecimal bd);

26

/*@ public normal_behavior

28 @ requires bd.rValue != 0;

@ ensures \fresh(\ result);

30 @ ensures \result.rValue == rValue / bd.rValue;

@ ensures \invariant_for(bd);

32 @ assignable \nothing;
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@*/

34 public BigDecimal divide(BigDecimal bd, int precision ,

int rounding);

36 /*@ public normal_behavior

@ ensures \fresh(\ result);

38 @ ensures \result.rValue == rValue + bd.rValue;

@ ensures \invariant_for(bd);

40 @ assignable \nothing;

@*/

42 public BigDecimal add(BigDecimal bd);

44 /*@ public normal_behavior

@ ensures \fresh(\ result);

46 @ ensures \result.rValue == rValue - bd.rValue;

@ ensures \invariant_for(bd);

48 @ assignable \nothing;

@*/

50 public BigDecimal subtract(BigDecimal bd);

52 /*@ public normal_behavior

@ requires \invariant_for(bd);

54 @ ensures \invariant_for(bd);

@ ensures bd.rValue > this.rValue ==> \result == -1;

56 @ ensures bd.rValue < this.rValue ==> \result == 1;

@ ensures bd.rValue == this.rValue ==> \result == 0;

58 @ assignable \strictly_nothing;

@*/

60 public int compareTo(BigDecimal bd);

}� �
Listing 4.31: Stubs for class BigDecimal.

One important note is that the type of the ghost variable rValue is bigint. This
variable is therefore unable to properly represent decimals in the similar manner
as Java’s BigDecimal-class can. However, the specific value of the variable rValue

is not as important as how the modification of the value is specified. For
instance, consider the following methods and their specifications:� �
/*@ ensures

2 @ \result.kvotient.rValue ==

@ this.kvotient.rValue + k.rValue;

4 @ assignable \nothing;

@*/

6 public Kvotient addDirectly(Kvotient k) {

return new Kvotient(this.kvotient.add(k.getKvotient ()));

8 }

10

88



/*@ ensures

12 @ \result.kvotient.rValue ==

@ (this.kvotient.add(k.kvotient)).rValue;

14 @ assignable \nothing;

@*/

16 public Kvotient addIndirectly(Kvotient k) {

return new Kvotient(this.kvotient.add(k.getKvotient ()));

18 }� �
Both methods have the exact same implementation, both conform to their spec-
ifications, and both specify that the result has a value that is the sum of the
value of this and the parameter’s value. The dissimilarity is that the first
method specifies the behavior through direct arithmetic manipulation of the
non-ideal variable rValue, while the second method specifies the behavior in-
directly through the method add of BigDecimal. Therefore, the second method
does not need to concern itself with direct manipulation of the value of the
variable rValue, and instead rely on the library method to modify the value of
the variable correctly. It is mostly this approach that is taken for the remain-
der of this work; the variable rValue is only manipulated directly when new
BigDecimal-objects are created based on primitives instead of other BigDecimal-
or Kvotient-objects, e.g., in the case of the constructor Kvotient(int, int), it
is not possible to indirectly specify the value of the created object’s kvotient

field. Ideally, the specifications would not need to access the variable rValue

at all, but no suitable alternative, that would not immensely complicate the
verification effort, was found.

Class Kvotient required no changes to its source code.

For class PartiKvotient we propose the following changes. The original class
had implemented the compareTo-algorithm in a suspect manner. The original
code was:� �
public int compareTo(PartiKvotient partiKvotient) {

2 Kvotient diff = getKvotient ()

.subtract(partiKvotient

4 .getKvotient ());

6 return diff.getKvotient ()

.compareTo(BigDecimal.ZERO) > 0 ? -1 :

8 (diff.getKvotient ()

.compareTo(BigDecimal.ZERO) < 0 ? 1 :

10 sammenlignHvisKvotienterErLike(partiKvotient));

}� �
In other words, to test if the quotient of this is larger than the parameter, the
difference between them was compared to zero. This does provide the intended
result, but it is unnecessarily complex. The same behavior can be computed
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with a single call to BigDecimal.compareTo, while removing the reliance on class
Kvotient and the constant BigDecimal.ZERO. The proposed solution displayed in
Listing 4.32 conforms to the specification in Listing 4.8 from page 54.� �
public int compareTo(PartiKvotient partiKvotient) {

2 int comp = getKvotient ()

.getKvotient ()

4 .compareTo(partiKvotient

.getKvotient ()

6 .getKvotient ());

8 return (comp != 0) ? (-1 * comp) :

sammenlignHvisKvotienterErLike(partiKvotient);

}� �
Listing 4.32: Proposed change of the compareTo-method in class PartiKvotient.

Furthermore, PartiKvotient utilized the wrapper class java.lang.Integer which
complicated the verification effort to such a degree that all instances of Integer
were changed to the primitive int. There are notable differences between

the wrapper-class and the primitive [64]; however, for the properties proven
throughout this verification effort, these differences are insignificant.

KeY was able to create method contracts (see Section 3.2) for the imple-
mented methods based on the JML specifications; all method contracts for
classes Kvotient and PartiKvotient were automatically verified. The proofs are
found in [47].

4.5.2 Verifying the Representatives

The specifications of class Mandater, class MandatData and class PartiMandater

were straight-forward to verify; all specified methods conform to their specifi-
cation. The proofs are found in [47].

When it comes to the specifications of class Valgdistrikt presented in List-
ing 4.10, all methods but one were straight forward to verify. The method
getStemmerPrPartiTilMandatberegning was the only one that required special
attention as it contains a loop. In order to limit possible sources of errors early,
a model of the aforementioned method was created. The model would loop
over elements of an array pmArr received as a parameter, instead of looping over
the elements of the array retrieved from the public method getPartiMandater.
As such, two main changes were made for the specification in Listing 4.10: all
occurrences of getPartiMandater() was changed to pmArr, and all occurenses of
\result.size() were changed to pmArr.length.

Furthermore, the returning element of the model is an instance of class
TreeMap instead of an instance of Interface Map; the class TreeMap and the chal-
lenges it imposes is presented in Section 4.5.3.
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The model and the loop invariants utilized are found in Listing 4.33. As the
required computational resources increase drastically when adding loop invari-
ants with quantified expressions, the loop invariants and respective postcondi-
tions were initially verified separately, and only when all loop invariants were
proven valid in isolation they were put together to complete the full proof. This
was possible to do as loop invariants are closed under conjunction, as discussed
in Section 2.3.7. The loop invariants were proven in the following order:

1. The three first auxiliary loop invariants were the first to be verified. Al-
though these invariants are not needed for verifying any of the postcondi-
tions directly, they were used to prove the remaining loop invariants; the
following loop invariants cannot be proven separately from the three first
loop invariants.

