
Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Automated Refactoring of Rust Programs
Algorithms and Implementations of Extract Method and Box

Field

Per Ove Ringdal

University of Oslo

June 29, 2020

Per Ove Ringdal Automated Refactoring of Rust Programs 1/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

1. Introduction

2. Refactoring: Extract Method
Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

3. Refactoring: Box Field

4. Experiments & Demo

5. Summary

Per Ove Ringdal Automated Refactoring of Rust Programs 2/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Refactoring

What is a refactoring?
a change made to the internal structure of software to make it
easier to understand and cheaper to modify without changing its
observable behavior. [1]

Microrefactoring
. . . this approach allows a very fine-grained decomposition of the
overall refactoring into a series of micro-refactorings that can be
understood, implemented, and tested independently. [2]

Per Ove Ringdal Automated Refactoring of Rust Programs 3/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Refactoring

What is a refactoring?
a change made to the internal structure of software to make it
easier to understand and cheaper to modify without changing its
observable behavior. [1]

Microrefactoring
. . . this approach allows a very fine-grained decomposition of the
overall refactoring into a series of micro-refactorings that can be
understood, implemented, and tested independently. [2]

Per Ove Ringdal Automated Refactoring of Rust Programs 3/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Rust

Announced in 2010
Ownership model
Hygienic macros

Ownership
memory is managed through a system of ownership with a set of
rules that the compiler checks at compile time [3]

Per Ove Ringdal Automated Refactoring of Rust Programs 4/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Rust

Announced in 2010
Ownership model
Hygienic macros

Ownership
memory is managed through a system of ownership with a set of
rules that the compiler checks at compile time [3]

Per Ove Ringdal Automated Refactoring of Rust Programs 4/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Refactoring Rust

Rust is a new language, little support in IDEs
Data flow is changed with IntelliJs Extract Method in the
example below

Before refactoring After refactoring

Per Ove Ringdal Automated Refactoring of Rust Programs 5/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Extract Method Composition

Extract Method for Java by
Schäfer.

1. Extract Block

2. Introduce Anonymous
Method

3. Close Over Variables

4. Eliminate Reference
Parameters

5. Lift Anonymous Method

Extract Method for Rust
1. Pull Up Item Declarations

2. Extract Block
3. Introduce Anonymous

Closure
4. Close Over Variables
5. Convert Anonymous

Closure to Function

6. Lift Item Declarations

7. Lift Function Declaration

Per Ove Ringdal Automated Refactoring of Rust Programs 6/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Extract Method Composition

Extract Method for Java by
Schäfer.

1. Extract Block

2. Introduce Anonymous
Method

3. Close Over Variables

4. Eliminate Reference
Parameters

5. Lift Anonymous Method

Extract Method for Rust
1. Pull Up Item Declarations
2. Extract Block
3. Introduce Anonymous

Closure
4. Close Over Variables
5. Convert Anonymous

Closure to Function
6. Lift Item Declarations
7. Lift Function Declaration

Per Ove Ringdal Automated Refactoring of Rust Programs 6/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Extract Method Composition

Extract Method for Java by
Schäfer.

1. Extract Block

2. Introduce Anonymous
Method

3. Close Over Variables

4. Eliminate Reference
Parameters

5. Lift Anonymous Method

Extract Method for Rust
1. Pull Up Item Declarations
2. Extract Block
3. Introduce Anonymous

Closure
4. Close Over Variables
5. Convert Anonymous

Closure to Function
6. Lift Item Declarations
7. Lift Function Declaration

Per Ove Ringdal Automated Refactoring of Rust Programs 6/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Extract Block

Definition
Converts one or more Statements into a Block

Challenges
Name Binding

ItemDeclarations should not occur inside (precond.)
let-declarations added before the new Block

Ownership
Passing out value preserves the lifetime

Per Ove Ringdal Automated Refactoring of Rust Programs 7/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Extract Block

Definition
Converts one or more Statements into a Block

Challenges
Name Binding

ItemDeclarations should not occur inside (precond.)
let-declarations added before the new Block

Ownership
Passing out value preserves the lifetime

Per Ove Ringdal Automated Refactoring of Rust Programs 7/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Extract Block - Example

Before refactoring
1 fn bar() {
2 let (mut i,j) = (0,1);
3 i += 1;
4 let sum = i + j;
5 print!("{}", sum);
6 }

Per Ove Ringdal Automated Refactoring of Rust Programs 8/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Extract Block - Example

