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Abstract

During the past years, software has become a large part of our personal
and professional lives. We rely increasingly more on different kinds of
applications to support our daily routines. Although failures in most of
the applications we use do not have severe consequences, errors in some of
the systems may cause damage to the environment, people, or economics
and, in the worst case, human loss. For such safety-critical systems, it is
crucial to ensure that they function correctly to reduce the risk of error
occurrence. Various safety standards specify requirements for the software
development process that should lead to more reliable software. However,
meeting these requirements often increases the costs and development
time. At the same time, many businesses require the software development
and delivery process to be as fast and cheap as possible in order to survive
in competitive environments.

This thesis addresses the trade-off between faster software develop-
ment and the quality of the final product and discusses how modelling
and verification can contribute to satisfying safety standard requirements.
We use Tellu Diabetes App, a mobile application that forms a part of a
safety-critical Internet of Things system, as a use case. The modelling and
verification process is carried out with the help of DCR Graphs, a form
of mathematical notation that has previously been used for modelling and
reasoning about business processes. In the thesis, we construct and verify
models of the process of making changes to the application code and the
Tellu Diabetes App. For each of the models, we discuss which parts of
the safety standard requirements it contributes to cover and to which ex-
tent. In addition, we reflect on the suitability of DCR Graphs as a tool for
modelling an Internet of Things system since they have not been applied
for this purpose previously. We also address the limitations of the DCR
Tool, the graphical web-based interface used for constructing DCR Graphs
encountered during the thesis work.
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1 Introduction

1.1 Motivation

During the past years, software has become a large part of our personal
and professional lives. We rely increasingly more on different kinds of
applications to support our daily routines. Therefore, it is essential that
errors in the software occur as rarely as possible. Although failures in most
of the applications we use do not have severe consequences, errors in some
of the systems may cause damage to the environment, people, or economics
and, in the worst case, human loss. Such systems are called safety-critical.

History shows examples of software bugs resulting in car accidents,
plane crashes and cancer patients receiving wrong doses of radiation [30,
45, 50]. To avoid history repeating, it is crucial to gain trust in the systems
developed by allocating time and resources on verification during the
development process. Various safety standards specifying requirements for
the software development process have also been introduced to reduce the
risk of error occurrence. Meeting these requirements often implies higher
costs and longer development time.

At the same time, many businesses that involve software as part of their
processes operate in competitive and rapidly changing environments. In
order to beat competitors, stay relevant for the current market and make a
profit, the software development and delivery process must be as fast and
cheap as possible.

The trade-off between faster software development and the quality of
the final product has served as the main motivation for this thesis. By
studying a safety-critical application Tellu Diabetes App as a use case,
the thesis addresses whether modelling and verification as part of the
development process can contribute to achieving both.

Tellu Diabetes App is a mobile application developed by Tellu that
forms a part of an Internet of Things (IoT) system for monitoring diabetes
patients. The application is intended to be used by elderly people with
diabetes type 2 to report measurements like blood glucose levels and blood
pressure. The measurements can then be accessed by medical personal
who can react to abnormal values and provide help if needed. The system
is considered safety-critical because any application or data transmission
failure could cause serious health problems for the patients.

1



1.2 Thesis objectives

One of the main challenges faced by Tellu in satisfying safety standard
requirements is related to code modification control. For each change made
to the application code, it must be proved that the application still behaves
correctly. In other words, it must be shown that modifications in the code
are introduced in a way that maintains or improves the quality of the
application. Therefore, the first objective of this thesis is to study whether
it can be done by modelling and verifying the process of introducing new
changes in the code. The tool chosen for this purpose is Dynamic Condition
Response Graphs (DCR Graphs), a form of mathematical notation that
has previously been used for modelling and reasoning about business
processes.

Furthermore, to achieve a higher safety level, safety standards pose
requirements for the use of formal methods as a part of the software
development process, i.e. specifying and verifying the system developed in
notation with formally described semantics. Dynamic Condition Response
Graphs (DCR Graphs) represent such a notation but have not been used
for modelling computer systems previously. Therefore, it would be
interesting to investigate whether Dynamic Condition Response Graphs
(DCR Graphs) are suitable for modelling an Internet of Things system as
a part of the software development process. It is the second objective of the
thesis.

Based on the two previous paragraphs, the goals of this work can be
summarised as follows:

1. Study how modelling and verification of the process of introducing
new changes to the code can contribute to satisfying safety standard
requirements.

2. Investigate how well Dynamic Condition Response Graphs (DCR
Graphs) can be applied to modelling a real Internet of Things (IoT)
system as a part of the software development process.

1.3 Thesis outline

Chapter 2 provides theoretical background on topics discussed in the
thesis. First, the concept and challenges related to the Internet of Things
systems are presented in Section 2.1, proving the need for additional
methods to reduce the risk of using them. Section 2.2 explains how safety
standards address the risks of failures that can occur in a system. Then,
Section 2.3 describes activities in the software development process and the
requirements posed by safety standards and presents the trade-off between
developing software fast and developing secure software. Sections 2.4
and 2.5 look deeper into software modelling activity and narrow it down
to formal modelling. Finally, Section 2.6. gives an overview of some
approaches that have been used to model Internet of Things systems
previously.
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Chapter 3 provides the theory required to construct and reason about
DCR Graphs. First, a brief history of DCR Graphs and an overview
of the DCR method is given in Sections 3.1 and 3.2. Then, Sections
3.3 and 3.4 describe the basic structure and graphical notation of DCR
Graphs as well as their formal semantics. Finally, Section 3.5 explains the
methodology used in this thesis to construct DCR Graphs and verify the
desired properties.

Chapters 4, 5 and 6 constitute the central part of the thesis. The use
case is described in detail in Chapter 4, while Chapters 5 and 6 present the
work done on modelling and verification of the process of introducing new
changes to the code and mobile application, respectively.

Chapter 7 summarises and discusses the findings made during the
thesis work and presents some thoughts on future work.
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2 Background

2.1 Internet of Things (IoT)

"The most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguishable
from it" [53] was one of the central statements in Mark Weiser’s paper
published in Scientific American magazine in 1991. He proposed a
notion of ubiquitous computing, describing a world where computers exist
everywhere, becoming a significant yet invisible part of people’s lives.

Indeed, there has been considerable growth in the number and
diversity of physical devices over the past years, including not only
personal computers and mobile phones but also various types of sensors.
Connecting such physical objects into a network and enabling them to
interact and cooperate with each other in the same manner as people do
over the Internet would provide an enormous amount of opportunities for
improving the quality of our lives. This idea was in 1999 coined as the
Internet of Things by Kevin Ashton [34].

Since then, the term Internet of Things (IoT) has been widely used in
industry. Applications of IoT span a wide range of domains like homes,
cities, retails, logistics and healthcare, helping people perform their daily
tasks. IoT devices can be found everywhere from our homes and cities to
inside our bodies.

Along with the opportunities, the goal of IoT "to enable things to be
connected anytime, anyplace, with anything and anyone ideally using
any path/network and any service" [20] also brings many research and
development challenges and requirements that IoT systems have to satisfy.

2.1.1 Challenges of designing and developing IoT systems

Distribution

Distributed systems consist of separate components that may be executed
either sequentially or in parallel on different, interconnected nodes.
Building distributed systems and especially creating middleware solutions
that enable easy implementation of services on top of them has a set of
challenges [49]. Since IoT applications are by nature distributed, they
inherit many issues of distributed systems like implementation of routing
protocols, robustness and fault tolerance in case of communication links,
nodes software and hardware failures and synchronisation.
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Adaptability

Many IoT systems consist of nodes with resource constraints (e.g. memory,
processor and power) and are mobile or wirelessly connected to the
network. Due to these factors, the nodes may be arbitrarily connected and
disconnected from the system, making it highly dynamic. To manage the
communication between the nodes and services which use them, handle
the nodes leaving and joining the network spontaneously and detect,
diagnose and attempt to fix the problems as they occur, IoT applications
have to be self-adaptive, self-organised, self-optimising, and self-healing
[20].

Real time

Some IoT applications perform operations where delay in communication
and data delivery may have dangerous consequences. Such time-critical
systems have to provide on-time delivery of data and services.

Intelligence (data management)

IoT applications are often associated with generation of vast amounts of
data. These data typically have high volume and various forms and
are made available at different speeds. Applications have to be able to
interpret and reason about the data to make correct decisions and execute
tasks without human interoperability. In other words, IoT applications
need to obtain intelligence. Achieving this goal requires that the systems
incorporate decision-making techniques such as context-aware computing
service, predictive analytics, and complex event processing [51].

Furthermore, the data can sometimes be corrupted for reasons like
a sensor’s failure, malicious introduction of invalid data, delays in data
delivery or wrong data format. IoT applications have to be designed and
developed so they can establish the presence of invalid data.

Security [32]

Security is a critical requirement of IoT applications. Due to a large number
of devices, services and people sharing the same network, it is essential
to ensure that the data cannot be eavesdropped on or interfered with by
non-authorised users (confidentiality) and that it can only be accessed and
processed by the corresponding user (privacy). Trust is another important
security principle since it ensures that security and privacy objectives are
achieved during the interaction among different objects, IoT layers and
applications. In addition, IoT applications must check data integrity to
avoid erroneous operation of applications.

Regulatory compliance [51]

Many IoT applications collect information about people’s daily activities
that people may consider confidential. The leakage of this sensitive
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information could affect the privacy of the individual. In order to avoid
privacy violation, IoT applications must be compliant with law-enforced
requirements like EU data protection rules [19].

Scalability

According to IoT Analytics, there are around 12 billion IoT devices
worldwide by the end of 2020, and this number is expected to grow to
30 billion by 2025 [33]. Many questions across several fields have to be
answered to deal with such a large scale of objects. For example, existing
communication protocols may no longer suffice, and new ones may have to
emerge. New solutions for collecting, using and storing massive amounts
of data produced by the devices have to be found. Moreover, new
architectural models supporting the variety of devices and applications
must be developed [47].

Humans in the loop

Many IoT applications involve humans as a part of the system, i.e. humans
and objects work in synergy. Although including humans in the loop
can have some advantages (e.g. human assistance in self-driving cars can
improve safety), modelling human behaviour is a challenge since complex
physiological, psychological and behavioural aspects of human beings
must be considered [47].

Limitations of IoT devices

Many IoT devices, such as sensors, have resource limitations like low
memory, processing power, and power shortage. As communication is
the most energy-consuming task on devices, the need for low power
communication technologies arises [20].

Heterogeinety

IoT applications involve interaction between heterogeneous devices, i.e.
devices with different operating conditions, capabilities and functionalities.
Furthermore, the network used for the interaction can be heterogeneous
(e.g. fixed, wireless or mobile). Therefore, enabling seamless integration of
IoT devices and achieving portability of IoT applications is seen as one of
the significant challenges [42].

Designing and implementation challenges

IoT systems consist of several hardware and software components that
communicate with each other. Designing IoT systems can be a complex and
challenging task since these systems involve interactions between various
components such as IoT devices and network resources, web services,
analytic components, application and database servers. The wide range of
choices available for each of these components makes it difficult to evaluate
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the alternatives and design systems generically enough to be able to change
a particular choice of product or service [3]. If that is not the case, it
may become complex to update the system design to add new features or
replace previously chosen components.

Application maintenance challenges

The code running on IoT devices will have to be debugged and updated
regularly. Since IoT applications may be distributed over a wide geograph-
ical area, maintenance operations present several challenges. Support for
remote debugging and application updates on IoT devices poses problems
related to privacy, security and limited bandwidth of these devices.

2.2 Functional safety

As shown in the previous section, IoT systems have many potential points
of failure, making their development and operation a challenging and
error-prone process. For many of these systems (like transport or medical
systems), failures could have serious consequences such as causing harm
to people or the environment or, in the worst case, lead to a fatal outcome.
In other words, these systems depend on the correct function of each
individual hardware and software component, i.e. functional safety of the
system. Unfortunately, it is impossible to completely exclude the risk of
failure from the system. However, it is possible to define and accept a
tolerable risk target and try to reduce the risk to this level.

Two types of failures can occur in a system, random failures and
systematic failures. Random failures are usually related to specific
hardware components and happen at random time intervals. Using
historical data for similar components, it is possible to predict how often
such failures can occur in the future and set a quantified safety target based
on this failure rate. Systematic failures, on the other side, are not related
to specific hardware components but rather to mistakes done during the
development or operation of the system. Therefore, it is challenging to
predict the frequency of systematic failures and set quantified targets in the
same way as for random failures. However, safety targets for systematic
failures can be addressed qualitatively by establishing a set of controls and
methods with the purpose of minimising their occurrence. The higher level
of rigour in the development and operation process, the less likely is the
occurrence of systematic failures.