2. The forth loop invariant states that if the parameter fjernBlanke is true
then the map will not contain the key defined by the constant field BLANKE.
The fifth loop invariant is a stronger version stating that if the parameter
is true, then all elements of the parameter pmArr are represented in the
map except those that have the party-code field equal to BLANKE. Both
invariants were verified separately and in parts. Verifying invariants in
parts can be useful when operating with limited computational resources,
i.e.: verify a branch, save the proof (if possible15), restart the program
to free memory, verify another branch, and repeat until all branches are
verified.

3. the sixth loop invariant says that if parameter fjernBlanke is false, then
all electoral lists, including BLANKE, will be present in the resulting map.

4. The seventh loop invariant states that if either of isStillerList(),
borBenytteListestemmer or listestemmerFinnes is false, then the regular
votes will be used. The eight loop invariant states the opposite: if all
are true, personal votes will be used. Both loop invariants where verified
separately and in parts.

5. Finally, all loop invariants and postconditions were verified combined.
It was straight-forward to prove that the loop invariants held initially,
and that they were strong enough to prove the postconditions. Further,
due to limited computational resources, it was not possible to prove that
they were all upheld by the method’s body in one execution. Therefore,
the proof is split into several executions; there are some overlap between
executions, but it was ensured that every branch of the proof tree was
verified by at least one execution. In [47], each execution is found in a
file named similar to getStemmerPrPartiTilMandatberegning-X.proof along
with a corresponding screenshot of the KeY Proof-Tree Display showing
which branches were closed during the execution. Furthermore, every ex-
ecution involved approximately 350k automatic rule applications, as any

15KeY is at times unable to save large proof trees. See Section 4.5.5 for further information.

91



more often resulted in the proof tree not being properly saved. The spec-
ification for the model is found in the file Valgdistrikt.java in [47], along
with methods proving the loop invariants in isolation.

The case where the parameter prognose is true is ignored since this work is
not concerned with verifying forecasts-only elements. Further, every if/then-
statement induces a branch that may double the size of the emerging proof
tree, meaning the resulting proof tree might become too big to verify given
limited computational resources. As a consequence, the parameter prognose was
removed from the model’s signature, and the model’s implementation represents
the source code in the case where prognose is false.� �
private TreeMap getStemmerPrPartiTilMandatberegning(boolean

borBenytteListestemmer , boolean fjernBlanke ,

PartiMandater [] pmArr) {

2

TreeMap stemmerPrParti = new TreeMap ();

4

/*@ maintaining 0 <= \index && \index <= pmArr.length;

6 @ maintaining \invariant_for(stemmerPrParti);

@ maintaining

8 @ (\ forall int i; 0 <= i && i < pmArr.length;

@ \invariant_for(pmArr[i]) &&

10 @ \invariant_for(pmArr[i]. resultatData) &&

@ pmArr[i] != null &&

12 @ pmArr[i]. partikode != null &&

@ pmArr[i]. resultatData != null);

14 @

@ maintaining fjernBlanke ==>

16 @ (\ forall int i; 0 <= i && i < \index;

@ !( stemmerPrParti.containsKey(BLANKE)));

18 @

@ maintaining fjernBlanke ==>

20 @ (\ forall int i; 0 <= i && i < \index &&

@ !( pmArr[i]. partikode.equals(BLANKE));

22 @ stemmerPrParti.containsKey(pmArr[i]. partikode));

@

24 @ maintaining !fjernBlanke ==>

@ (\ forall int i; 0 <= i && i < \index;

26 @ stemmerPrParti.containsKey(pmArr[i]. partikode));

@

28 @ maintaining !fjernBlanke ==>

@ (\ forall int i; 0 <= i && i < \index &&

30 @ !( pmArr[i]. isStillerliste () &&

@ borBenytteListestemmer &&

32 @ listestemmerFinnes(pmArr[i]. resultatData));

@ stemmerPrParti.get(pmArr[i]. partikode) ==

34 @ pmArr[i]. resultatData.getStemmer ());

@

36 @ maintaining !fjernBlanke ==>
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@ (\ forall int i; 0 <= i && i < \index &&

38 @ (pmArr[i]. isStillerliste () &&

@ borBenytteListestemmer &&

40 @ listestemmerFinnes(pmArr[i]. resultatData));

@ stemmerPrParti.get(pmArr[i]. partikode) ==

42 @ pmArr[i]. resultatData.getListestemmer ());

@

44 @ decreasing pmArr.length - \index;

@ assignable \nothing;

46 @*/

for (PartiMandater pm : pmArr) {

48

if (pm.getPartikode ().equals(BLANKE) && fjernBlanke) {

50 continue;

}

52 MandatData md = prognose ? pm.getPrognoseData () : pm.

getResultatData ();

if (pm.isStillerliste ()) {

54 stemmerPrParti.put(pm.getPartikode (),

borBenytteListestemmer && listestemmerFinnes(md) ? md.

getListestemmer () : md.getStemmer ());

}

56 stemmerPrParti.put(pm.getPartikode (), md.getStemmer ());

}

58 return stemmerPrParti;

}� �
Listing 4.33: Body and loop invariants of the proposed model of method
getStemmerPrPartiTilMandatberegning of class Valgdistrikt.

4.5.3 Verifying the Sorted Quotients

In addition to the previously created stubs for BigDecimal (Listing 4.31), stubs
had to be created for java.lang.System.arraycopy (Listing 4.34) and java.lang

.Arrays.sort (Listing 4.35). As generics are unsupported by KeY, these stubs
are modified to only accept arrays of type PartiKvotient[]. However, they can
easily be modified to accept other interfaces or classes.

The stub for arraycopy in Listing 4.34 is obviously very limited; only the cases
where srcPos is zero and src.length equals length are considered. However,
these are the only cases relevant for the verification target, and the stub is easily
extendable if required. The stub utilizes the KeY-JML predicate \seqPerm(s1

, s2) which is true if s2 is a permutation of s1. Be aware that [17] contains
contradictory statements on the meaning of this predicate: Page 152 states
that seqPerm(s1, s2) is ”true if s2 is a permutation of s1”, while Page 639
states that seqPerm(s1, s2) holds ”iff the first sequences is a permutation of the
other”. KeY considers the former to be true.� �
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package java.lang;

2

import PartiKvotient;

4

public final class System {

6

/*@ public normal_behavior

8 @ requires dest != null;

@ requires srcPos == destPos && destPos == 0;

10 @ requires 0 <= length && dest.length == length &&

@ src.length == dest.length;

12 @

@ ensures dest != null;

14 @ ensures (\ forall int i;

@ 0 <= i && i < dest.length; dest[i] != null);