Before refactoring
1 fn bar() {
2 let (mut i,j) = (0,1);
3 i += 1;
4 let sum = i + j;
5 print!("{}", sum);
6 }

After refactoring
1 fn bar() {
2 let (mut i,j) = (0,1);
3 let sum =
4 {
5 i += 1;
6 let sum = i + j;
7 sum
8 };
9 print!("{}", sum);

10 }

Per Ove Ringdal Automated Refactoring of Rust Programs 8/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Introduce Anonymous Closure

Definition
Converts a Block to a ClosureExpression

Per Ove Ringdal Automated Refactoring of Rust Programs 9/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Introduce Anonymous Closure - Example

Before refactoring
1 fn bar() {
2 let (mut i,j) = (0,1);
3 let sum =
4 {
5 i += 1;
6 let sum = i + j;
7 sum
8 };
9 print!("{}", sum);

10 }

Per Ove Ringdal Automated Refactoring of Rust Programs 10/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Introduce Anonymous Closure - Example

Before refactoring
1 fn bar() {
2 let (mut i,j) = (0,1);
3 let sum =
4 {
5 i += 1;
6 let sum = i + j;
7 sum
8 };
9 print!("{}", sum);

10 }

After refactoring
1 fn bar() {
2 let (mut i,j) = (0,1);
3 let sum =
4 (|| {
5 i += 1;
6 let sum = i + j;
7 sum
8 })();
9 print!("{}", sum);

10 }

Per Ove Ringdal Automated Refactoring of Rust Programs 10/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Introduce Anonymous Closure - Challenges

Definition
Converts a Block to a ClosureExpression

Challenges
Control Flow

Cannot break or continue outside a closure.
A return-expression stops executing the current
closure/function.

Solution
Replace break, continue and return-expressions with
return-expressions and handle them outside the closure.

Per Ove Ringdal Automated Refactoring of Rust Programs 11/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Introduce Anonymous Closure - Challenges

Definition
Converts a Block to a ClosureExpression

Challenges
Control Flow

Cannot break or continue outside a closure.
A return-expression stops executing the current
closure/function.

Solution
Replace break, continue and return-expressions with
return-expressions and handle them outside the closure.

Per Ove Ringdal Automated Refactoring of Rust Programs 11/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Introduce Anonymous Closure - Challenges

Definition
Converts a Block to a ClosureExpression

Challenges
Control Flow

Cannot break or continue outside a closure.
A return-expression stops executing the current
closure/function.

Solution
Replace break, continue and return-expressions with
return-expressions and handle them outside the closure.

Per Ove Ringdal Automated Refactoring of Rust Programs 11/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Introduce Anonymous Closure - Control Flow Example

Before refactoring
1 fn foo() -> i32 {
2 let sum =
3 {
4 let sum = i + j;
5 if sum < 0 {
6 return 0;
7 }
8 sum
9 };

10 return sum;
11 }
12 }

Per Ove Ringdal Automated Refactoring of Rust Programs 12/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Introduce Anonymous Closure - Control Flow Example

Before refactoring
1 fn foo() -> i32 {
2 let sum =
3 {
4 let sum = i + j;
5 if sum < 0 {
6 return 0;
7 }
8 sum
9 };

10 return sum;
11 }
12 }

After refactoring
1 fn foo() -> i32 {
2 let sum =
3 match (|| {
4 let sum = i + j;
5 if sum < 0 {
6 return Rv::Return(0);
7 }
8 Rv::Expr(sum)
9 })() {

10 Rv::Expr(val) => val,
11 Rv::Return(val) => return val
12 };
13 return sum;
14 }

Per Ove Ringdal Automated Refactoring of Rust Programs 12/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Close Over Variables

Definition
Eliminates references to local variables declared outside a closure

Challenges
Data Flow

Pass by reference / value
Inference

TupleIndexingExpression and FieldAccess require type
annotation when the variable is placed in the parameter list
Lifetimes aren’t inferred when types are annotated in the
parameter list

Per Ove Ringdal Automated Refactoring of Rust Programs 13/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Close Over Variables

Definition
Eliminates references to local variables declared outside a closure

Challenges
Data Flow

Pass by reference / value
Inference

TupleIndexingExpression and FieldAccess require type
annotation when the variable is placed in the parameter list
Lifetimes aren’t inferred when types are annotated in the
parameter list

Per Ove Ringdal Automated Refactoring of Rust Programs 13/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Close Over Variables - Example