Since both quantitative and qualitative factors need to be considered
during risk assessment, the need for a measure of a system’s safety
performance arises. For that purpose, the concept of safety integrity levels
(SIL) was introduced. There are four levels, each corresponding to the
severity of the identified risk and defining a set of requirements. A higher
safety integrity level means higher requirements but a lower probability of
failure occurrence.

Safety integrity levels are defined differently in different standards.
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Here, the IEC 61508 Standard is used for providing examples of require-
ments since it is a general standard concerned with the functional safety
of electrical/electronic/programmable electronic devices, which serves as
a base for many other industry-specific standards. The IEC 61508 Standard
defines safety integrity levels 1 to 4 (SIL1 - SIL4) where SIL1 is the lowest
and SIL4 is the highest [44]. Requirements defined for the different levels
are related to a system’s hardware and software components. Since this
thesis uses a mobile application (i.e. a software component of the system)
as a use case, only the requirements for the software development are ex-
plained in detail.

2.3 Software engineering process

A software process is a set of activities that leads to the production of a
software system [46]. Since two software systems may differ with regard
to their type, goals, functionality, complexity and criticality, the paths
towards the final products will probably not be identical either. In addition,
software processes will vary depending on other factors like the company
developing the software or size, experience and skills of the development
team.

This section presents two distinguished process methodologies, a more
rigorous process typically proposed for safety-critical systems (such as
described in the previous section) and an agile process.

2.3.1 Rigid software engineering process

Part 3 of IEC 61508 Standard is called "Software requirements" and
addresses, as the title suggests, techniques and activities used during the
software development process [44].

The Standard suggests an approach to the software development
process called V-model. V-model is a top-down approach containing
several phases from the overall software specification at the top to the
actual software code at the bottom. Each phase has a corresponding activity
whose purpose is to verify the output produced during the phase. The
verification process starts from the bottom with testing of a specific module,
followed by testing of integrations of modules and finishing at the top with
testing of the entire system. A variant of the V-model demonstrating its
principle is illustrated in Figure 2.1. However, the number of phases and
techniques used during different phases may vary based on the complexity
of the system and target safety integrity level.

The Standard requires that any modifications and deviations from the
suggested development process are documented and explained.

Software specification

The first activity proposed by V-model is overall software specification.
Software specification is the process of defining and understanding system
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Figure 2.1: V-model

requirements carried out by customers and the development team [46]. The
output of this process is a document containing the description of a system
that satisfies stakeholders requirements. This phase of the development
process is critical since mistakes and misunderstanding occurring at this
stage may lead to problems at later stages, longer and more resource
consuming development process or, in the worst case, unusable software.

The requirements collected during software specification can be di-
vided into two major categories: functional and non-functional require-
ments. Functional requirements specify what the software should do, i.e.
which functionality it must provide and how it should behave under cer-
tain conditions. Non-functional requirements, on the other hand, specify
how the software should work and can be seen as quality attributes. Typ-
ical non-functional requirements include, but are not limited to, perform-
ance (for instance, response time and throughput), scalability, availability
and usability. Safety, which takes a central part in the IEC 61508 Standard,
is also an example of a non-functional requirement.

The Standard specifies some guidelines for how the software specific-
ation should be written. First, it states which items should be covered by
the overall specification (among others "all the modes of operation, the ca-
pacity and response time performance requirements, maintenance and op-
erator requirements, self-monitoring of the software and hardware as ap-
propriate, and details of all internal/external interfaces") and by the soft-
ware safety requirements in particular (like "capacities and response times,
equipment and operator interfaces including misuse, functions which force
a safe state, and out of range values") [44].

Furthermore, the specification must be clear, precise and free from
ambiguity and should easily be traced back to other relevant documents. In
addition to specification in natural language, the Standard suggests using
semi-formal or formal methods for some or all requirements depending on
the target safety integrity level. For example, semi-formal methods should
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be used to describe critical parts of the specification for SIL1 and SIL2 and
for the entire specification for SIL3 and SIL4. Some of the requirements
for the specification process posed by the IEC 61508 Standard can be
summarised as presented in Table 2.1.

Technique/measure SIL1 SIL2 SIL3 SIL4
Computer-aided
specification tools

Recommended Recommended
Highly

recommended
Highly

recommended
Semi-formal
methods

Recommended Recommended
Highly

recommended
Highly

recommended

Formal methods — Recommended Recommended
Highly

recommended

Table 2.1: Requirements involving software specification

Software design and implementation

When the system requirements are collected and analysed, the process of
developing an executable system can start. The software development
activity typically consists of software design and implementation.

Software design is concerned with describing the structure of the
system, data models used by the system and the interfaces between the
components [46]. As can be seen from V-model in Figure 2.1, the design
process is usually carried out in several stages, starting from overall system
architectural design to a more detailed design of system components
(modules). However, these stages are usually not executed linearly but are
interdependent and interleaved. For instance, some design decisions made
at the component level may affect overall system design, which means that
previous steps have to be reworked and adjusted.

Output from the system design process serves as a base for software
implementation, where programmers write and debug software code.
Software implementation is often supported by various development tools.
Most known are probably integrated development environments (IDEs),
software applications that enable programmers to work more effectively
by providing helpful features like syntax highlighting, code completion,
refactoring and debuggers. Some software development tools may also
be used to generate parts of code based on the design as explained and
exemplified later in Section 2.4.

The IEC 61508 Standard specifies some requirements related to software
design and implementation processes based on the target safety integrity
level. These requirements are summarised in Table 2.2.

As we can see from the table, structure and modularity are central
for all safety integrity levels. The reason for that is that smaller software
modules are easier to implement, test and maintain, i.e. they are more
manageable. Reuse of software modules is also encouraged as long as they
are trusted and verified in similar situations. Furthermore, semi-formal
and formal methods are required for software design purposes from SIL2
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and above. Finally, coding standards and defensive programming should
be used during the implementation of the code to increase the quality of
the software.

Technique/measure SIL1 SIL2 SIL3 SIL4
Computer-aided
design tools

Recommended Recommended
Highly

recommended
Highly

recommended
Semi-formal
methods

Recommended
Highly

recommended
Highly

recommended
Highly

recommended

Formal methods — Recommended Recommended
Highly

recommended

Modular approach
Highly

recommended
Highly

recommended
Highly

recommended
Highly

recommended

Structured programming
Highly

recommended
Highly

recommended
Highly

recommended
Highly

recommended
Use of trusted/verified
software modules
(if available)

Recommended
Highly

recommended
Highly

recommended
Highly

recommended

Design and
coding standards

Recommended
Highly

recommended
Highly

recommended
Highly

recommended

Defensive programming — Recommended
Highly

recommended
Highly

recommended

Table 2.2: Requirements for software design and implementation

Software verification and validation

Although developers usually check their code for errors and defects during
the implementation process described above, additional steps must be
performed to ensure that both individual components and the system as a
whole work as expected. This process is referred to as software verification.
Verification is defined as the "process of evaluating a system or component
to determine whether the products of a given development phase satisfy
the conditions imposed at the start of that phase" [28]. Today, software
verification is usually associated with two techniques, peer reviewing and
testing.

A peer review is a process of analysing code statically, i.e. without
executing it, performed by one or several engineers who have not taken
part in the development of a particular piece of code. Peer reviews are an
effective technique for discovering errors in code and improving overall
code quality [46]. However, since the code is not executed, it can be hard to
catch runtime errors or performance problems during a peer review.

Unlike peer reviews, testing is a dynamic technique, meaning that the
software gets executed. The purpose of testing is "to show that a program
does what it is intended to do and to discover program defects before
it is put into use" [46]. Errors in software are discovered by running a
program in many possible situations (e.g. for different input values). As
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V-model in Figure 2.1 demonstrates, the testing process consists of several
stages. The first stage is unit testing, where program components like
individual functions or object classes are tested. Unit testing is followed
by integration testing, where individual components are integrated into
composite components and further to complete system so that component
interfaces and interactions between components are tested.

The IEC 61508 Standard specifies a number of requirements involving
software verification which are summarised in Table 2.3. According to the
Standard, both peer reviews and testing must be carried out at the level of
individual modules to verify that they perform the intended function and
do not perform unintended functions. Integration testing with predefined
test cases and test data is also required. All results of testing and corrective
actions, if any, must be documented. These requirements apply to all
safety integrity levels. For SIL2 and higher, formal proof is suggested as
a verification technique in addition to peer reviews and testing.

Technique/measure SIL1 SIL2 SIL3 SIL4

Formal proof — Recommended Recommended
Highly

recommended

Static analysis Recommended
Highly

recommended
Highly

recommended
Highly

recommended
Dynamic analysis
and testing

Recommended
Highly

recommended
Highly

recommended
Highly

recommended
Software complexity
metrics

Recommended Recommended Recommended Recommended

Table 2.3: Requirements for software verification

The last phase included in V-model (figure 2.1) is software validation.
Validation is about confirming that the software as a whole satisfies the
requirements and meets the expectations of the customer collected during
the software specification process [46]. The IEC 61508 Standard requires
that a validation plan is written. It should cover all life-cycle activities,
specify pass/fail criteria and show how all the requirements (including
safety requirements) have been addressed. In addition, various metrics like
test coverage and conformance to coding standards should be collected and
presented.

Software evolution

Even after the software is developed, tested and put into use, the software
development process continues since the software may be further modified
as a result of feedback from the customers, new requirements or discovery
of errors. This stage is usually referred to as software evolution (or
maintenance) and is historically seen as a separated process [46]. However,
the distinction between development and maintenance is increasingly
blurred, and maintenance is seen as a continuation of the development
process.
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Software evolution poses a challenge on standard compliance since
it must be proven that the development process and the software still
satisfy all the requirements for each modification. The IEC 61508 Standard
specifies a number of steps that must be performed if a change is made.
The modification itself and its reasons must be well documented, and the
impact of the modification must be analysed. Methods and procedures
should be similar to those used during the original process. Furthermore,
re-testing of either individual modules or the whole system is required
based on the target safety integrity level. Only changed modules or all
affected modules needs to be re-verified for SIL1 and SIL2, respectively,
while the whole system must be re-validated for SIL3 and SIL4.

2.3.2 Agile software development methods

Nowadays, businesses operate in a competitive and rapidly changing
environment. They have to adapt to new opportunities and markets,
changing economic conditions and competing products and services that
emerge. As software has become a part of almost all business operations,
it is crucial that it can be developed and changed quickly to reflect new
requirements. In many cases, time to market, i.e. time it takes to develop
and deliver the software, is one of the most critical requirements. If
the software is not developed quickly enough, it may be irrelevant for
the current market, meaning that the business waists resources (such as
money and people) without getting any benefits. Such hard deadlines and
resource limitations imply that the quality of software design, architecture
and code is often compromised in favour of delivering a functioning
system or application in time.

Requirement for rapid development and delivery of software presents
a set of challenges with regard to the development process. Since software
requirements change rapidly (e.g. new requirements may be added or
existing ones adjusted), it is impossible to define a complete specification
of the software before it is developed. It may also be challenging to design
software architecture in detail because of uncertainty about which other
systems the software may interact with, how the relationship between
different parts of the system may change or which modules have to be
added in the future. As we see, traditional plan-driven development
processes (like the V-model presented in the previous section), where
specification, design, implementation and testing steps are carried out
sequentially without the possibility to go back to the previous step, are
unsuitable under these circumstances.

The need for development processes that can handle changing require-
ments has been recognised for many years [31]. Already in the 1970s and
1980s, there were proposed modifications and adjustments to traditional
sequential approaches. However, the real growth of rapid software devel-
opment occurred in the late 1990s with the introduction of methodologies
such as Extreme Programming (XP) [5], Scrum [43], and Dynamic systems
development method (DSDM) [48]. These and other methods for rapid
software development became known as agile development or agile meth-
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ods. The processes and practices of the different agile approaches vary
from one approach to another. However, all of them have common philo-
sophy and characteristics described in the Agile Manifesto by the leading
developers of these methods [6].

First, the agile methods propose a development process where specific-
ation, design, implementation and testing activities are interleaved in con-
trast to plan-driven approaches. The system specification and implement-
ation evolve simultaneously rather than sequentially. As shown in Figure
2.2, the activities are performed in cycles, with new requirements added to
the specification and implemented iteratively.