16 @

@ ensures

18 @ \dl_seqPerm (\ dl_array2seq(src),

@ \dl_array2seq(dest));

20 @

@ assignable dest [*];

22 @

@ also

24 @

@ public normal_behavior

26 @ requires dest != null;

@ requires srcPos == destPos && destPos == 0;

28 @ requires 0 <= length && dest.length == length &&

@ src.length > dest.length;

30 @

@ ensures \invariant_for(src);

32 @ ensures dest != null;

@ ensures (\ forall int i;

34 @ 0 <= i && i < dest.length; dest[i] != null);

@

36 @ ensures

@ \dl_seqPerm (\ dl_array2seq(src)[0.. length],

38 @ \dl_array2seq(dest));

@

40 @ assignable dest [*];

@

42 @ also

@

44 @ public normal_behavior

@ requires dest != null;

46 @ requires srcPos == 0 && destPos > 0;

@ requires 0 <= length &&

48 @ dest.length >= length + destPos &&

@ src.length == length;

50 @

94



@ ensures dest != null;

52 @

@ ensures

54 @ \dl_seqPerm (\ dl_array2seq(src),

@ \dl_array2seq(dest)[destPos .. destPos+length ]);

56 @

@ assignable dest[destPos .. destPos+length ];

58 @*/

public static void arraycopy(/*@ non_null @*/

PartiKvotient [] src , int srcPos , /*@ nullable @*/

PartiKvotient [] dest , int destPos , int length);

60 }� �
Listing 4.34: Stub for the method java.lang.System.arraycopy.� �

package java.util;

2

import PartiKvotient;

4

public class Arrays{

6 /*@ public normal_behavior

@ requires a != null;

8 @ ensures a.length == \old(a).length;

@

10 @ ensures

@ \dl_seqPerm (\ dl_array2seq (\old(a)),

12 @ \dl_array2seq(a));

@

14 @ ensures

@ (\ forall int i; 0 <= i && i < a.length -1;

16 @ a[i]. compareTo(a[i+1]) <= 0);

@

18 @ ensures \invariant_for(a);

@ assignable a[*];

20 @*/

public static void sort(PartiKvotient [] a);

22 }� �
Listing 4.35: Stubs for the method java.lang.Arrays.sort.

The process of creating a stub for representing the data structure java.util.

Map posed some challenges. One idea can be to have a simple list modelled by
the built-in theory sequent (see Chapter 5.2 of [17]) that could hold instances
of a class representing Map.Entry. However, there seems to exists no way of
representing that a new object is created in JML without utilizing the keyword
new16, meaning that creating and appending new entries to the list is impossi-
ble in KeY-JML. A workaround could be to create the objects in Java instead

16The JML keyword new is unsupported by KeY.
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of JML, but this would require quite drastic changes to the source-code; more
specifically, all occurrences of Map.put(key, value) would have to be replaced
by Map.put(new Entry(key, value)). Such a change could have unforeseen con-
sequences for the encapsulating system.

A second attempt to create a KeY-JML map-structure can be to try to uti-
lize KeY’s theory of map (See Appendix B.1.9 of [17]). However, this theory
lacks the functionality that was provided by sequents, e.g., seqLen or values,
and functionality expected from java.util.Map, e.g., keySet or entrySet. Fur-
thermore, several of the taclets in KeY that are applicable to the map theory
are restricted to interactive theorem proving only, meaning that specifications
using the theory could not be automatically verified.

We have settle for a third attempt, where we implemented a map-structure
based on two distinct sequents — one for keys, and one for values. The idea is
that Map.get(key) would be represented by values[\dl_seqIndexOf(keys, key)].
In other words, a key/value-pair would be represented by keys[i]/values[i] for
any given index in range. The implementation is presented in Listing 4.38, and
will be utilized where maps are necessary. The implementation was motivated by
examples in [17] and the KeY-JML map in [33]. Further, the implementation
is tested by the methods in Listing 4.39 which both conform to their given
specification. However, KeY had trouble proving some trivial properties when
quantifying over the sequents. This issue is demonstrated in Section 4.5.5. Still,
the data structure proved sufficient for the verification effort at hand.

Before moving on, it should be noted that there exists a framework known
as MultiJava [71] that has formalized several Java libraries in JML. However,
the framework seems to be developed specifically for unit testing with JML and
JUnit [49], and lacks specifications of important classes s.a. BigDecimal. The
framework is not well suited for deductive verification using KeY because the
MultiJava framework is about as nested as the Java framework; one could just as
well import the Java code from libraries directly. The MultiJava documentation
should still be considered a useful resource as it does display the full capabilities
of JML, and can be a source of inspiration when looking to implement JML data
structures.

Due to the problems with implementation of a KeY-JML data structure rep-
resenting a map, a model (see Listing 4.37) of the original method in Listing 4.11
was created. The original algorithm for creating quotients would calculate a
divisor, iterate over all entries in a supplied map of type <String, Integer>,
create PartiKvotient-objects, and call setStemmetall(value) on the newly cre-
ated objects. The objects themselves were created by invoking the constructor
of PartiKvotient with parameters

• the key of the entry,

• a fresh object created by invoking the constructor of Kvotient with the
key, then calling divide on the fresh object with the divisor, and

• the divisor.
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The proposed model accepts a divisor and two distinct arrays — one for keys
and one for values. The idea is the same as before; the model assumes that for
every index i, key keys[i] is the key for value values[i]. The model returns a
new array with the same number of elements as keys. The original algorithm can
potentially compute quotients for several divisors, but the model only accepts
a single divisor in order to limit complexity. A prior model was created that
would create quotients for n number of divisors. However, this model became to
complex to be able to verify with the limited resources available, or it ran into
an issue where certain trivial conditions were unverifiable by KeY. This issue
is also demonstrated in Section 4.5.5. Instead, the proposed solution involves
calling the proposed model n times with n different divisor and appending the
resulting arrays.

The original implementation of the method was� �
int antallKvotienter =

2 antallMandater * partiStemmeMap.size();

PartiKvotient [] kvotienter =

4 new PartiKvotient[antallKvotienter ];

int index = 0;

6

for (int n = 0; n < antallMandater; n++) {

8 BigDecimal delingstall = getSainteLagueDelingstall(n);

10 for (Map.Entry <String , Integer > partiStemme :

partiStemmeMap.entrySet ()) {

12 PartiKvotient partiKvotient =

new PartiKvotient(partiStemme.getKey (), new

14 Kvotient(partiStemme.getValue ())

.divide(delingstall), delingstall);

16

partiKvotient.setStemmetall(partiStemme.getValue ());

18 kvotienter[index ++] = partiKvotient;

}

20 }� �
while the proposed model is� �
/*

2 * Calculate String [] keys and int[] values from

* partiStemmeMap , for instance by calling

4 * keySet ().toArray () and .values.toArray () and ensuring

* that the order is correct.