Before refactoring
1 fn bar() {
2 let (mut i,j) = (0,1);
3 let sum =
4 (|| {
5 i += 1;
6 let sum = i + j;
7 sum
8 })();
9 print!("{}", sum);

10 }

Per Ove Ringdal Automated Refactoring of Rust Programs 14/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Close Over Variables - Example

Before refactoring
1 fn bar() {
2 let (mut i,j) = (0,1);
3 let sum =
4 (|| {
5 i += 1;
6 let sum = i + j;
7 sum
8 })();
9 print!("{}", sum);

10 }

After refactoring
1 fn bar() {
2 let (mut i,j) = (0,1);
3 let sum =
4 (|i: &mut i32, j: i32| {
5 (*i) += 1;
6 let sum = (*i) + j;
7 sum
8 })(&mut i, j);
9 print!("{}", sum);

10 }

Per Ove Ringdal Automated Refactoring of Rust Programs 14/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Convert Anonymous Closure to Function

Definition
Converts a ClosureExpression to a FunctionDeclaration

Per Ove Ringdal Automated Refactoring of Rust Programs 15/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Convert Anonymous Closure to Function - Example

Before refactoring
1 fn bar() {
2 let (mut i,j) = (0,1);
3 let sum =
4 (|i: &mut i32, j: i32| {
5 (*i) += 1;
6 let sum = (*i) + j;
7 sum
8 })(&mut i, j);
9 print!("{}", sum);

10 }

Per Ove Ringdal Automated Refactoring of Rust Programs 16/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Convert Anonymous Closure to Function - Example

Before refactoring
1 fn bar() {
2 let (mut i,j) = (0,1);
3 let sum =
4 (|i: &mut i32, j: i32| {
5 (*i) += 1;
6 let sum = (*i) + j;
7 sum
8 })(&mut i, j);
9 print!("{}", sum);

10 }

After refactoring
1 fn bar() {
2 let (mut i,j) = (0,1);
3 let sum =
4 ({
5 fn foo(i: &mut i32,
6 j: i32) -> i32 {
7 (*i) += 1;
8 let sum = (*i) + j;
9 sum

10 }
11 foo
12 })(&mut i, j);
13 print!("{}", sum);
14 }

Per Ove Ringdal Automated Refactoring of Rust Programs 16/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Lift Function Declaration

Definition
Moves a local FunctionDeclaration upwards to the closest impl-
or mod-Block

Challenges
Item Bindings

Item bindings in the FunctionDeclaration should be
resolved to the target mod-Block or higher.
The new FunctionDeclaration should have a fresh identifier

Per Ove Ringdal Automated Refactoring of Rust Programs 17/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Lift Function Declaration

Definition
Moves a local FunctionDeclaration upwards to the closest impl-
or mod-Block

Challenges
Item Bindings

Item bindings in the FunctionDeclaration should be
resolved to the target mod-Block or higher.
The new FunctionDeclaration should have a fresh identifier

Per Ove Ringdal Automated Refactoring of Rust Programs 17/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Lift Function Declaration - Example

Before refactoring
1 impl Baz {
2 fn bar() {
3 let (mut i,j) = (0,1);
4 let sum =
5 ({
6 fn foo(i: &mut i32,
7 j: i32) -> i32 {
8 (*i) += 1;
9 let sum = (*i) + j;

10 sum
11 }
12 foo
13 })(&mut i, j);
14 print!("{}", sum);
15 }
16 } Per Ove Ringdal Automated Refactoring of Rust Programs 18/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Lift Function Declaration - Example

Before refactoring
1 impl Baz {
2 fn bar() {
3 let (mut i,j) = (0,1);
4 let sum =
5 ({
6 fn foo(i: &mut i32,
7 j: i32) -> i32 {
8 (*i) += 1;
9 let sum = (*i) + j;

10 sum
11 }
12 foo
13 })(&mut i, j);
14 print!("{}", sum);
15 }
16 }

After refactoring
1 impl Baz {
2 fn bar() {
3 let (mut i,j) = (0,1);
4 let sum =
5 ({ Self::foo
6 })(&mut i, j);
7 print!("{}", sum);
8 }
9 fn foo(i: &mut i32,

10 j: i32) -> i32 {
11 (*i) += 1;
12 let sum = (*i) + j;
13 sum
14 }
15 }

Per Ove Ringdal Automated Refactoring of Rust Programs 18/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Extract Method - Summary

Before refactoring
1 impl Baz {
2 fn bar() {
3 let (mut i,j) = (0,1);
4 i += 1;
5 let sum = i + j;
6 print!("{}", sum);
7 }
8 }