Figure 2.2: Agile software development life cycle

Second, detailed system specification and documentation is minimised
or generated automatically by development tools. It allows developers
to focus mainly on software implementation and testing. This concept is
summed up in Agile Manifesto as "Working software over comprehensive
documentation" [6].

Furthermore, all agile methods suggest that software should be de-
veloped in increments (e.g. pieces). Each increment focuses on developing
a particular feature or functionality during a short period of time. By the
end of the increment, a new version of the software is delivered to the cus-
tomers. They evaluate the work that has been done and propose changes
or provide and prioritise new requirements for the next increment.

This implies that the customers are closely involved in the development
process. Customer engagement and collaboration are essential in agile
methodologies since they ensure that the product developed satisfies
current business requirements. Rapid releases allow the customers to
track the progress made by the development team and provide feedback
frequently. Continuous communication between the customers and
developers helps to clarify existing requirements or changes to them,
uncover misunderstanding and recognise missing functionality. This way,
the development of outdated or unnecessary functionality can be avoided,
leading to less wastage of financial and time resources.
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In addition to changing business requirements, there are several other
reasons why the software is constantly changing during the development
process. The development team or the customers may find bugs and
error that have to be fixed. New versions of software components may
be released, so the system must be adapted. Moreover, the quality
of the codebase should continuously be improved in order for it to be
readable and maintainable. Managing, remembering and communicating
information about all changes to the development team members and
customers is not an easy task. Therefore, the development process should
be supported by tools that help keep track of the changes.

For example, requests for changes or bug and issues reports can be kept
track of using change management tools. Such tools also help determine
the costs and impact of making these changes and decide if and when the
changes should be implemented.

Additionally, version control systems track and provide control over
changes made to the source code, documentation or configuration files.
They also ensure that changes made by different developers do not
interfere with each other, promoting collaboration between team members
and across the teams.

Tools are also used to make the development process more effective by
automating one or several steps. For instance, automated testing tools are
used to test the system after the changes are made in order to check that
the changes did not introduce any errors in the system. System building,
e.g. a process of creating an executable system by assembling program
components, data and libraries, compiling and linking them, is also often
automated by using continuous integration and continuous deployment
tools (CI/CD tools).

The automation described in the previous paragraph is a fundamental
idea of DevOps, a concept that can be seen as an extension of agile
methodologies. DevOps is a set of practices focused on bridging the
gap between the development and operation of software systems. By
automating processes of building, testing and deployment of the system,
DevOps aims to provide feedback from operation to development faster
than when different teams perform these processes. This way, the software
development cycle can become even shorter, and the quality of the software
increased.

2.4 System modelling

The previous section explained the software development activities and
how they are typically organised in different process methodologies. This
section will look more in-depth at one of the activities, namely system
modelling.

System modelling is the process concerned with developing models
of a system that present different views or perspectives of that system.
A model is not a complete description of the system. Rather, it is an
abstraction of the system that simplifies a system design and picks out one
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or several main characteristics, leaving out the details. For example, one
can construct different models showing interactions between the system
and its environment, interactions between the components of a system,
structure of the data processed by a system or behaviour of the system as a
reaction to internal or external events.

System models are useful for several reasons during different stages of
the software development process.

First, models can be used during collection, definition, refinement
and prioritisation of the requirements as a base for discussion between
the development team, customers or other stakeholders. As modern
software engineering processes often require a collaboration of experts
from different disciplines, models can help decide on the system scope (i.e.
what is and is not a part of the system being developed) and achieve a
similar understanding of the system requirements [22].

Second, models can serve as a base for the implementation of the system
by software engineers. For instance, models specifying information about
and the relationship between real-world objects may be helpful for deriving
internal data representation of these real-world object in the system or
deciding upon technologies for data persistence (e.g. SQL versus NoSQL
database). Models can also stimulate discussions among the development
team regarding architectural patterns or programming paradigms to use
when developing the system. Furthermore, models that are complete
and correct can even be used to generate source code of the system by
automated tools, like Umple [36], Xpand [55], or Acceleo [21].

Another application of system models is as a way to document a system
or some parts of it. Especially in the context of agile methodologies, where
time spent on writing documentation should be minimised, using models
for that purpose may seem attractive.

There are many existing notations for system modelling, ranging
from graphical, easier to understand notations to various mathematical
notations. Nowadays, system modelling is usually associated with
representing a system using graphical notation, like Unified Modelling
Language (UML) [8]. However, it is also possible to construct system
specifications using formal (mathematical) models.

2.5 Formal modelling and verification

The requirements for the use of formal methods as a part of the process
to achieve a higher safety integrity level were mentioned several times
in Section 2.3.1. This section will explain what it means to model
and verify a system formally, how this process can be carried out, and
the advantages and disadvantages formal methods have in a software
development process.

A formal model is a model represented in a notation that has formally
described semantics. Formal models are developed by translating the
system requirements expressed in natural language, diagrams or tables into
a mathematical language. The resulting formal model is an unambiguous
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description of the system’s behaviour which serves as a formal specification
of the system.

2.5.1 Advantages and disadvantages

Developing formal models has many advantages with regard to the rest
of the development process. First, the process of formal modelling forces
a detailed analysis of the requirements, which may uncover potential
problems and make their correction less resource consuming than at the
later stages of the development. Requirements analysis also reduces the
scope of misunderstanding introduced by the imprecisions in the natural
language specifications. Thus, formal models are the most precise way to
specify the system.

Most importantly, formal models can be applied to check that a
program behaves correctly and consistently with the specification. In other
words, formal models can serve as a verification method, along with other
more widespread techniques as peer reviews and testing.

Only a small proportion of all possible situations is executed during
testing since their number is usually huge. Therefore, we can not be sure
that the software is error-free [52]. Compared to testing, verification using
formal models has the advantage of providing a formal (mathematical)
proof of program correctness [28]. Using automated tools, called model
checkers, it is possible to analyse all possible runs of a model exhaustively.
Model checkers take a formal model and a formal description of the desired
property as an input, analyse the specification and report that the desired
property is satisfied by the model or give an example that shows that it
is not satisfied. If the former is the case, then the program is guaranteed
to meet its specification, while the latter case shows inconsistencies and
incompleteness that should be fixed. This way, costs associated with the
testing of the program can be reduced since the program model has been
verified against its specification.

All in all, formal modelling and verification can help increase the
quality and reliability of software. Academic researchers have been
advocating for their use in software development for decades [12, 54].
Also, industrial experience in certain areas shows the benefits of applying
formal methods [40, 41]. Even technology giants such as Amazon and
Facebook have seen the need to apply formal methods [10, 39]. Engineers
working on Amazon Web Services have been using formal specification
and model checking for several years and believe that they "improve both
time-to-market and quality of [their] systems" [39]. In more safety- and
business-critical domains, like the aviation industry, the use of formal
methods has even been integrated as a part of development standards,
and mandatory certification procedure [29]. However, for the majority of
software-intensive companies, formal methods are still not systematically
integrated into the daily development process. There are several reasons
for that.

First, formal models expressed with mathematical notations may be
challenging to understand for customers or domain experts, so they can not
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check whether the model precisely reflects the requirements. On the other
side, software engineers, who understand the model, may lack domain
knowledge, so they can not be sure if the model was constructed correctly
with regards to the application domain.

Second, formal modelling is an expensive process because much time
is needed to translate the requirements into a formal language and check
the specification. Since there is little experience in using formal methods
during software development processes, it is difficult to see and estimate
possible cost savings that its use may bring. Therefore, managers rarely
want to take the risk of adopting this approach.

Third, creating formal specification of large and complex systems is
hard. It may be feasible to model the most critical parts of a system
formally, but scaling it to the complete systems is difficult.

One of the most important disadvantages of formal modelling is that
it may be hard to combine with agile software development approaches,
which are most popular in the industrial context today. In order to de-
velop the formal specification, it is required that the system requirements
and design are defined, analysed and checked in detail. It is usually in-
convenient in an environment where system requirements change rapidly.
Therefore, formal models are primarily developed as a part of a rigid soft-
ware process.

2.5.2 Formal verification process

Verification using formal models was mentioned in the previous section
as one of the main advantages of using formal methods in the software
engineering process. This section provides a more detailed explanation
of how the formal verification process is usually carried out and which
techniques can be used during each of the steps.

The process of formal verification can be divided into three phases:
modelling, running and analysis.

Modelling

The modelling phase consists of constructing a model of the system
under consideration using chosen modelling language and defining the
properties that the system should satisfy.

Formal models are often expressed as transition systems. Transition
systems are directed graphs with nodes corresponding to states and edges
corresponding to transitions. A state is some information about a system
at a particular point of its behaviour, while a transition is a specification of
how the system can progress from one state to another. For example, for a
computer program, the state is the current values of all program variables
and the current value of the program counter indicating which program
statement to execute next. The result of executing this statement is that
the program counter will increase, and values of other program variables
may be changed (i.e. change in the state). Thus, execution of a program
statement can be seen as a transition [4].
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Just like models, properties to be checked have to be expressed in an
accurate and unambiguous way using property specification language. An
example of property specification languages commonly used for verifying
system properties is temporal logic. Temporal logic has operators for
representing concepts of time (for example, "always", "eventually", and
"never"), making it convenient to express properties describing desired
behaviour of a system over time. Two main types of system properties
that can be specified in temporal logic are safety and liveness properties.

Safety properties

A safety property states that an undesirable event will never occur under
certain conditions. The most known examples of safety properties in the
context of distributed systems are deadlock freedom (i.e. that a state where
all processes in the system are waiting for action from another process
in order to continue never is reached) and mutual exclusion (multiple
processes never access a shared resource).

The above safety properties are called invariance properties (or invari-
ants). Invariants are requirements that should hold in all reachable states of
program executions. In terms of transition systems, it means that the prop-
erty has to be satisfied by all initial states, and for all transitions, it is true
that if a state s satisfies the property, then the state s′ reached by the trans-
ition also satisfies the property. Verification of invariance properties can
be done by exploring all reachable states and trying to find a state where
the desired property is violated. If such a state exists, then it is proved by
counterexample that the model does not satisfy the property.

However, not all safety properties are invariants. Some properties
impose requirements on fragments of execution paths instead of separate
states like invariance properties do. For such properties, a counterexample
is a path fragment (called "bad prefix") that shows a violation of the desired
property.

Safety properties alone are not sufficient for verifying a system since a
system can easily fulfil safety properties by doing nothing. Thus, safety
properties are usually complemented by liveness properties.

Liveness properties

A liveness property expresses that some event will eventually occur under
certain conditions. Unlike safety properties, liveness properties do not
represent requirements that have to hold continuously, but those that must
ultimately take place [7]. An example of liveness property is eventual
consistency (e.g. several nodes in a distributed database will eventually
reach consistency in data).

Running and analysing results

The model and properties specified during the modelling phase are used
as input for model checkers, i.e. tools that can exhaustively analyse all
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possible runs of a program to check the validity of the properties in the
system model. Model checker reports whether the property is satisfied or
violated. In the latter case, a counterexample is returned and has to be
further analysed in order to discover the cause of the error. If the error lies
in the model or property, then they have to be revisited and verification
restarted with the corrected model. Otherwise, the verification served its
purpose by showing a problem in the system. The system can then be
improved.

2.6 Modelling IoT applications

In literature, several approaches for modelling IoT applications have been
proposed. Some of the methods and tools presented were developed
with the primary purpose of supporting the development process, while
others aim to facilitate formal analysis and verification of certain aspects or
properties of the developed system. This section summarises some of the
distinctive approaches that deal with the specification of IoT applications.

2.6.1 UML-based approaches

Unified Modelling Language (UML) is a modelling language for visual-
ising, specifying, constructing and documenting the artefacts of software-
intensive systems that was approved as a standard approach [8].

UML has served as a base for development of other modelling
languages that are extended into the realm of IoT applications, like
SysML4IoT [13], PervML [11] or ThingML [23]. These modelling languages
aim to solve some challenges specific to the design process of IoT systems
by using conceptual primitives suitable for this domain.

PervML and ThingML also provide code generation frameworks that
transform model specifications into code in one or multiple programming
languages (Java for PervML and C, Java or JavaScript for ThingML).

2.6.2 Bigraph-based approaches

Bigraphs is a mathematical model proposed by Robin Milner as a method
for modelling ubiquitous systems [37]. Bigraphs focus on two aspects of
such systems, namely locality and connectivity. This focus is reflected in
the bigraph structure, consisting of two graphs: the place graph, which
expresses the physical or logical location of system components (locality)
and the link graph, which describes relationships and interactions between
them (connectivity). In addition, dynamics of a specified system (i.e.
changes in placing or linking of a part of the system) are defined using
reaction rules.