6 */

int antallKvotienter = antallMandater * keys.length;

8 PartiKvotient [] kvotienter = new PartiKvotient[

antallKvotienter ];

10 for (int n = 0; n < iterations; n++){

BigDecimal delingstall = getSainteLagueDelingstall(n);
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12 PartiKvotient [] pkArr =

createQuotients(keys , values , delingstall);

14 System.arraycopy(pkArr , 0, res ,

keys.length*n, pkArr.length);

16 }� �
Listing 4.36: Proposed alternative implementation of sorterteKvotienter that
is more suitable for verification.

The method createQuotients can be seen in Listing 4.37 below. The method is
proven to conform to its specification; the proof is found alongside other proofs
in the repository EVA-KeY [47].� �
/*@ public normal_behavior

2 @ requires \invariant_for(delingstall) &&

@ delingstall.rValue > 0;

4 @ requires keys.length == values.length;

@ requires keys.length > 0;

6 @ requires

@ (\ forall int i;

8 @ 0 <= i && i < values.length;

@ values[i] >= 0);

10 @

@ ensures \result.length == keys.length;

12 @

@ ensures

14 @ (\ forall int i;

@ 0 <= i && i < \result.length;

16 @ \invariant_for(result[i]) &&

@ \result[i]. getPartikode () == keys[i] &&

18 @ \result[i]. getDelingstall () == delingstall &&

@ \result[i]. getStemmetall () == values[i] &&

20 @ \result[i]. kvotient.kvotient.rValue ==

@ values[i] / delingstall.rValue);

22 @

@ assignable \nothing;

24 @*/

public PartiKvotient [] createQuotients(String [] keys , int[]

values , BigDecimal delingstall){

26 PartiKvotient [] res = new PartiKvotient[keys.length ];

int index = 0;

28 /*@ maintaining \index >= 0 && \index <= keys.length;

@ maintaining \invariant_for(delingstall);

30 @ maintaining delingstall.rValue > 0;

@ maintaining

32 @ (\ forall int i; 0 <= i && i < \index;

@ res[i] != null && \invariant_for(res[i]) &&

34 @ res[i]. getPartikode () == keys[i] &&

@ res[i]. getDelingstall () == delingstall &&

36 @ res[i]. getStemmetall () == values[i] &&
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@ res[i]. kvotient.kvotient.rValue

38 @ == values[i] / delingstall.rValue);

@ maintaining index == \index;

40 @ decreasing keys.length - \index;

@ assignable res [*];

42 @*/

for (String s : keys){

44 PartiKvotient pk = new PartiKvotient(s, new Kvotient(

values[index ]).divide(delingstall), delingstall);

pk.setStemmetall(values[index ]);

46 res[index ++] = pk;

}

48 return res;

}� �
Listing 4.37: Proposed model for creating new quotients.

The rest of the original method involves calling the library method Arrays.

sort, and limiting the number of returned quotients by calling the method
begrensAntallKvotienter from Listing 4.13. The former is a stub assumed to be
correct, and the latter was proven to conform to its specification by KeY.

A full proof of the method listed in Listing 4.11 was not possible due to issues
of complexity arising from the number of quantified loop invariants, pre- and
postconditions, and issues surrounding implementing KeY-JML data structures.
However, by going over the specified postconditions, one can discuss if they
intuitively hold or not:

• The first postcondition is decided by method begrensAntallKvotienter which,
as mentioned, conforms to its specification. Therefore, there is some certainty
that the postcondition holds.

• The second postcondition is decided by the double loop at the beginning of
the method’s body, which was proposed changed to the model in Listing 4.36.
The proposed model has the required properties and loop invariants proven
for the inner loop, but it stands to prove that the properties hold for the outer
loop. There was an issue with proving that the invariants for the map held
after creating a new BigDecimal-object.

• The third postcondition is decided by method Arrays.sort, which is a stub
that is assumed to be correct. If the actual library method Arrays.sort con-
forms to the specification in Listing 4.35, the postcondition holds.

• The forth postcondition is trivial as the parameter is not altered throughout
the method.

There are still scenarios where all postconditions may hold without the expected
behavior being displayed by the system, and the postconditons have not been
explicitly proven. Still, when combining the proven properties and loop invari-
ants with less formal methods such as different testing techniques [27] and static
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analysis [41], a higher degree of trust can be placed in the method. Also, during
testing, debugging [9] becomes easier as every proven condition can eliminate
one or more possible sources of error. In conclusion, we believe that given enough
resources and a satisfactory KeY-JML theory of maps, all the postconditions of
the method could be automatically proven valid.

4.5.4 Verifying the Constituency Representatives

The previous section explained the process of creating a map structure using
KeY-JML for verification purposes. This section presents the result of that
process, and the verification of the method mandatFordeling from Listing 4.15.
The proposed map structure is presented in Listing 4.38, and the tests used
to verify that the map structure exhibits the expected behavior is presented in
Listing 4.39. The section concludes by presenting the verification effort and its
results.� �
package java.util;

2

public final class TreeMap{

4

//@ spec_public instance ghost \seq keys;

6 //@ spec_public instance ghost \seq values;

8 //@ instance invariant \dl_seqLen(keys) == \dl_seqLen(

values);

10 /*@ public normal_behavior

@ ensures keys == \seq_empty;

12 @ ensures values == \seq_empty;

@ assignable this.keys , this.values;

14 @*/

public TreeMap ();

16

/*@ public normal_behavior

18 @ // Case where key is not in map

@ requires !( containsKey(key));

20 @ ensures

@ keys ==

22 @ \seq_concat (\ seq_singleton(key), \old(keys));

@ ensures

24 @ values ==

@ \seq_concat (\ seq_singleton(value), \old(values));

26 @ assignable this.keys , this.values;

@

28 @ also

@

30 @ public normal_behavior

@ requires containsKey(key);

32 @
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@ // Case where key is in the first element of the map

34 @ ensures

@ \dl_seqIndexOf(keys , key) == 0 ==>

36 @ values ==

@ \seq_concat (\ seq_singleton(value),

38 @ \old(values [1.. keys.length ]));

@

40 @ // Case where key is in the last element of the map

@ ensures

42 @ \dl_seqIndexOf(keys , key) > 0 &&

@ \dl_seqIndexOf(keys , key) == keys.length - 1 ==>

44 @ values ==

@ \seq_concat (\old(values [0.. keys.length -1]),

46 @ \seq_singleton(value));