Per Ove Ringdal Automated Refactoring of Rust Programs 19/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Extract Block
Introduce Anonymous Closure
Close Over Variables
Convert Anonymous Closure to Function
Lift Function Declaration

Extract Method - Summary

Before refactoring
1 impl Baz {
2 fn bar() {
3 let (mut i,j) = (0,1);
4 i += 1;
5 let sum = i + j;
6 print!("{}", sum);
7 }
8 }

After refactoring
1 impl Baz {
2 fn bar() {
3 let (mut i,j) = (0,1);
4 let sum =
5 ({Self::foo})(&mut i, j);
6 print!("{}", sum);
7 }
8 fn foo(i: &mut i32,
9 j: i32) -> i32 {

10 (*i) += 1;
11 let sum = (*i) + j;
12 sum
13 }
14 }

Per Ove Ringdal Automated Refactoring of Rust Programs 19/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Box Field

Based on a commit at the Rust Language repository

Similar to Extract Class with one field and an existing target
class
It does not improve structure, but it may improve performance
Reduced instruction count by 2.6% 1

1https://github.com/rust-lang/rust/pull/64374
Per Ove Ringdal Automated Refactoring of Rust Programs 20/32

https://github.com/rust-lang/rust/pull/64374

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Box Field

Based on a commit at the Rust Language repository
Similar to Extract Class with one field and an existing target
class

It does not improve structure, but it may improve performance
Reduced instruction count by 2.6% 1

1https://github.com/rust-lang/rust/pull/64374
Per Ove Ringdal Automated Refactoring of Rust Programs 20/32

https://github.com/rust-lang/rust/pull/64374

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Box Field

Based on a commit at the Rust Language repository
Similar to Extract Class with one field and an existing target
class
It does not improve structure, but it may improve performance

Reduced instruction count by 2.6% 1

1https://github.com/rust-lang/rust/pull/64374
Per Ove Ringdal Automated Refactoring of Rust Programs 20/32

https://github.com/rust-lang/rust/pull/64374

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Box Field

Based on a commit at the Rust Language repository
Similar to Extract Class with one field and an existing target
class
It does not improve structure, but it may improve performance
Reduced instruction count by 2.6% 1

1https://github.com/rust-lang/rust/pull/64374
Per Ove Ringdal Automated Refactoring of Rust Programs 20/32

https://github.com/rust-lang/rust/pull/64374

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Box Field

Definition
Adds the Box type to a field of a struct

Preconditions
The struct should not have the Copy trait
The field should not already be of type Box

Challenges
Update any occurrences of the field to reflect the new layout

StructExpressions
FieldAccessExpressions
StructPatterns

Builtin #[derive] macros are frequently used

Per Ove Ringdal Automated Refactoring of Rust Programs 21/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Box Field

Definition
Adds the Box type to a field of a struct

Preconditions
The struct should not have the Copy trait
The field should not already be of type Box

Challenges
Update any occurrences of the field to reflect the new layout

StructExpressions
FieldAccessExpressions
StructPatterns

Builtin #[derive] macros are frequently used

Per Ove Ringdal Automated Refactoring of Rust Programs 21/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Box Field

Definition
Adds the Box type to a field of a struct

Preconditions
The struct should not have the Copy trait
The field should not already be of type Box

Challenges
Update any occurrences of the field to reflect the new layout

StructExpressions
FieldAccessExpressions
StructPatterns

Builtin #[derive] macros are frequently used

Per Ove Ringdal Automated Refactoring of Rust Programs 21/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Box Field - StructExpr and FieldAccess Example

Before refactoring
1 struct Foo {
2 field: i32
3 }
4 fn bar () {
5 let mut foo = Foo {
6 field: 0
7 };
8 foo.field += 1;
9 }

Per Ove Ringdal Automated Refactoring of Rust Programs 22/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Box Field - StructExpr and FieldAccess Example

Before refactoring
1 struct Foo {
2 field: i32
3 }
4 fn bar () {
5 let mut foo = Foo {
6 field: 0
7 };
8 foo.field += 1;
9 }

After refactoring
1 struct Foo {
2 field: Box<i32>
3 }
4 fn bar () {
5 let mut foo = Foo {
6 field: Box::new(0)
7 };
8 (*foo.field) += 1;
9 }

Per Ove Ringdal Automated Refactoring of Rust Programs 22/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Box Field - Patterns Example