Set of bigraphs representing the states of the system obtained from an
initial bigraph, and the reaction rules applied successively on it is called a
Bigraphical Reactive System (BRS) [37].
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The BRS has been adopted to specify the physical part of an IoT applic-
ation dealing with the spatial distribution, the mobility and the heterogen-
eity of its components in a model called Bigraphical Communicating Agent
Model for the Internet of Things (BCAM4IoT) [35].
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3 DCR Graphs

This chapter provides theoretical background on Dynamic Condition Re-
sponse Graphs (DCR Graphs), the modelling language used for modelling
and verification purposes in this thesis. First, the motivation for the devel-
opment of the DCR Graphs and their applications are introduced in Section
3.1. Then, Section 3.2 presents the graphical DCR Tool used to construct the
graphs. Further, the basic structure and graphical notation of DCR Graphs
is explained in Section 3.3 before Section 3.4 provides formal definitions
necessary for reasoning about the graphs. Finally, Section 3.5 demonstrates
the methodology that was followed for modelling and verification using
DCR Graphs in this thesis.

3.1 Introduction

For the last years, businesses have tried to model their business processes
in order to increase productivity and quality. There are many existing
techniques and notations, with the Business Process Management Notation
(BPMN) being the industrial standard today. BPMN or other notations
such as swim lane diagrams, flow charts or sequences of state-changing
commands are examples of imperative process models, meaning that all
possible control flows are described explicitly.

Imperative process models serve their purpose in providing a common
way of describing business processes. However, they have several limita-
tions. First, the number of all possible paths may become relatively high for
complex processes. Describing all of them is almost impossible, which may
lead to the incomplete specification of the process. Second, a collection of
all possible routes does not capture the rules and constraints that the routes
are based on. That means that models must be supplemented with textual
descriptions with no formal relationship. Both of these limitations make
updating and maintaining imperative models to reflect changes in business
processes a tedious, error-prone and time-consuming operation. Further-
more, such notations are often difficult to understand, making it hard to
engage end-users and leading to implementations that do not support real
business needs.

In order to counter these issues, Dynamic Condition Response Graphs
(DCR Graphs) has been proposed as a new model. In opposite to BPMN,
DCR Graphs is a declarative, event-based model for describing process
flow. It means that control flow is defined implicitly as a set of constraints
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or rules. Therefore, there is no need to explicitly describe all possible flows
since all flows satisfying given constraints are allowed. In this way, DCR
Graphs capture the logic behind the process rather than a few possible
routes.

DCR Graphs is a method that has been developed in collaboration
between the Process and System Models research group, lead by Thomas
Hildebrandt at the IT University of Copenhagen and Exformatics A/S.
DCR Graphs technology has evolved through a series of research projects
over the past years with substantial amount of academic publications on
both formal aspects [16, 24, 26, 38] and industrial case studies [15, 17, 18,
25, 27].

The development of DCR Graphs continues as interest in the techno-
logy increases in the industry. The DCR method is now supported by
a full technology stack based on formal notation and semantics of DCR
Graphs. For instance, an interactive tool, called DCR Tool, allows teams or
individuals to design, simulate, analyse, document and execute declarat-
ive processes. DCR Tool is continuously improved and extended with new
features and plugins.

3.2 DCR Tool

As mentioned in the previous section, the DCR Tool is a graphical and
interactive web-based tool that allows businesses and academia to create
and simulate DCR Graphs.

The main features of the DCR Tool include creating new graphs,
saving or exporting graphs, editing existing graphs and simulating graphs.
Simulations enable the user to test the DCR Graphs and verify that the
process behaves as expected. The tool has an easy to use interface and
provides a guided tour containing key aspects of creating DCR Graphs with
the tool.

The DCR tool also has support for version control, providing a way to
see the history of graph revisions and changes made from one version to
another and making it easy to revert to a particular version.

In addition, the DCR Tool adds a social aspect to the DCR technology
by providing a way to share created graphs and collaborate with friends or
co-workers. It is possible to do collaborative simulations, enabling users to
play the processes like a game. This contributes to keeping employees and
end-users engaged in the modelling process.

In addition to core functionality, the DCR Tool has an App Store
containing several applications that can be added to the tool. Applications
that were used in this thesis are presented later in Section 3.5.

3.3 Structure and graphical notation

A Dynamic Condition Response Graph (DCR Graph) is a directed graph
with nodes representing the events that can happen and edges representing
relations between the events.
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3.3.1 Activities

An activity or an event is a process or task within a workflow. It can
represent invocation of an operation, a step in a business process or an
entire business process. Activities can have a name, description and
role(s) assigned to them. They can also have relations to other activities.
In addition, an activity has three state values expressing whether it is
included, pending and executed.

Events/activities may be standard, data and computations. Standard
activity is an activity that can just be executed. A data activity is assigned a
value when executed. A computation activity holds an expression, which
is evaluated and assigned as the value of the activity.

3.3.2 Relations

A relation or a connection describes how two activities relate to each other.
Connections are used to express business rules that a process must follow.
There are five main types of relations between events:

1. Condition, Milestone and Pre-condition

2. Response and No-Response

3. Include

4. Exclude

5. Spawn

Condition

The condition relation, graphically represented as shown in Figure 3.1,
between an activity A and an activity B means that activity B can only occur
if activity A has occurred previously.

Figure 3.1: Graphical representation of condition relation in DCR Tool

An example of condition relation could be activities A "Implement
task" and B "Create pull request". The "Implement task" activity must
precede the "Create pull request" activity in a process, so "Implement
task" is a condition for "Create pull request". This example is graphically
demonstrated in Figure 3.2.
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Figure 3.2: Example of condition relation

Milestone

The milestone relation creates a dependency between activity A and
activity B such that B can occur initially. But if A becomes pending, then
B cannot occur until A has occurred. The milestone relation is graphically
represented as shown in Figure 3.3.

Figure 3.3: Graphical representation of milestone relation in DCR Tool

An example of milestone relation could be activities "Merge changes to
the main branch", "Report merge conflict", and "Resolve merge conflict".
"Merge changes to the main branch" can occur initially. But if "Report
merge conflict" occurs, then "Resolve merge conflict" becomes pending.
Then "Merge changes to main branch" can not occur until "Resolve merge
conflict" is executed. This example is demonstrated in Figure 3.4.

Figure 3.4: Example of milestone relation
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Pre-condition

The pre-condition relation is a combination of condition and milestone
relations, meaning that if an event A is pre-condition for an activity B, then
A must be executed and not pending for B to be enabled. These relations
are frequently used together for expressing business rules, so pre-condition
relation was recently introduced to the graphical tool for convenience and
is demonstrated in Figure 3.5.

Figure 3.5: Graphical representation of pre-condition relation in DCR Tool

An example of pre-condition relation could be activities "Fetch meas-
urements from sensor", "Pair devices" and "Switch off Bluetooth on the
smartphone", where "Pair devices" is a pre-condition for "Fetch measure-
ments from sensor". It means that in order for the "Fetch measurements
from sensor" activity to be enabled for execution, the "Pair devices" activ-
ity must be executed and can not be pending. If the "Switch off Bluetooth
on the smartphone" activity occurs, it makes "Pair devices" pending, pre-
venting "Fetch measurements from sensor" activity from execution until the
devices are paired again. This example is demonstrated in Figure 3.6.

Figure 3.6: Example of pre-condition relation
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Response

The response connection is a relation between activity A and activity B such
that if A occurs, then B has to occur at least once at some point after. B can
also occur even if A never occurs. The response connection is graphically
represented as shown in Figure 3.7.

Figure 3.7: Graphical representation of response relation in DCR Tool

For example, if activity A is "Measurement device sends measures to the
application", then activity B, "Application receives measurements", must
take place at least once. This example is graphically represented as shown
in Figure 3.8.

Figure 3.8: Example of response relation

No-Response

The no-response connection creates a relation between activity A and
activity B such that B does not have to occur if A occurs. In other words,
if activity A occurs, it removes the pending state of activity B. The no-
response connection is graphically represented as shown in Figure 3.9.

Figure 3.9: Graphical representation of no-response relation in DCR Tool

An example of no-response relation is presented in Figure 3.10. It
shows the activities "Hold meeting" and "Cancel meeting". Initially, the
"Hold meeting" activity is pending (expressed with an exclamation mark).
However, if the "Cancel meeting" activity occurs, it removes the pending
state of the "Hold meeting" activity, so it does not need to be executed.
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Figure 3.10: Example of no-response relation

Exclude

The exclude connection is a relation between activity A and activity B such
that B cannot occur if first A has occurred. When A occurs, B becomes
excluded from the set of included events. Activity B can become included
again afterwards if activity with an include connection to B occurs. The
exclude relation is graphically represented as shown in Figure 3.11.

Figure 3.11: Graphical representation of exclude relation in DCR Tool

Activity A could, for instance, be "Log in rejected" and B "Access
personal information". This example is graphically represented as shown
in Figure 3.12.

Figure 3.12: Example of exclude relation

Include

The include connection is a relation between activity A and activity B such
that if activity A occurs, then activity B can occur if it was not previously
included in the process. The include relation is graphically represented as
shown in Figure 3.13.

Figure 3.13: Graphical representation of include relation in DCR Tool

28



For example, activity B could be "Access personal information", which
has been previously excluded because of wrong login information. Activity
A could be a new login trial, now with correct credentials. This example is
graphically represented as shown in Figure 3.14.

Figure 3.14: Example of include relation

Spawn

The spawn connection creates a relation between an activity A and a
subactivity B such that, when A occurs, a new instance of B is created. The
spawn relation is graphically represented as shown in Figure 3.15.

Figure 3.15: Graphical representation of spawn relation in DCR Tool

Activity B could, for instance, be "Document handling" and A be
"Create new document". Execution of the "Create new document" activity
will lead to the creation of a new instance of "Document handling activity"
that in turn can contain other subactivities. This example is demonstrated
in Figure 3.16.

Figure 3.16: Example of spawn relation

3.3.3 Grouping of events

A useful extension of DCR Graphs is the possibility to logically group
multiple activities under another activity. There are two supported ways
to group activities: nesting and subprocesses.
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Nesting is a way to syntactically avoid many connections in a graph
since connections in and out of a parent activity go to and from each child
activity nested inside it. It means that for a connection going out from
a parent activity, all included child activities must be executed before the
process can proceed.

Subprocesses, on the other hand, keep their own state. In order to
proceed, it is required that the parent activity is in an accepting state. It
means that if there is a connection going out from the parent activity, then
this activity can not be pending for the process to proceed. However, it is
not required that all included activities get executed, which is the case for
nesting.

In the graphical tool, grouping is demonstrated by putting child
activities "inside" parent activity, as shown in Figure 3.17. The difference
between nesting and subprocess is indicated with an "n" or an "s" at the
bottom corner of a parent activity.

Figure 3.17: Graphical representation of grouping of events in DCR Tool

3.4 Formal semantics

The previous section provided an intuitive understanding and some simple
examples of the structural components of DCR Graphs. However, formal
modelling means that models are represented in a notation with formal
semantics. Therefore, this section will describe the semantics of DCR
Graphs in a formal way, giving the basis for constructing and reasoning
about models of a real system.

First, Section 3.4.1 defines a basic DCR Graph. Then these definitions
are extended to definitions of Distributed DCR Graph by adding roles and
principals in Section 3.4.2. Finally, formal semantics of grouping of events
are introduced in Section 3.4.3 by giving definitions of Nested DCR Graphs.

The definitions in this section are based on [38], but are extended
to include the pre-condition and no-response relations, which were
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introduced to the DCR Tool at a later point in time.

3.4.1 DCR Graphs

Definition 3.4.1 A Dynamic Condition Response Graph is a tuple
G = 〈E, M, Act,→•, •→,→%,→+,→�,→×,→•�, l〉 where

• E is the set of events

• M ⊆ E× E× E is the marking andM(G) is the set of all markings

• Act is the set of actions

• →• ⊆ E× E is the condition relation.

• •→ ⊆ E× E is the response relation.

• →+,→% ⊆ E× E are the dynamic include relation and exclude relation,
satisfying that ∀e ∈ E.e→+ ∩→% = ∅

• →� ⊆ E× E is the milestone relation

• →× ⊆ E× E is the no-response relation

• →•� ⊆ E× E is the pre-condition relation such that→•� =→•∩→�

• l : E→ Act is labelling function mapping every event to an action

The condition relation e→•e′ means that event e is prerequisite for the
event e′. In other words, it imposes precedence among the events.