@

48 @ // Case where key is anywhere else in the map

@ ensures

50 @ 0 < \dl_seqIndexOf(keys , key) &&

@ \dl_seqIndexOf(keys , key) < keys.length -1 ==>

52 @ values ==

@ \seq_concat

54 @ (\old(values [0..\ dl_seqIndexOf(keys , key)]),

@ \seq_concat (\ seq_singleton(value), \old(

56 @ values [\ dl_seqIndexOf(keys , key)+1.. keys.length ])));

@

58 @ ensures \invariant_for(key);

@ assignable this.values;

60 @*/

public void put(String key , int value);

62

/*@ public normal_behavior

64 @ ensures

@ \result ==

66 @ (\ exists int i; 0 <= i && i < keys.length;

@ (( String) keys[i]).equals(key));

68 @

@ assignable \strictly_nothing;

70 @*/

public boolean containsKey(String key);

72

/*@ public normal_behavior

74 @ ensures

@ \result ==

76 @ (\ exists int i; 0 <= i && i < values.length;

@ ((int) values[i]) == value);

78 @

@ assignable \strictly_nothing;

80 @*/

public boolean containsValue(int value);

82
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84 /*@ public normal_behavior

@ requires containsKey(key);

86 @ ensures

@ \result == (int) values [\ dl_seqIndexOf(keys , key)];

88 @ ensures \invariant_for(key);

@ assignable \strictly_nothing;

90 @*/

public int get(String key);

92

94 /*@ public normal_behavior

@ ensures \result == (String []) keys;

96 @ assignable \strictly_nothing;

@*/

98 public String [] keySet ();

100 /*@ public normal_behavior

@ ensures \result == (int[]) values;

102 @ assignable \strictly_nothing;

@*/

104 public int[] values ();

106 /*@ public normal_behavior

@ ensures \result == keys.length;

108 @ assignable \strictly_nothing;

@*/

110 public int size();

112 }� �
Listing 4.38: JML specification of a map structure.� �

/*@ public normal_behavior

2 @ requires !(key.equals(key2)) &&

@ !(key.equals(key3)) &&

4 @ !(key2.equals(key3));

@ ensures \result.get(key) != value;

6 @ ensures \result.get(key) == value +2;

@ ensures \result.get(key2) != value +1;

8 @ ensures \result.get(key2) == value +4;

@ ensures \result.get(key3) != value +3;

10 @ ensures \result.get(key3) == value +5;

@ assignable \nothing;

12 @*/

public TreeMap validMapTestOne(String key , String key2 ,

String key3 , int value){

14 TreeMap map = new TreeMap ();

map.put(key , value);

16 map.put(key2 , value +1);
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map.put(key , map.get(key)+2);

18 map.put(key3 , value +3);

map.put(key2 , map.get(key2)+3);

20 map.put(key3 , map.get(key3)+2);

return map;

22 }

24 /*@ public normal_behavior

@ requires !(key.equals(key2)) &&

26 @ !(key.equals(key3)) &&

@ !(key2.equals(key3));

28 @ ensures \result.get(key) != value;

@ ensures \result.get(key) == value +2;

30 @ ensures \result.get(key2) != value +1;

@ ensures \result.get(key2) == value +4;

32 @ ensures \result.get(key3) != value +3;

@ ensures \result.get(key3) == value +5;

34 @ assignable \nothing;

@*/

36 public TreeMap validMapTestTwo(String key , String key2 ,

String key3 , int value){

TreeMap map = new TreeMap ();

38 if (map.containsKey(key)){

map.put(key , map.get(key)+2);

40 } else {

map.put(key , value);

42 }

if (map.containsKey(key2)){

44 map.put(key2 , map.get(key2)+3);

} else {

46 map.put(key2 , value +1);

}

48 if (map.containsKey(key3)){

map.put(key3 , map.get(key3)+2);

50 } else {

map.put(key3 , value +3);

52 }

return map;

54 }� �
Listing 4.39: Tester methods for method in Listing 4.38.

The implementation of the method in Listing 4.15 is presented in Listing 4.40
together with annotated loop invariants. The key change that has been made
to the original source code is that the method now returns an explicit TreeMap-
object; the original implementation returned an implicit TreeMap-object.� �
private static TreeMap validInitalAndUseCase(PartiKvotient

[] kvotienter) {

2 TreeMap partiMandatMap = new TreeMap ();
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4 /*@ maintaining

@ 0 <= \index && \index <= kvotienter.length;

6 @

@ maintaining

8 @ \invariant_for(partiMandatMap);

@

10 @ maintaining

@ (\ forall int i; 0 <= i && i < kvotienter.length;

12 @ \invariant_for(kvotienter[i]) &&

@ \invariant_for(kvotienter[i]. partikode) &&

14 @ kvotienter[i] != null &&

@ kvotienter[i]. partikode != null);

16 @

@ maintaining

18 @ (\ forall int i;

@ 0 <= i && i < \index;

20 @ partiMandatMap.keySet ()[i] != null);

@

22 @ maintaining

@ (\ forall int i;

24 @ 0 <= i && i < partiMandatMap.size() &&

@ partiMandatMap.keySet ()[i] != null;

26 @ !(\ exists int j;

@ i < j && j < partiMandatMap.size();

28 @ partiMandatMap.keySet ()[i]

@ .equals(partiMandatMap.keySet ()[j])));

30 @

@ maintaining

32 @ (\ forall int i;

@ 0 <= i && i < partiMandatMap.size() &&

34 @ partiMandatMap.keySet ()[i] != null;

@ partiMandatMap.get(partiMandatMap.keySet ()[i]) ==

36 @ (\ num_of int j;

@ 0 <= j && j < \index &&

38 @ kvotienter[j]. getPartikode ()

@ .equals(partiMandatMap.keySet ()[i])));

40 @

@ decreasing kvotienter.length - \index;

42 @

@ assignable partiMandatMap.keys ,

44 @ partiMandatMap.values;

@*/

46 for (PartiKvotient kvotient : kvotienter) {

String partikode = kvotient.getPartikode ();

48 if (partiMandatMap.containsKey(partikode)) {

int antallMandaterForPartiet = partiMandatMap.get(

partikode);

50 partiMandatMap.put(partikode ,

antallMandaterForPartiet + 1);
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} else {

52 partiMandatMap.put(partikode , 1);

}

54 }

return partiMandatMap;

56 }� �
Listing 4.40: Proposed loop invariants for verifying conformance with the
specification in Listing 4.15.

The loop invariants defined by the maintaining clauses are as follows:

1. The index of the enhanced-for loop, represented by \index, ranges from 0

to the length of the array kvotienter that the loop iterates over.

2. The invariant for the map is upheld by the loop.

3. Loop invariant representing the precondition that the elements of the sup-
plied array is non-null, their invariants hold, and they all have non-null
partikode fields.