Before refactoring
1 struct Foo {
2 field: i32
3 }
4 fn bar () {
5 match foo {
6 Foo { field } => {
7 print!("{}",
8 field);
9 }

10 }
11 }

Per Ove Ringdal Automated Refactoring of Rust Programs 23/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Box Field - Patterns Example

Before refactoring
1 struct Foo {
2 field: i32
3 }
4 fn bar () {
5 match foo {
6 Foo { field } => {
7 print!("{}",
8 field);
9 }

10 }
11 }

After refactoring
1 struct Foo {
2 field: Box<i32>
3 }
4 fn bar () {
5 match foo {
6 Foo { field } => {
7 print!("{}",
8 (*field));
9 }

10 }
11 }

Per Ove Ringdal Automated Refactoring of Rust Programs 23/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Experiments
Demo

Experiments

Implemented refactorings using the rustc library, and a CLI to
invoke them
Developed a tool that finds all candidates, attempts
refactorings one by one, and runs unit tests after.
Ran the experiments on two projects (RustyXML2 and
tokenizers3)
Candidates for Extract Method are all subsequences of Blocks.

2https://github.com/Florob/RustyXML
3https://github.com/huggingface/tokenizers

Per Ove Ringdal Automated Refactoring of Rust Programs 24/32

https://github.com/Florob/RustyXML
https://github.com/huggingface/tokenizers

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Experiments
Demo

Extract Method - Result

Summary of Extract method RustyXML tokenizers
Candidates found: 933 283
Successful refactorings: 738 223
Internal errors: 11 0
Introduced Rustc error: 184 60
Introduced unit test failure: 0 0
Total duration: 38m 43s 63m 21s
Time spent compiling and refactoring: 32m 43s 36m 27s

Per Ove Ringdal Automated Refactoring of Rust Programs 25/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Experiments
Demo

Extract Method - Result Grouped by Number of Lines

1-10 21-30 41-50 61-70 81-90

0

200

400

600

800
824

226

82 45 9 12 1 11 6

690

164

51 25 7 6 1 11 6

Candidates
Successful

Per Ove Ringdal Automated Refactoring of Rust Programs 26/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Experiments
Demo

Box Field - Result

The candidates for Box Field are all fields of struct declared in the
package.

Summary of Box field RustyXML tokenizers
Candidates found: 34 132
Successful refactorings: 30 105
Internal errors: 1 23
Introduced Rustc error: 3 4
Introduced unit test failure: 0 0
Total duration: 33s 17m 11s
Time spent compiling and refactoring: 16s 3m 18s

Per Ove Ringdal Automated Refactoring of Rust Programs 27/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Experiments
Demo

Demo

A client and server was developed that communicated over the
Language Server Protocol.
The client was for Visual Studio Code.

Per Ove Ringdal Automated Refactoring of Rust Programs 28/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Experiments
Demo

Demo

Per Ove Ringdal Automated Refactoring of Rust Programs 29/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Summary

Adapted the microrefactorings in Extract Method, with new
and modified steps for Rust
Developed Box Field, a specialization of Extract Class
Experiments

Extract Method: 79% success
Box Field: 81% success

Client and server communicating over LSP

Per Ove Ringdal Automated Refactoring of Rust Programs 30/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

Future Work

More precise
Error Propagation “?”
Generic Parameters
Liftetime Parameters

Improved candidate search - Should improve quality
Automated refactoring
Concurrent programs (Futures and async/await)

Per Ove Ringdal Automated Refactoring of Rust Programs 31/32

Introduction
Refactoring: Extract Method

Refactoring: Box Field
Experiments & Demo

Summary

References

Martin Fowler. Refactoring: Improving the Design of Existing
Code. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1999.

Max Schäfer et al. “Stepping Stones over the Refactoring
Rubicon”. In: Proceedings of the 23rd European Conference on
ECOOP 2009 — Object-Oriented Programming. Genoa. Italy:
Springer-Verlag, 2009, pp. 369–393.

The Rust Project Developers. What is ownership? URL:
https://doc.rust-lang.org/book/ch04-01-what-is-
ownership.html.

Per Ove Ringdal Automated Refactoring of Rust Programs 32/32

https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html

	Introduction
	Refactoring: Extract Method
	Extract Block
	Introduce Anonymous Closure
	Close Over Variables
	Convert Anonymous Closure to Function
	Lift Function Declaration

	Refactoring: Box Field
	Experiments & Demo
	Experiments
	Demo

	Summary