The response relation •→ is a relation, such that {e′|e•→e′} is the set of
events that must happen after the event e has happened for the flow to be
accepting.

The marking M = 〈Ex, Re, In〉 ∈ M(G) consists of three sets of events:
events that has previously been executed (Ex), events that are pending
responses required to be executed or excluded (Re) and events that are
currently included (In).

The dynamic inclusion and exclusion relations →+ and →% allow
events to be dynamically included and excluded in the graph. Only the
currently included events are considered in evaluating the constraints. It
means that if an event e′ has event e as a condition, but the event e is
excluded from the graph, then it is no longer required to execute e for
e′ to happen. Also, if event e has event e′ as response and if the event
e′ is excluded, then it is no longer required to happen for the flow to be
accepting. Formally, e→+ e′ means that when event e occurs, it will include
e′ in the graph. e→%e′ expresses that when e occurs it will exclude e′ from
the graph.

The milestone relation →� is, like condition relation, blocking. How-
ever, the milestone relation blocks based on events in the pending response
set. For example, if an event e′ has the event e as milestone (written as
e→�e′), then event e′ is not allowed to execute, if the event e is in the set of
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pending responses (Re). As for the condition relation, the milestones are
blocking only if they are included in the graph.

The no-response relation→× is a relation opposite to •→. For example
if an event e has no-response relation to an event e′ (written as e→×e′), the
event e will cancel the pending state of the event e′. In other words, if event
e occurs, then event e′ will be removed from the set of pending events (Re).

The pre-condition relation →•� is a relation that combines condition
relation→• and milestone relation→� in a sense that→•� will always be
an intersection of→• and→�. For example, if there are two events e and
e′ such that e→•e′ and e→�e′, then e→•�e′.

We will now formally define what it means that an event is enabled for
execution and which conditions must be satisfied.

Definition 3.4.2 For a Dynamic Condition Response Graph
G = 〈E, M, Act,→•, •→,→%,→+,→�,→×,→•�, l〉 with marking M =
〈Ex, Re, In〉, an event e ∈ E is enabled (written M `G e) if

• e ∈ In

• (→•e ∩ In) ∈ Ex

• (→�e ∩ In) ∈ E \ Re

The definition tells that for an event e to be enabled, it has to be included
in the graph, all the included events which are condition to the event e must
be in the set of executed events, and none of the included events that are
milestones for it are in the set of pending responses.

When an event is enabled, it means that this event is ready to be
executed. Execution of an event results in changes in the marking, which
are formally defined as follows.

Definition 3.4.3 For a Dynamic Condition Response Graph
G = 〈E, M, Act,→•, •→,→%,→+,→�,→×,→•�, l〉 with marking M =
〈Ex, Re, In〉 and with en enabled event M `G e, the result of ex-
ecuting the event e will be a dynamic condition response graph G =
〈E, M′, Act,→•, •→,→%,→+,→�,→×,→•�, l〉, where M′ = M ⊕G e =
{Ex′, Re′, In′} such that

• Ex′ = Ex∪ {e}

• Re′ = (Re \ ({e} ∪ e→×)) ∪ e•→

• In′ = (In∪ e→+)\e→%

The definition says that the event which gets executed is added to the
set of executed events (Ex) and removed from the set of pending responses
(Re). Then, all events that are a response to the event are added to the set of
pending responses. If the event is a response to itself, it will remain in the
set of pending responses after execution. All the events that event e has no-
response relation to are removed from the set of pending events (Re). Set
of included events (In) is also updated by including and excluding events
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that have include and exclude relation from the executed event. Further, an
event e′ can not be both included and excluded by the same event e. Finally,
an event e may have a relation to itself.

Series of several events being executed form runs or executions which
can either be finite or infinite. Executions are called accepting if any re-
quired, included response in any intermediate marking is eventually ex-
ecuted or excluded. Concepts of runs/executions and accepting runs/exe-
cutions are formally defined in the following definition.

Definition 3.4.4 An execution of a dynamic condition response graph
G = 〈E, M, Act,→•, •→,→%,→+,→�,→×,→•�, l〉 is a (finite or infinite)
sequence of tuples {〈Mi, ei, ai, M′i〉}i∈[k] each consisting of a marking, an event, a
label and another marking (the result of executing an event) such that

• M = M0

• ∀i ∈ [k].ai ∈ l(ei)

• ∀i ∈ [k].Mi `G ei

• ∀i ∈ [k].M′i = Mi ⊕G ei

• ∀i ∈ [k− 1].M′i = Mi+1

The execution (or a run) is accepting if ∀i ∈ [k].(∀e ∈ Ini ∩ Rei.∃j ≥ i.ej =

e ∨ e /∈ In′j), where Mi = 〈Exi, Ini, Rei〉 and M′j =
〈

Ex′j, In′j, Re′j
〉

. In words,
a run is accepting if no required response event is continuously included and
pending without it happens or become excluded. A marking M′ is reachable in G
(from the marking M) if there exists a finite execution ending in M′. MM→∗(G)
denotes the set of all reachable markings from M.

3.4.2 Distributed DCR Graphs

When modelling workflows, it may sometimes be interesting to include
information about who executes a particular action. For that purpose, DCR
Graphs can be extended to Distributed DCR Graphs by adding roles and
principals as the following definition describes.

Definition 3.4.5 A Distributed Dynamic Condition Response Graph is a tuple
DG = 〈G, Roles, P, as〉 where

• G = 〈E, M, Act,→•, •→,→%,→+,→�,→×,→•�, l〉 is a Dynamic
Condition Response Graph,

• Roles is a set of roles,

• P is a set of principals (e.g. persons or processors)

• as ⊆ (P ∪Act) × Roles is the role assignment relation to principals and
actions.
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The role assignment relation indicates the access rights (roles) assigned
to principals and which roles give the right to execute which actions.

Some concepts defined for DCR Graphs in the previous section must
now be extended so that roles and principles are taken into account. For
example, for an event to be enabled, it is no longer enough for it to satisfy
conditions in Definition 3.4.2.

Definition 3.4.6 For a Distributed Dynamic Condition Response Graph DG =
〈G, Roles, P, as〉 with G = 〈E, M, Act,→•, •→,→%,→+,→�,→×,→•�, l〉,
an event e is enabled (written M `DG e), if M `G e, (p as r) and (a as r).

When it comes to executing an enabled event, the result of execution
will be the same in a Distributed DCR Graph as in DCR Graph since event
execution only involves changes to the marking, which are not affected by
the roles and principals. It is formally defined in the following definition.

Definition 3.4.7 For a Distributed Dynamic Condition Response Graph DG =
〈G, Roles, P, as〉 with G = 〈E, M, Act,→•, •→,→%,→+,→�,→×,→•�, l〉
with M `DG e, executing event e in DG will have the same effect as that of
executing the event e in the underlying DCR Graph G. The resulting marking
will be the same in both cases.

A run or an execution in Distributed DCR Graphs and when it is
accepting is defined as follows.

Definition 3.4.8 For a Distributed Dynamic Condition Response Graph DG =
〈G, Roles, P, as〉 with G = 〈E, M, Act,→•, •→,→%,→+,→�,→×,→•�, l〉
with marking M = 〈Ex, Re, In〉, a run (finite or infinite) is a sequence of labels

(e0, (p0, a0, r0))(e1, (p1, a1, r1))... of a sequence of transition Mi
(ei ,(pi ,ai ,ri))−−−−−−→ Mi+1

for i ≥ 0 starting from initial marking such that Mi `DG ei and Mi+1 =
Mi ⊕DG ei. A run is accepting if its underlying DCR Graph G is accepting i.e.
∀i ∈ [k].(∀e ∈ Ini ∩ Rei.∃j ≥ i.ej = e ∨ e /∈ In′j).

3.4.3 Nested DCR Graphs

When a DCR Graph contains many events and relations between them, it
may be desirable to logically group the events. This section provides formal
semantics of Nested DCR Graphs that allow doing that. Before defining
Nested DCR Graphs, definitions of DCR Graph (Definition 3.4.1) and
Distributed DCR Graphs (Definition 3.4.5) are generalised to a definition
of DCR Graphs that abstracts away from roles and principals.

Definition 3.4.9 A Dynamic Condition Response Graph (DCR Graph) G is a
tuple 〈E, M,→•, •→,→%,→+,→�,→×,→•�, L, l〉 where

• E is the set of events (or activities)

• M = 〈Ex, Re, In〉 ∈ M(G) is the marking

• →• ⊆ E× E is the condition relation.
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• •→ ⊆ E× E is the response relation.

• →+,→% ⊆ E× E is the dynamic include relation and exclude relation,
satisfying that ∀e ∈ E.e→+ ∩→% = ∅

• →� ⊆ E× E is the milestone relation

• →× ⊆ E× E is the no-response relation

• →•� ⊆ E× E is the pre-condition relation such that→•� =→•∩→�

• L is the set of labels

• l : E→ P(L) is labelling function mapping events to sets of labels

In words, each event is mapped to the set of labels, which can consist of
a name of the event and a role which defines who can execute that event.

This definition will now be extended to the definition of Nested DCR
Graphs by allowing events to be grouped under a super-event.

Definition 3.4.10 A Nested Dynamic Condition Response Graph (Nested DCR
Graph) G is a tuple 〈E,�, M,→•, •→,→%,→+,→�,→×,→•�, L, l〉 where

• 〈E, M,→•, •→,→%,→+,→�,→×,→•�, L, l〉 is a DCR Graph

• � : E ⇀ E is a partial function mapping an event to its super-event (if
defined)

• M ∈ P(atoms(E))×P(atoms(E))×P(atoms(E)), where atoms(E) =
E \ {e ∈ E|∃e′ ∈ E.� (e′) = e} is the set of atomic events

We write e� e′ if e′ = �k(e) for 0 < k, e� e′ if e� e′ or e = e′, and e� e′ if
e′ � e or e = e′. The resulting relation, � ⊂ E × E, referred to as the nesting
relation, must be a well founded partial order. The nesting relation must also be
consistent with respect to dynamic inclusion/exclusion in the following sense: if
e� e′ or e′ � e, then e→+ ∩e′→% = ∅

To define the execution semantics for Nested DCR Graph, we first need
to define how to flatten a nested graph to a simpler DCR Graph.

Definition 3.4.11 For a Nested Dynamic Condition Response Graph G =
〈E,�, M,→•, •→,→%,→+,→�,→×,→•�, L, l〉 define the underlying flat
Dynamic Condition Response Graph as

Gb = (atoms(E), M,→•b, •→b,→�b,→+b,→%b,→×b,→•�b, L, l)

where relb = �rel� for some relation rel ∈ {→•, •→,→�,→+,→%,→×,→•�}

Using the corresponding flat graph, we can now define when an event
is enabled and the result of executing an event for Nested DCR Graphs.
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Definition 3.4.12 For a Nested Dynamic Condition Response Graph G =
〈E,�, M,→•, •→,→%,→+,→�,→×,→•�, L, l〉where M = 〈Ex, Re, In〉, an
event e ∈ atoms(E) is enabled, written M `G e, if M `Gb e. Similarly, the result
of executing M⊕G e is the same as the result executing the event in flattened graph
and is defined as: M⊕Gb e = 〈Ex, Re, In〉 ⊕Gb e

A run/execution in a Nested DCR Graph and the conditions for the
run/execution to be accepting are the same as for underlying flat DCR
Graph.

3.5 DCR process methodology

This section addresses the methodology for the modelling of a process
as a DCR Graph and different ways of verifying correction of the model
available in the DCR Tool.

In order to construct a model of a process as a DCR Graph, one
must first identify the actions that can be performed (activities) and who
can perform them (roles). Next, the rules describing order, precedence,
dependencies and other forms of restrictions among activities can be
defined.

When the information about roles, activities and rules is collected, a
graphical representation of the DCR Graph can be drawn using the DCR
Tool. First, the activities are added. For each activity, the DCR Tool allows
to add a title, assign one or several roles and choose whether the activity
is initially included, pending or executed, as well as to write an additional
description of the activity if needed for documentation purpose. Then, the
rules that activities must conform to are expressed as relations described
in Section 3.3.2. For the relations, it is also possible to add a description if
desired.

The goal and purpose of creating a model are often to verify some
properties that should be valid. For DCR Graphs, it means checking that
the process expressed by the graph behaves as expected. Verifying the
final and complete graph is most important. However, for larger and
more complicated processes, it might also be a good idea to do some
checking during the graph creation process. One way to do so is by creating
scenarios.