4. The map’s key-set does not contain null.

5. Invariant for the first postcondition: no key exists twice in the map’s
key-set.

6. Invariant for the second postcondition: all keys have values that represent
how many times the key has occurred in the elements of kvotienter.

The first four loop invariants are proven to hold initially and are proven to
be upheld by the loop’s body. However, they are not strong enough to prove the
method’s postconditons, and merely exists to assist the two final loop invariants.

The fifth and sixth loop invariants were proven to hold initially, upheld by the
method’s body, and were strong enough to prove the equivalent postconditions.
The loop invariants were separately verified, and not verified together due to lack
of resources. However, as previously discussed, the set of valid loop invariants
is closed under conjunction. Further, the fifth loop invariant had to be verified
in parts similarly to the loop invariants of class Valgdistrikt in Section 4.5.2.
The annotated source-code and proofs are found in [47].

4.5.5 Bugs and Glitches Encountered

Verification efforts rarely conclude without encountering problems. In this sec-
tion, problems that did not exclusively stem from the verification target nor the
specification will be presented. This is done in hopes of achieving three goals:

1. There are occurrences where there are no flaws in the source code of a method
nor its specification, and the method conforms to the specification. In such
a case, assuming only supported features are utilized, KeY should be able
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to prove so. Unfortunately, this is not guaranteed to happen as KeY is not
without its flaws. Therefore, it is important that the bugs and glitches that
KeY possess are well-documented. If they are, then verifiers are given a new
reference to study when no more errors are discovered in the source code or
specification. Otherwise, the verifier might loose well-placed faith in his/her
verification-effort.

2. The KeY Project is a long-term research project that is continuously evolving;
any errors that remain unnoticed might linger long into later versions. As
almost any textbook on Software Engineering will state, the longer a bug
remains unnoticed, the more resources are required to fix it. Therefore, this
section will hopefully bring some of the bugs to light so that they may be
fixed.

3. Some of the issues only occurred when utilizing specific types of elements. For
instance, throughout the verification effort in this thesis, some Java theories
and types were preferred to their corresponding KeY-JML variants, mainly
due to how some properties were more difficult (or even impossible) to prove
for the KeY-JML variants. One prominent example of this will be displayed
later on, where trivial conditions could not be proven for the KeY-JML theory
sequents. By making others aware of the (dis)advantages of using specific
theories, less time will be wasted on re-implementing stubs and re-writing
specifications that could have utilized a ”safer” type.

Starting of, anyone attempting tool-assisted deductive verification has to be
aware of contradictions. When using KeY, the verifier should be aware of
branches that seem to be quickly closed by applying the rule close false. However
not necessarily an error on KeY’s part, if the stubs are wrong they can introduce
a contradiction which may cause KeY to reduce an expression in the antecedent
to false. Consequently, using this stub, all properties can be ”proved” as the
branch can be closed with the close false-rule.

One of the more mysterious issues was encountered while experimenting with
the tool, and occurred when changing object types. For instance, the verification
target was a method similar to� �

public A[] copy(int max , A[] src);� �
which returns an array where the elements 0 to max are copied from the respective
indexes in src. The objects in src are not accessed in any way, their pointers are
simply copied over from src to the result. Some properties were specified, and
KeY was able to load the contracts for copy(int,A[]) and prove the contracts
valid. Then, for experimental purposes, all occurrences of type A were changed
to type B. The method signature was then similar to� �

public B[] copy(int max , B[] src);� �
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and no other alterations were made. Now, KeY would attempt to load the
contracts for copy(int,B[]), but would not be able to do so. Instead, it simply
did not load anything, nor did it provide any indication that an error had
occurred. After a couple more attempts at loading the contracts, KeY would
give the option to once again load the contracts for copy(int,A[]) instead. When
loading the contracts, KeY was no longer able to verify these contracts. The
issue was resolved by creating a new file with a different filename, and thereby
a different classname, and loading that file. KeY was then able to load the
contracts for copy(int,B[]), and prove them all valid.

Furthermore, when incrementally adding conditions to the method copy(int

max, B[] src), KeY would suddenly not be able to verify the same properties
twice in a row. Instead, it would be unable to close a branch that was not present
in the previous valid proof tree, and the resulting proof tree would look like in
Figure 4.2. This bug would seemingly disappear as unexpectedly as it appeared
— at times KeY had to be restarted, files reloaded, specifications reverted, or
contents moved into new files; at other times, only one of those measures had
to be taken.

Figure 4.2: Uncloseable proof tree deduced from valid contract.
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Occasionally, after running the automatic execution, KeY will hang and be
unable to display the proof tree. Furthermore, saving the current proof tree
or loading other proofs becomes impossible, and the only way to get KeY to
respond is to restart the prover. This occurs at specific steps in the process,
and usually occurs only on specific uncloseable branches. Unfortunately, as the
proof tree could not be displayed, it can be challenging to find which branch
KeY hangs on. To find the branch, decrease the number of automatic rule
applications, and run the automatic execution in stages. For instance, consider
an example where KeY hangs on step 4688 in the automatic execution. It could
then be beneficial to set the maximum number of automatic rule applications to
500, and run 10 iterations of automatic execution. Then, when KeY hangs on
the 10th iteration, it becomes clear that the issue lies somewhere between step
4500 and 5000. Keep narrowing down until the error-inducing branch becomes
apparent, and study the program flow that induces that branch. Then, alter
the source code or specification to eliminate the occurrence of that branch. For
larger proof trees, where KeY hangs on some step larger than 50k, it can be
beneficial to run the automatic execution up until a known safe point. Then, the
proof tree may be saved such that the safe point functions as a checkpoint. When
narrowing down the possibilities, the checkpoint may be loaded so that time is
not wasted on re-running the first 50k steps every iteration. However, keep in
mind that if KeY hangs, it might not be able to save the proof tree17, and if the
proof tree is saved, then KeY might throw an OutOfMemoryError when loading
it18. During the verification effort in this thesis, this bug was encountered mainly
when failing to satisfy preconditions of methods called inside the verification
target. Some of the methods called had no explicit preconditions, i.e., their
only requires-clause was requires true. However, all methods have the implicit
precondition requires \invariant_for(this), and, if any parameters are passed
to the method, there is an implicit non_null requirement for the parameters.
Further, constructors have the implicit precondition \static_invariant_for(C

), where C is the constructor’s class, instead of \invariant_for(this)19. By
ensuring that the invariants of objects hold inside the body of the verification
target, most cases of this bug can be eliminated.