A scenario is a sequence of activities representing a path through the
process. Scenarios can either describe desirable or undesirable (invalid)
behaviours of the process.

The DCR Tool provides two different ways of creating scenarios. The
first one is by using DCR Swimlane Editor. DCR Swimlane Editor allows
to drag and drop activities one by one, so they form a path from beginning
to the end of the process. For a scenario, it is possible to add a title and
description, as well as to choose whether the scenario is required (desired
behaviour, called "happy path" in the DCR Tool) or forbidden (undesired
behaviour). It is then possible to validate the scenario against created DCR
Graph in order to check that the graph conforms to defined rules.
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Another way of creating scenarios in the DCR Tool is by using DCR
Simulator. Compared to DCR Swimlane Editor, DCR Simulator allows for
collaborative simulation of the graph with co-workers or so-called machine
users. When executing activities in DCR Simulator, the state of the graph is
updated after each step. It shows which activities are included, pending or
executed and if the execution is accepting. User can save a simulation as a
scenario.

DCR Swimlane Editor and DCR Simulator are useful tools to test
some particular executions. However, verification using scenarios has a
disadvantage similar to the disadvantage of writing tests for computer
programs: only a limited number of situations gets executed. Especially
for more complex processes that involve many activities, it would not
be feasible to consider all possible orders in which the activities can be
executed. Therefore, using DCR Swimlane Editor and DCR Simulator
alone is insufficient to verify the DCR Graph.

The DCR Tool itself does not provide other inbuilt functionalities for
this purpose. However, the DCR Community provides an App Store
containing multiple applications that can be added to the DCR Tool. When
it comes to verification goal, there are primarily two applications that are
worth the attention.

One of them is the Scenario Search application. Figure 3.18 demon-
strates the application’s functionality, which is twofold. One option is to
search for a specific path (called "happy path") through the process starting
from one activity and ending in another. It also allows specifying activities
to be used or avoided during the execution. If one or several paths con-
forming to the specified parameters exist, the application returns a swim-
lane diagram showing an example of such a path. Otherwise, a message
notifying about the absence of such paths is returned. Another option,
which can be accessed by choosing "Full" instead of "Happy path", returns
a diagram showing all possible transitions in the DCR Graph.

Figure 3.18: Scenario Search application window

The second application is called Dead-end Analyzer. As the name
suggests, this application can be used to check whether the graph contains
paths leading to a state where the goal of the process can never be reached.
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If such a path exists, the Dead-end Analyzer returns a swimlane diagram
as an example. Otherwise, it returns a message stating that the graph can
not reach a dead-end.

The Scenario Search and Dead-end Analyzer applications have been
useful tools for verification purpose in this thesis. More details on their use,
as well as their limitations, are discussed later in the sections dedicated to
modelling and verification of this thesis’ use case.
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4 Tellu Diabetes App as the use case

As mentioned in the introduction, the use case chosen for this thesis is
Tellu Diabetes App. This chapter provides all the information about the
use case needed for modelling and verification in the following chapters.
First, Sections 4.1-4.4 explain the overall architecture, technology choices
and functionality of the application. The information presented in these
sections is collected from the deliverable from the Secure Connected
Trustable Things (SCOTT) project [9]. The description will serve as a
foundation for modelling of Tellu Diabetes App in Chapter 6. Then, Section
4.5 outlines the process of introducing changes in the application code
supported by the tools used by the development team in their daily work.
The described process presents a usual implementation process flow based
on studying the possibilities of these tools. This process will be modelled
and verified in Chapter 5.

Tellu Diabetes App is a mobile application for monitoring diabetes
patients. The main user group of the application is elderly people with
diabetes type 2. Patients with more severe cases use insulin or other drugs,
which introduce the danger of running too low on blood glucose. In
addition, elderly with diabetes have an increased risk of heart conditions,
and they often have high blood pressure. Diabetes App should therefore
help users monitor weight, blood pressure and blood glucose levels using
measurements from Bluetooth Low Energy (BLE) devices.

4.1 Architecture

The overall system architecture consists of three main parts: medical BLE
devices, an application running on a phone or tablet and Tellu’s backend
service TelluCloud which is used for user authentication and storage of
measurements from devices. The medical BLE devices communicate with
the application over Bluetooth, while the communication between the
application and TelluCloud happens over the Internet. The architecture
is graphically demonstrated in Figure 4.1.

4.2 Application functionality

Tellu Diabetes App has a number of functional requirements, i.e. functions
that the application must provide. The main functionalities of the Tellu
Diabetes App include adding new measurements (either automatically by
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Figure 4.1: Overall architecture of Tellu Diabetes App

transmitting them from the BLE device or manually by filling out the form)
and viewing user’s previous measurements. Furthermore, to ensure that
the data can only be accessed by the user it belongs to, the application must
provide login and logout functionality. These features can be expressed as
following use cases:

• As a user of the application, I want to get measurements from
measurement devices, so I do not need to enter them manually.

• As a user of the application, I want to be able to enter measurements
manually in case I have trouble connecting measurement devices.

• As a user of the application, I want to see my previous measurements
in order to compare them.

• As a user of the application, I want to get guidance on how to pair
a medical device to my mobile phone/tablet in order to get started
with using the application easily.

• As a user of the application, I want to be reminded of when I need to
make new measurements, so I do not forget it.

• As a user of the application, I want to be sure that my measurements
are only visible to me and the medical personal.

Considering the main user group of the application, it is essential
that it also satisfies a non-functional requirement related to usability.
The application must be intuitive to use and provide clear guidance and
feedback to the user.

A typical workflow of the application can be described in the following
steps:

1. User authenticates himself in the application.

2. BLE device is paired with the phone/tablet. This step is only
required the first time the measurement device is used with a new
phone/tablet. After that, the devices will be paired automatically as
long as the phone/tablet has Bluetooth switched on. Some guidance
on pairing the devices should be provided in application since this
process can be a little tricky, especially for elderly users.
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3. User takes measurements using BLE devices.

4. Measurements are transmitted to the mobile application. In addition
to getting data over Bluetooth connection, the application must allow
manual input in case of connection failures or for a device without
Bluetooth. This step can be seen as the main step in the process since
it will be repeated many times. It is, therefore, important to ensure
that the process of measuring and receiving data is as intuitive as
possible and that status of the process is communicated to the user.

5. Measurements are posted to TelluCloud where they are persisted and
can be accessed, for example, by medical personal.

6. User of the application can also choose to look at the history of
previous measurements. In this case, the application fetches data
stored at TelluCloud and displays it to the user.

4.3 Devices

As previously mentioned, the application should support several measure-
ment types such as weight, blood pressure and glucose levels. Tellu has
worked with several devices to cover all required measurements.

• Blood glucose meter Contour next ONE, which measures blood
glucose in blood applied to a test strip inserted in the device.

• Blood pressure meter AD Medical UA-651BLE

• Weight scale AD Medical UC-352BLE

All devices are Bluetooth enabled so that measurements can be transmitted
to mobile application over Bluetooth.

4.4 Technology

One of the requirements for the Diabetes App is support for both Android
and iOS platforms since both have a significant market share. To avoid
implementing two different application for those platforms, Tellu chose to
use Xamarin Forms as the framework for application development. This
way the most of the code can be shared between platforms, except for the
platform-specific parts dealing with Bluetooth communication.

4.5 Process of task implementation

The team developing Tellu Diabetes App uses a variety of tools to support
the development process. Examples of the tools relevant for the modelling
process are Jira [1], Bitbucket [2] and CI/CD tool for executing automated
build and testing.
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Jira is software that is used to keep track of all tasks that must be done.
It also makes project management more accessible by providing intuitive
and visual tools for project planning, prioritising tasks and following the
progress. Bitbucket, in its turn, is a code management tool, which allows
team members to share and collaborate on making changes in the code.
Finally, CI/CD tool (or build system) helps to automate the process of
building application and running unit and integration tests found in the
codebase. All the tools can be integrated with each other in order to
increase traceability. For example, the tasks in Jira can be directly connected
to a development branch in Bitbucket, which makes it convenient to track
the changes related to precisely that task. Furthermore, the build tool can
be set up to listen to changes in the Bitbucket repository, so each build
corresponds to specific changes in the code.

The usual flow of a task implementation process is graphically demon-
strated in Figure 4.2 and can be described as follows. A task (which can,
for example, be a bug to be fixed or a new feature to be implemented) is
put in the project backlog, i.e. a list containing all tasks that require to be
done. Each task in the list is typically called a ticket. This list should be
prioritised by the severity and urgency of its tasks.

Figure 4.2: Flow of a Jira ticket through the task implementation process

While backlog contains all the tasks to be done, another project
management tool is needed to keep track of workflow in the current period
of time (like a single sprint in Scrum). This tool is called the board and
consists of several columns with tickets being moved between columns as
their status changes. A typical board includes columns like TO DO, IN
PROGRESS, PULL REQUEST and DONE.

When a task from backlog is chosen for development, it is initially put
to the TO DO column. When a developer picks a task to solve or is assigned
to it by the project manager, the ticket is moved to the IN PROGRESS
column. The developer creates a separate branch where he can add new
code or modify existing code. Each logical unit of work forms a commit.
Changes are committed to the local repository and are pushed to the remote
repository at Bitbucket, where other team members can access them.
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When the changes are pushed to the remote repository, the automated
build process that builds the application and runs unit and integration tests
is triggered. The build process is essential to ensure that new changes in the
code did not break any existing features by checking that the application
still builds and the tests still pass. When the build process is finished,
the status is reported. The status can either be a failed or a successful
build. The former indicates some errors during compilation, assembling
or testing of the code and means that additional measures should be taken
to fix it. It usually involves making changes in the code locally, committing
and pushing them to the remote repository again.

While the build process helps to verify the changes dynamically by
running tests, the code should be verified statically as well. Thus, when the
developer considers his task as ready to be merged to the main branch, he
must create a pull request and ask a team member to approve the changes.
This process is called peer review (or code review) and is performed by
the reviewer going through the modifications and searching for errors and
potential improvements in the code. The peer can write some comments
explaining which parts of the code should be changed and why. At the end
of the process, the peer can approve the pull request if the code looks good
or request changes if there is something to improve.

Only when the changes are statically and dynamically verified (i.e.
approved by a peer and pass the automated tests), they can be merged into
the main branch.

Sometimes, two or more developers may need to modify the same
part of the code during the implementation of their tasks. When one of
the developers merges in his changes, the second developer’s changes
may conflict with newly added modifications. In this case, the code
management system will inform the second developer about the arisen
merge conflict and disallow proceeding with merging until the conflict is
resolved.
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5 Modelling and verification of task
implementation process

This chapter is dedicated to the work done on modelling and verification
of the task implementation process with the purpose of satisfying safety
standard requirements concerned with code modification control. The
model and properties verified are based on the process and tools as
described in Section 4.5.

5.1 Properties

When it comes to the task implementation process, two important
properties should be satisfied by the process.

1. Any code changes merged into the main branch must be quality
checked (peer-reviewed and tested)

2. A task that is chosen for development should eventually be com-
pleted

5.2 Model

Before the specified properties can be verified, we must construct the model
first. The final model describes the process of implementing a single task
from the point it gets chosen for development until the solution is merged
into the main branch.

The modelling process was carried out in several iterations. The first
versions of the model were reworked and adjusted to fix errors in the
relations between activities and achieve an appropriate level of abstraction
and complexity. The model in this section presents the final version. Please
refer to Section 5.2.5 for some of the considerations taken into account
during the early phases of the modelling process and background for the
final decisions.

Following the DCR process methodology described in Section 3.5, the
first step in the modelling process is defining the activities executed during
the task implementation process and who executes them.
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5.2.1 Activities

The task implementation process described in Section 4.5 can be summar-
ised by the following list of main activities and their subactivities.

• Project manager moves a Jira ticket from BACKLOG to TO DO in the
current sprint

• Developer picks (or is assigned to) the ticket from Jira board and
moves it from TO DO to IN PROGRESS

• Developer creates a new branch

• Developer solves the task

– Developer makes changes in the code
– Developer writes tests and runs them
– Developer commits the changes
– Developer pushes changes (the newly created branch) to the

remote repository

• Build process performed by the build system

– Build system recognises that there are new changes, builds the
application and runs automated tests

– Build system reports build status (successful or unsuccessful)

• Peer review process

– Developer creates a pull request

* Developer asks colleague/peer for review

* Developer moves the Jira ticket from IN PROGRESS to
PULL REQUEST

– Peer can approve the pull request
OR

– Peer can request changes in the code

• Task completion

– Developer merges the branch into the main branch
– Developer moves the Jira ticket from PULL REQUEST to DONE

5.2.2 Roles

Following is a list of all roles that appeared in the activities defined above.

• Project manager

• Developer

• Peer

• Build system
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5.2.3 Rules

Next, the rules that the activities must conform to are defined. These rules
describe order, precedence, dependencies and other forms of restrictions
among activities. The rules will later be expressed as relations in the DCR
Graph.

For the task implementation process, the following rules were identified
in addition to the properties which were already defined in Section 5.1.

• The task must be included in the current sprint before the developer
can pick it

• New changes must be done on a new branch

• The code must contain changes since the last commit before a new
commit can be executed

• There must be commits on a branch before the developer can push
the changes to the remote repository

• Build system (on feature branch) is only triggered when new commits
are pushed to remote branch

• Result of the build can either be success or failure, not both

• A pull request can only be created if there are new changes that were
pushed to the remote branch

• Once a pull request is created, the developer can not create new pull
requests – only the same pull request is updated

• A peer can not do code review before he is asked to do so

• A peer can either approve the pull request or request changes

5.2.4 Model as DCR Graph

From defined roles, activities and rules, we construct the DCR Graph
modelling task implementation process as graphically demonstrated using
the DCR Tool as shown in Figure 5.1.

We will now explain the typical relation patterns used in the graph to
demonstrate how some of the above rules are converted to relations in a
DCR Graph.

As we see in the final model, multiple activities have an exclude relation
(red arrow) to themselves. One of them is the "Move task from BACKLOG
to TO DO" activity shown in Figure 5.2. It means that when the "Move task
from BACKLOG to TO DO" activity is executed, it is added to the set of
executed events and removed from the set of included events (by Definition
3.4.3). Since this activity is not included, it can not be enabled for execution
unless it is included again (according to Definition 3.4.12). However, the
"Move task from BACKLOG to TO DO" activity does not have any include
relations going to it, meaning that it can not be executed for the rest of the
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Figure 5.1: Task implementation process modelled as DCR Graph

process. In other words, an activity with an exclude relation to itself (and
without include relation from other activity) represents that the activity can
only be executed once in the entire process.

Figure 5.2: Activity with exclude relation to itself

Another relation pattern used in the model is the combination of pre-
condition and response relations. Two variants of this combination are
presented in the graph in Figure 5.1. The first variant includes two activities
with pre-condition relation (yellow arrow) going from the first activity to
the second and response relation (blue arrow) going back from the second
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activity to the first one. An example shown in Figure 5.3 includes the
activities "Make changes in code" and "Commit changes". As we can recall
from Chapter 3, pre-condition relation is a combination of condition and
milestone relations. "Make changes in code" being a condition for "Commit
changes" means that the "Commit changes" activity will not be enabled for
execution until the "Make changes in code" activity is in the set of executed
events. This relation expresses that one activity must precede the second
activity. After the "Make changes in code" activity is executed once it will
stay in the set of executed events for the rest of the execution. Thus, the
"Commit changes" activity can be executed at any point in time. However,
it would lead to undesired behaviour since there must be new changes in
the code before the developer can make a commit. Therefore, we use a
combination of response and milestone relation to ensure that the activities’
precedence is preserved for the rest of execution after the "Make changes
in the code" activity has occurred once. The response relation from the
"Commit changes" activity means that it will put the "Make changes in
code" activity in the set of pending events. The milestone relation will then
prevent "Commit changes" from being executed. When new changes are
introduced (i.e. "Make changes in code" activity is executed again), it is
removed from the set of pending events, so the "Commit changes" activity
can occur.

Figure 5.3: Combination of pre-condition and response relation between
two activities

The second variant of the combination of pre-condition and response
relations consists of three activities. It is demonstrated in Figure 5.4
with activities "Request changes in code", "Approve pull request" and
"Complete task". The condition part of the pre-condition relation between
"Approve pull request" and "Complete task" expresses that a task can not
be completed unless the peer approves the pull request. However, if the
peer changes his mind and requests changes in the code, the "Approve pull
request" activity will become pending (due to response relation between
these activities). The milestone part of the pre-condition relation between
"Approve pull request" and "Complete task" activities will then ensure that
"Complete task" can not happen until "Approve pull request" has happened
again.
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Figure 5.4: Combination of pre-condition and response relation between
three activities

According to Definition 3.4.10 of a Nested DCR Graph, the same graph
is formally defined as shown in listing 5.1. Note that we introduce the
following abbreviations for roles and activity names for convenience: Pro-
ject manager (PM), Developer (D), Build system (BS), Peer (P), "Move task
from backlog to TODO" (moveTaskBacklogTodo), "Pick task and move
it from TODO to IN PROGRESS" (pickTask), "Create new branch" (cre-
ateBranch), "Implement task" (implTask), "Make canges in code, includ-
ing tests" (changeCode), "Commit changes" (commit), "Push changes to re-
mote repository" (push), "Create pull request" (createPR), "Move task from
IN PROGRESS to PR" (moveTaskProgressPR), "Ask peer for code review"
(addReviewer), "Peer review" (peerReview), "Request changes in code" (re-
qChange), "Approve pull request" (approvePR), "Build process" (buildPro-
cess), "Build application" (buildApp), "Run tests" (runTest), "Report suc-
cessful build" (buildSuccess), "Report build failure" (buildFailure), "Com-
plete task" (completeTask), "Merge changes" (merge), "Move task from PR
to DONE" (moveTaskPRDone).

Listing 5.1: Task implementation process as Nested DCR Graph

Define a Nested DCR Graph
G = 〈E,�, M,→•, •→,→%,→+,→�,→×,→•�, L, l〉 such as

E = { moveTaskBacklogTodo, pickTask, createBranch, implTask,
changeCode, commit, push, createPR, moveTaskProgressPR, addReviewer,
peerReview, reqChange, approvePR, buildProcess, buildApp, runTest,
buildSuccess, buildFailure, completeTask, merge, moveTaskPRDone }

� = { 〈changeCode, implTask〉 , 〈commit, implTask〉 ,
〈push, implTask〉 , 〈moveTaskProgressPR, createPR〉 ,
〈addReviewer, createPR〉 , 〈reqChange, peerReview〉 ,
〈approvePR, peerReview〉 , 〈merge, completeTask〉 ,
〈moveTaskPRDone, completeTask〉 }
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atoms ( E ) = { moveTaskBacklogTodo, pickTask, createBranch,
changeCode, commit, push, moveTaskProgressPR, addReviewer,
reqChange, approvePR, buildApp, runTest, buildSuccess, buildFailure,
merge, moveTaskPRDone }

M = 〈∅, ∅, E〉

→• = { 〈moveTaskBacklogTodo, pickTask〉 , 〈pickTask, createBranch〉 ,
〈createBranch, changeCode〉 , 〈push, createPR〉 ,
〈addReviewer, peerReview〉 , 〈changeCode, commit〉 , 〈commit, push〉 ,
〈push, buildApp〉 , 〈buildApp, runTests〉 , 〈runTests, buildSuccess〉 ,
〈runTests, buildFailure〉 , 〈buildSuccess, completeTask〉 ,
〈approvePR, completeTask〉 }

•→ = { 〈moveTaskBacklogTodo, completeTask〉 ,
〈pickTask, createBranch〉 , 〈commit, changeCode〉 , 〈push, commit〉 ,
〈push, buildProcess〉 , 〈runTests, buildApp〉 ,
〈buildFailure, buildSuccess〉 , 〈buildFailure, runTests〉 ,
〈buildSuccess, runTests〉 , 〈reqChange, approvePR〉 }

→% = { 〈moveTaskBacklogTodo, moveTaskBacklogTodo〉 ,
〈pickTask, pickTask〉 , 〈createBranch, createBranch〉 ,
〈moveTaskProgressPR, moveTaskProgressPR〉 , 〈merge, merge〉 ,
〈moveTaskPRDone, moveTaskPRDone〉 , 〈completeTask, peerReview〉 ,
〈completeTask, createPR〉 , 〈completeTask, implTask〉 ,
〈completeTask, buildProcess〉 }

→+ = ∅

→� = { 〈changeCode, commit〉 , 〈commit, push〉 ,
〈push, buildApp〉 , 〈buildApp, runTests〉 , 〈runTests, buildSuccess〉 ,
〈runTests, buildFailure〉 , 〈buildSuccess, completeTask〉 ,
〈approvePR, completeTask〉 }

→× = ∅

→•� = { 〈changeCode, commit〉 , 〈commit, push〉 ,
〈push, buildApp〉 , 〈buildApp, runTests〉 ,
〈runTests, buildSuccess〉 , 〈runTests, buildFailure〉 ,
〈buildSuccess, completeTask〉 , 〈approvePR, completeTask〉 }

L = { 〈moveTaskBacklogTodo, PM〉 , 〈pickTask, D〉 ,
〈createBranch, D〉 , 〈implTask, D〉 , 〈changeCode, D〉 ,
〈commit, D〉 , 〈push, D〉 , 〈createPR, D〉 , 〈moveTaskProgressPR, D〉 ,
〈addReviewer, D〉 , 〈peerReview, P〉 , 〈reqChange, P〉 ,
〈approvePR, P〉 , 〈buildProcess, BS〉 , 〈buildApp, BS〉 ,
〈runTest, BS〉 , 〈buildSuccess, BS〉 , 〈buildFailure, BS〉 ,
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〈completeTask, D〉 , 〈merge, D〉 , 〈moveTaskPRDone, D〉 }

l = { 〈moveTaskBacklogTodo, 〈moveTaskBacklogTodo, PM〉〉 ,
〈pickTask, 〈pickTask, D〉〉 , 〈createBranch, 〈createBranch, D〉〉 ,
〈implTask, 〈implTask, D〉〉 , 〈changeCode, 〈changeCode, D〉〉 ,
〈commit, 〈commit, D〉〉 , 〈push, 〈push, D〉〉 , 〈createPR, 〈createPR, D〉〉 ,
〈moveTaskProgressPR, 〈moveTaskProgressPR, D〉〉 ,
〈addReviewer, 〈addReviewer, D〉〉 , 〈peerReview, 〈peerReview, P〉〉 ,
〈reqChange, 〈reqChange, P〉〉 , 〈approvePR, 〈approvePR, P〉〉 ,
〈buildProcess, 〈buildProcess, BS〉〉 , 〈buildApp, 〈buildApp, BS〉〉 ,
〈runTest, 〈runTest, BS〉〉 , 〈buildSuccess, 〈buildSuccess, BS〉〉 ,
〈buildFailure, 〈buildFailure, BS〉〉 , 〈completeTask, 〈completeTask, D〉〉 ,
〈merge, 〈merge, D〉〉 , 〈moveTaskPRDone, 〈moveTaskPRDone, D〉〉 }

5.2.5 Additional considerations

One of the main challenges in the modelling process is to choose a suitable
level of abstraction for a particular situation. The key point in the process is
to consider the purpose of creating the model. It will help to decide which
information should be included in the model, how detailed it should be
and which parts should be abstracted away.

Deciding on the scope of the model

The textual description of the task implementation process described in
Section 4.5 covers a notion of a merge conflict. In this situation, several
developers make changes in the code that conflict with each other. An early
version of the model reflected this part of the process and can be seen in
Figure 5.5. However, the "Merge conflict" activity did not become a part of
the final model in Figure 5.1.

The decision to abstract away this activity was made based on the
aim of the modelling process, namely verifying the properties defined in
Section 5.1. The properties focus mainly on the requirement of quality
checking of the code, like running automated tests and statical code review.
The technical details, such as reported merge conflict, do not seem to be of
the same importance to the process verification. Thus, they were omitted in
the model as well. Otherwise, it could result in an overcomplicated model
without providing any benefits in terms of verification.

Detailed modelling of "Implement task" activity

When developers implement a task, they usually write unit tests to check
that the new code behaves as expected. They can also run tests that already
exist in the codebase to check that changes in the code did not break any
previously developed functionality. These steps are essential to ensure that
the software behaves correctly after the code is modified. Therefore, it
seemed reasonable to model these steps as separate activities.

51



Figure 5.5: Task implementation process extended with "merge conflict"
activity

Figure 5.6 shows the excerpt from an early version of the model where
the "Implement task" activity included more child activities to describe it
in more detail. Instead of a single "Make changes to the code (included
tests)" activity as child activity, it included a nested activity "Code changes",
which, in turn, contained child activities "Write code", "Write tests" and
"Run tests locally".