Specifying loop invariants may at times not be as straight-forward as one
might hope; an issue regarding verification of trivial properties was discovered
during the verification effort in Section 4.5.3. More specifically, when attempt
to create a model that could calculate a given number of divisors, KeY was
unable to prove certain trivial conditions. Consider the following method:� �
/*@ public normal_behavior

2 @ requires keys.length == values.length;

@ requires keys.length > 0;

17When KeY starts hanging, it will not be able to save the proof tree. The resulting proof
saved will only contain the proof meta-data, and not the proof tree.

18At times this error occurred even when KeY had utilized less than the memory allocated
by the Java Virtual Machine

19The expression \invariant_for(this) should never be used as a precondition for con-
structors, as this does not exists prior to invoking the constructor.
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4 @ requires iterations > 0;

@ ensures \result.length == keys.length * iterations;

6 @ assignable \nothing;

@*/

8 public /*@ nullable @*/ PartiKvotient []

invalidTrivialCondition(String [] keys , int[] values , int

iterations){

10 int antallKvots = keys.length * iterations;

PartiKvotient [] res = new PartiKvotient[antallKvots ];

12 int index = 0;

/*@ maintaining 0 <= n && n <= iterations;

14 @ maintaining res.length >= keys.length;

@ decreasing iterations - n;

16 @ assignable \nothing;

@*/

18 for (int n = 0; n < iterations; n++){

/*...*/

20 }

return res;

22 }� �
As iterations is bounded to be greater than 0, then res.length should, in the
minimal case of iterations = 1, be at least equal to keys.length. However,
KeY is unable to verify that this is true and fails to close the Invariant Initially
Valid branch.

The former issue is not the only instance where KeY struggles when proving
valid loop invariants. For instance, consider the following formula which states
that for all integers between 0 and some limit, the predicate p(i) is true.

(∀ int i ; 0 <= i ∧ i < limit ; p(i))

Now, if that formula is valid, then the following should also be valid

(∀ int j ; i < j ∧ j < limit ; p(j))

as the possible values of j is a subset of the possible values of i. Unfortu-
nately, when similar formulas are applied as loop invariants, such as the latter
in Listing 4.41, KeY is unable to automatically verify that the loop invariant
holds.� �
// This is valid

2

/*@ public normal_behavior

4 @ requires \invariant_for(kvotienter);

@ requires

6 @ (\ forall int i;

@ 0 <= i && i < kvotienter.length;

8 @ \invariant_for(kvotienter[i]) &&

@ kvotienter[i] != null &&
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10 @ kvotienter[i]. getPartikode () != null);

@

12 @ requires kvotienter != null;

@ requires kvotienter.length > 0;

14 @

@ ensures \result != null;

16 @

@ assignable \nothing;

18 @*/

private static TreeMap validTest(PartiKvotient [] kvotienter

) {

20 TreeMap partiMandatMap = new TreeMap ();

22 /*@ maintaining 0 <= \index &&

@ \index <= kvotienter.length;

24 @ maintaining partiMandatMap.size() <=

@ kvotienter.length;

26 @ maintaining partiMandatMap.keys.length <= \index;

@ maintaining \invariant_for(partiMandatMap);

28 @ maintaining

@ (\ forall int i; 0 <= i && i < \index;

30 @ kvotienter[i] != null &&

@ kvotienter[i]. getPartikode () != null &&

32 @ \invariant_for(kvotienter[i]));

@

34 @ maintaining

@ (\ forall int i;

36 @ 0 <= i && i < partiMandatMap.keys.length;

@ partiMandatMap.keys[i] != null );

38 @

@ decreasing kvotienter.length - \index;

40 @ assignable partiMandatMap.keys ,

@ partiMandatMap.values;

42 @*/

for (PartiKvotient kvotient : kvotienter) {

44 String partikode = kvotient.getPartikode ();

if (partiMandatMap.containsKey(partikode)) {

46 int antallMandaterForPartiet = partiMandatMap.get(

partikode);

partiMandatMap.put(partikode ,

antallMandaterForPartiet + 1);

48 } else {

partiMandatMap.put(partikode , 1);

50 }

}

52 return partiMandatMap;

}

54

// But this is not

56
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/*@ public normal_behavior

58 @ requires \invariant_for(kvotienter);

@ requires

60 @ (\ forall int i;

@ 0 <= i && i < kvotienter.length;

62 @ \invariant_for(kvotienter[i]) &&

@ kvotienter[i] != null &&

64 @ kvotienter[i]. getPartikode () != null);

@

66 @ requires kvotienter != null;

@ requires kvotienter.length > 0;

68 @

@ ensures \result != null;

70 @

@ assignable \nothing;

72 @*/

private static TreeMap invalidTest(PartiKvotient []

kvotienter) {

74 TreeMap partiMandatMap = new TreeMap ();

76 /*@ maintaining 0 <= \index &&

@ \index <= kvotienter.length;

78 @ maintaining partiMandatMap.size() <=

@ kvotienter.length;

80 @ maintaining partiMandatMap.keys.length <= \index;

@ maintaining \invariant_for(partiMandatMap);

82 @ maintaining

@ (\ forall int i; 0 <= i && i < \index;

84 @ kvotienter[i] != null &&

@ kvotienter[i]. getPartikode () != null &&

86 @ \invariant_for(kvotienter[i]));

@

88 @ maintaining

@ (\ forall int i;

90 @ 0 <= i && i < partiMandatMap.keys.length -1;

@ partiMandatMap.keys[i] != null &&

92 @ (\ forall int j;

@ i < j && j < partiMandatMap.keys.length;

94 @ partiMandatMap.keys[j] != null));

@

96 @ decreasing kvotienter.length - \index;

@ assignable partiMandatMap.keys ,

98 @ partiMandatMap.values;

@*/

100 for (PartiKvotient kvotient : kvotienter) {

String partikode = kvotient.getPartikode ();

102 if (partiMandatMap.containsKey(partikode)) {

int antallMandaterForPartiet = partiMandatMap.get(

partikode);

104 partiMandatMap.put(partikode ,
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antallMandaterForPartiet + 1);

} else {

106 partiMandatMap.put(partikode , 1);

}

108 }

return partiMandatMap;

110 }� �
Listing 4.41: Methods with respectivly valid and invalid loop invariants.

On a similar note, KeY seems to struggle proving simple properties of se-
quents. For instance, given the basic list structure motivated by Chapter 9 of
[17]:� �
//@ private instance ghost \seq theList;

2

/*@ public normal_behavior

4 @ ensures theList == \seq_empty;

@ assignable this.theList;

6 @*/

public List();

8

/*@ public normal_behavior

10 @ ensures

@ theList == \seq_concat (\ seq_singleton(elem),

12 @ \old(theList));

@ assignable this.theList;

14 @*/

public void add(String elem);

16

/* The following is more or less a KeY -JML alias for

18 * the postcondition of contains(String elem)

* and may be used instead.

20 *

* ensures \result ==

22 * (\ dl_seqIndexOf(theList , elem) !=

* \dl_seqGetOutside ());

24 */

26 /*@ public normal_behavior

@ ensures

28 @ \result == (\ exists int i;

@ 0 <= i && i < theList.length;

30 @ (( String) theList[i]).equals(elem));

@

32 @ assignable \strictly_nothing;

@*/

34 public boolean contains(String elem);� �
When utilizing this structure, the following is automatically proven by KeY...
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� �
/*@ public normal_behavior

2 @ ensures \result.contains(param0);

@ assignable \nothing;

4 @*/

public List validListSpec(String param0){

6 List list = new List();

list.add(param0);

8 return list;

}� �
...while the following is not:� �

1 /*@ public normal_behavior

@ requires !( param0.equals(param1));

3 @ ensures \result.contains(param0) ||

@ \result.contains(param1);

5 @ assignable \nothing;

@*/

7 public List invalidListSpec(String param0 , String param1){

List list = new List();

9 list.add(param0);

list.add(param1);

11 return list;

}� �
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5 Conclusion

5.1 Summary and Results

This thesis has presented and demonstrated the capabilities of deductive verifi-
cation using the specification language JML and the proof assistant of the KeY
System, by describing the process behind a verification project from start to
finish.

Chapter 2 introduced the most basic elements of JML, and more elements
and special constructs of the language were presented and discussed throughout
Chapter 4. Further, Chapter 2 introduced the logical language JDL that is used
to formalize the proof obligations KeY creates based on the JML specifications.
Chapter 3 presented the core ideas and theory behind KeY. Specifically, it was
presented how KeY transforms JML specifications into proof obligations, and a
tutorial was given on the formalism of taclets that KeY uses to apply calculus
rules to proof obligations.

The entirety of Chapter 4 was dedicated to verifying properties of EVA
utilizing the specification language JML and the proof assistant of the KeY
System. Specifications were created for methods partaking in EVA’s seat al-
location calculation, and the most central methods were verified to conform
to their specifications. All the created specifications and all generated proofs
are found in the Git repository EVA-KeY [47]. The classes from Section 4.4.1
and Section 4.4.2 were verified with little source-code modifications necessary;
the only method that required an alternative implementation was the method
compareTo in class PartiKvotient. The specifications presented in Section 4.4.3
were only partially verified due to problems arising from creating objects from
stubs inside nested loops, and due to issues presented in Section 4.5.5. However,
an alternate implementation with some verified properties was presented, and a
less formal argument was made for the correctness of the method; it is believed
that it would be possible, given sufficient time and resources, to prove that all
methods in Section 4.4.3 conform to their specifications. Finally, the method
for allocating seats in Section 4.4.4 was proven to conform to its specification.
Furthermore, several reusable artifacts were created throughout the verification
effort in Section 4.5, such as stubs for common Java libraries and loop invari-
ants for several scenarios. Section 4.5.5 concludes the chapter by presenting any
unresolved issues encountered during the verification effort.

5.2 Discussion

The previous section summarizes the results of the verification effort, which
was the primary focus of this thesis. Although not every method was proven to
conform to its specification, the overall verification effort contributes to reaching
the goals presented in Chapter 1. Specifically,

• the important modules of EVA have been introduces and formally speci-
fied,
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• some of the important modules have had some of their properties mathe-
matically proven, which increases the confidence held in the system,

• the verification process and specification has been transparent such that
the methodologies can be implemented into other projects,

• the most fundamental and useful tools, such as ghost fields, invariants,
behavioral contracts, have been thoroughly introduced and explained,

• stubs for common data structures and library methods, such as arraycopy

and sort, have been generated and presented, and

• the overall verification effort can be used as a motivating example for using
the KeY proof assistant in large software systems, such as EVA, that are
also used in practice; in our case EVA is the system used to handle the
national elections in Norway.

As mentioned in Section 4.3.2, this work was limited to verifying normal be-
havioral contracts, and disregarded exceptional behavior and dependency con-
tracts. The stubs presented could have been extended with exceptional behavior
contracts, as some of the Java library methods they represent throws excep-
tions for certain parameters. However, the methods are largely shielded from
NullPointerExceptions as parameters have an implicit non-null precondition by
default, and preconditions are in place to shield the methods from other common
runtime exceptions such as IndexOutOfBoundsException and ArithmeticException

. Dependency contracts, however, should have received more focus as they are
an important aspect of verification. Unfortunately, for generating and refining
dependency contracts one needs to allocate considerable amounts of time and
effort as dependency contracts are exceptionally more time consuming to ver-
ify than behavioral contracts [17, 34]. The reader is encouraged to study the
verification effort in [34] for an example on how to specify and verify properties
regarding dependency.

The thesis has also not focused on using the KeY System, and, as the tool is
so central to the work presented, a section in Chapter 3 could have been devoted
to a tutorial explaining setup, proof-tree traversal, and taclet application. The
reader is referred to the KeY Book for a guide with figures and examples [17].

In terms of human resources used for this verification effort we evaluate
that somewhere between 6-9 person-months were used. As such, this thesis can
also show how far a verification effort can reach with these human resources,
assuming that the person doing the verification has intermediate knowledge
of Java and formal logic, but not assuming that this person has any former
experience with formal verification, JML, KeY, or the verification target.

5.3 Outlook and Future Work

The proposed future work is divided into two categories: improving and contin-
uing the work presented in this thesis, and improving auxiliary tools for easing
the verification effort.
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As for continuing and improving this work, the suggested areas to focus on
would be:

• verifying Java libraries; a program is not completely verified until all its
code is verified,

• improving the verification effort in Section 4.4.3,

• verifying the specifications and methods in Section 4.4.5, and

• improving the stubs created throughout this work and verify that they
conform to the Java libraries they represent.

We believe that the verification efforts resulting from either of these points can
be concluded with help of the tools and strategies presented in this thesis.

When it comes to easing the verification effort, the core focus should be
on making it easier to verify Java code. JML does well in encapsulating the
features of Java, but JML could be extended to reason directly about common
Java libraries. In addition, KeY-JML specific keywords such as seqIndexOf,
seqPerm and array2seq should be implemented into standard JML.

The KeY System is a part of the continuously evolving KeY Project. In order
to make the system easier to use, future versions of KeY could include theories
and taclets for common data structures, or where they exists, should be made
more prone to automated application. Also, support for the JML keywords new

and real would extend the set of possible verification targets.
Any of these points would require more focused expertise and knowledge than

has been presented in this thesis. For instance, the area of verifying floating-
point arithmetic spans entire chapter of textbooks [59].
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