However, this way of modelling caused problems related to the number
of possible executions during the verification process. The only constraint
on the "Code changes" subprocess is the condition relation from the "Create
branch" activity. By Definition 3.4.2 all three child activities of the "Code
changes" activity are enabled for execution at any point of time after the
"Create branch" activity is executed. It means that for every step of graph
execution (until the end state is reached), the number of activities that can
be executed as the next step is at least three. For the final model (Figure
5.1), where these three activities are combined into a single "Make changes
to the code (included tests)" activity, this number is at least one. The former
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leads to an increased number of possible executions compared to the latter.
The difference is illustrated in Figures 5.7 and 5.8 which show possible

executions for simplified and detailed versions of "Implement task"
subprocesses respectively. It is clear that the number of executions is
significantly bigger for the detailed version. Considering that the complete
model also contains other activities, the difference becomes even more
visible, making verification with the DCR Tool infeasible for the reasons
explained later in Section 5.3.2.

Figure 5.6: Detailed model of "code changes" process (excerpt from task
implementation process)

Figure 5.7: All possible executions of simplified "Implement task" subpro-
cess

5.3 Verification

Using the constructed model, the properties can now be verified. This
section describes how the verification process was carried out, the tools
used and the achieved results.
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Figure 5.8: All possible executions of extended "Implement task" subpro-
cess

5.3.1 Testing process behaviour with scenarios

One method used to test the model’s behaviour during the development
process and on its completion was checking that some desired and
undesired paths were respectively accepted and rejected by the model.

As can be recalled from Section 3.5, the DCR Tool allows to specify and
validate the paths (scenarios) using DCR Swimlane Editor.

Figure 5.9 shows the list of defined scenarios, including one execution
that is required to be accepting and two executions that are forbidden in
the model. The checkmarks on the left indicate that scenario verification
was successful.

Figure 5.9: Examples of scenarios for task implementation process

The required scenario is the path where all activities are executed as
expected, with both automated tests passing and pull request approved
before the changes are merged into the main branch. The swim lane
diagram in Figure 5.10 shows that all the boxes (activities) are green,
meaning that the run is accepting.

The two forbidden scenarios represent paths where either the auto-
mated tests fail or the pull request gets rejected, but the changes are still
merged in. Swim lane for one of these paths is demonstrated in Figure
5.11. One of the boxes ("Merge changes" activity) is marked as yellow be-
cause it violates the rules expressed by the DCR Graph, meaning that the
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Figure 5.10: Accepting execution

execution is not accepting.

Figure 5.11: Not accepting execution

The same can be proved using the formal definitions from Section 3.4.
In order to do that, the Nested DCR Graph defined in 5.1 must first be
transformed to a flat DCR Graph by using Definition 3.4.11.

Listing 5.2: Flattening Nested DCR Graph for task implementation process

Define an underlying f l a t DCR Graph f o r Nested DCR
Graph in l i s t i n g 5 . 1 as
Gb =

〈
atoms(E), M,→•b, •→b,→%b,→+b,→�b,→×b,→•�b, L, l

〉
such

as

atoms ( E ) , L and l are the same as in l i s t i n g 5 . 1

M = 〈∅, ∅, atoms(E)〉

→•b = { 〈moveTaskBacklogTodo, pickTask〉 ,
〈pickTask, createBranch〉 , 〈createBranch, changeCode〉 ,
〈push, createPR〉 , 〈addReviewer, reqChanges〉 ,
〈addReviewer, approvePR〉 , 〈changeCode, commit〉 ,
〈commit, push〉 , 〈push, buildApp〉 , 〈buildApp, runTests〉 ,
〈runTests, buildSuccess〉 , 〈runTests, buildFailure〉 ,
〈buildSuccess, merge〉 , 〈buildSuccess, moveTaskPRDone〉 ,
〈approvePR, merge〉 , 〈approvePR, moveTaskPRDone〉 }
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•→b = { 〈moveTaskBacklogTodo, merge〉 ,
〈moveTaskBacklogTodo, moveTaskPRDone〉 ,
〈pickTask, createBranch〉 , 〈commit, changeCode〉 ,
〈push, commit〉 , 〈push, buildApp〉 , 〈push, runTest〉 ,
〈push, buildSuccess〉 , 〈push, buildFailure〉 ,
〈runTests, buildApp〉 , 〈buildFailure, buildSuccess〉 ,
〈buildFailure, runTests〉 , 〈buildSuccess, runTests〉 ,
〈reqChange, approvePR〉 }

→%b = { 〈moveTaskBacklogTodo, moveTaskBacklogTodo〉 ,
〈pickTask, pickTask〉 , 〈createBranch, createBranch〉 ,
〈moveTaskProgressPR, moveTaskProgressPR〉 ,
〈merge, merge〉 , 〈moveTaskPRDone, moveTaskPRDone〉 ,
〈merge, moveTaskProgressPR〉 , 〈merge, addReviewer〉 ,
〈merge, reqChange〉 , 〈merge, approvePR〉 , 〈merge, changeCode〉 ,
〈merge, commit〉 , 〈merge, push〉 , 〈merge, buildApp〉 ,
〈merge, runTests〉 , 〈merge, buildSuccess〉 ,
〈merge, buildFailure〉 , 〈moveTaskPRDone, moveTaskProgressPR〉 ,
〈moveTaskPRDone, addReviewer〉 , 〈moveTaskPRDone, reqChange〉 ,
〈moveTaskPRDone, approvePR〉 , 〈moveTaskPRDone, changeCode〉 ,
〈moveTaskPRDone, commit〉 , 〈moveTaskPRDone, push〉 ,
〈moveTaskPRDone, buildApp〉 , 〈moveTaskPRDone, runTests〉 ,
〈moveTaskPRDone, buildSuccess〉 , 〈moveTaskPRDone, buildFailure〉
}

→+b = ∅

→�b = { 〈changeCode, commit〉 , 〈commit, push〉 ,
〈push, buildApp〉 , 〈buildApp, runTests〉 , 〈runTests, buildSuccess〉 ,
〈runTests, buildFailure〉 , 〈buildSuccess, merge〉 ,
〈buildSuccess, moveTaskPRDone〉 , 〈approvePR, merge〉 ,
〈approvePR, moveTaskPRDone〉 }

→×b = ∅

→•�b = { 〈changeCode, commit〉 , 〈commit, push〉 ,
〈push, buildApp〉 , 〈buildApp, runTests〉 , 〈runTests, buildSuccess〉 ,
〈runTests, buildFailure〉 , 〈buildSuccess, merge〉 ,
〈buildSuccess, moveTaskPRDone〉 , 〈approvePR, merge〉 ,
〈approvePR, moveTaskPRDone〉 }

Using the flat DCR Graph, we can reason about the states of the DCR
Graph during execution. The following reasoning shows the execution of
activities from the project manager chooses the task for development until
a pull request is created and approved, but the build of the application fails.
It then explains why the execution can not proceed to merge activity.

The state of the graph is described by the marking M = 〈Ex, Re, In〉,
i.e. the sets of executed, pending and included events. For the graph in
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listing 5.2, the initial state is M = 〈∅, ∅, atoms(E)〉. It means that the sets of
executed and pending events are empty and all atomic events in the graph
are included.

According to Definition 3.4.12, an event is enabled for execution if it
is included, all events that have condition relation to it are executed and
none of the events that are milestones for it are pending. Initially, the only
event that satisfies these requirements is moveTaskBacklogTodo because
it is included and does not have any conditions or milestones.

Executing moveTaskBacklogTodo events causes change in state. By
Definition 3.4.3, the executed event is added to Ex set, is removed from
Re set (if it was pending) as well as Re and In sets are updated according
to response, include and exclude relations going from the executed event.
Event moveTaskBacklogTodo does not have include relation to any event.
However, it has exclude relation to itself, meaning that it can only be
executed only once in the process, unless it is included by any other
event again. It has also response relation to the events merge and
moveTaskPRDone, meaning that one a task is chosen for development,
the activities related to completing the task must be executed in the future.
The new marking becomes

M = 〈{moveTaskBacklogTodo}, {merge, moveTaskPRDone},
atoms(E) \ {moveTaskBacklogTodo}〉.

Now, the only event that is enabled for execution is the pickTask event.
Executing it results in the marking

M = 〈{moveTaskBacklogTodo, pickTask}, {merge, moveTaskPRDone, createBranch},
atoms(E) \ {moveTaskBacklogTodo, pickTask}〉.

Note that createBranch event is in the set of pending requests, because
it is a response to pickTask event. It means that the developer must create
a new branch to introduce changes related to the task he has picked.

Let us then assume that createBranch, changeCode, commit, push
events get executed. The marking is then

M = 〈{moveTaskBacklogTodo, pickTask, createBranch, changeCode, commit, push},
{merge, moveTaskPRDone, changeCode, commit},
atoms(E) \ {moveTaskBacklogTodo, pickTask, createBranch}〉.

The events that are enabled for execution now are changeCode,
moveTaskInProgressPR, addReviewer and buildApp.

Assume that the execution continues with performing activities related
to creation and approving a pull request. The events moveTaskInPro-
gressPR and addReviewer get executed and the marking becomes

M = 〈{moveTaskBacklogTodo, pickTask, createBranch, changeCode, commit, push}∪
{moveTaskInProgressPR, addReviewer, approvePR}, {merge, moveTaskPRDone}∪
{changeCode, commit}, atoms(E)\
{moveTaskBacklogTodo, pickTask, createBranch, moveTaskInProgressPR, addReviewer}〉.
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Further, let us look at the case where the build process results in build
failure. Events buildApp, runTests and buildFailure get executed. The
marking is updated to

M = 〈{moveTaskBacklogTodo, pickTask, createBranch, changeCode, commit, push}∪
{moveTaskInProgressPR, addReviewer, approvePR, buildApp, runTests, buildFailure},
{merge, moveTaskPRDone, changeCode, commit, buildSuccess}, atoms(E)\
{moveTaskBacklogTodo, pickTask, createBranch, moveTaskInProgressPR, addReviewer}〉.

By the definition of an enabled event, the execution can not proceed
with merge or moveTaskPRDone events. The reason is that both of these
activities have buildSuccess as a milestone. It means that buildSuccess
can not be in the set of pending events to execute them. Looking at the
marking above, we see that it is not the case. By choosing merge activity
for execution, we would therefore violate rules of DCR Graphs. Thus, the
path where an application build fails is not valid in the model.

DCR Swimlane Editor is a helpful and intuitive way of testing the
behaviour of the process for some scenarios that are expected to be
accepting or forbidden. However, it is impossible to verify all possible
executions of a graph using scenarios. The number of executions is so large
that it is not feasible to create a swim lane for each of them. Furthermore,
maintaining all the swim lanes in case of changes in the graph would be a
tedious task. Therefore, the model needs to be verified in another way that
allows checking all possible executions.

5.3.2 Verification through execution of all possible paths

As mentioned in Section 3.5, the DCR Tool gives access to two applications
that provide the functionality to find a path through the graph based on
parameters and analysing the graph for deadlocks, namely Scenario Search
and Dead-end Analyzer applications. This section explains the attempts
and results of verifying the properties specified in Section 5.1 using these
applications.

Property 1

The first property that has to be satisfied is "Any code changes merged
into the main branch must be quality checked (peer review approved
and build successfully)". We can also formulate this property as two
following sentences: "No code changes that a peer does not approve can be
merged" and "No code changes that do not pass the build can be merged".
These sentences express requirements about some undesired behaviour
that should not occur. As can be recalled from Section 2.5.2, these are
therefore safety properties.

In order to prove a safety property, it must be proven that there are
no executions where the undesired behaviour occurs among all possible
executions. If at least one such execution is found, the property is not valid
in the model. In the context of DCR Graphs, it means that if there is at
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least one path such that an undesired sequence of activities occurs, then
the property is not valid. This path will, in this case, be a counterexample.

Following this reasoning, the Scenario Search application was found
suitable for proving safety properties "No code changes that a peer does not
approve can be merged" and "No code changes that do not pass the build
can be merged". By filling out the parameters shown in Figure 3.18 in a
way that expresses the undesired behaviour and running Scenario Search,
it will either return a counterexample or a message saying that no such
paths exist. If the latter is the case, then the property is valid in the model.

Take "No code changes that a peer does not approve can be merged"-
property as an example first. A counterexample showing that the property
does not hold in the model would be a path where activity "Merge changes"
can be executed even if the "Approve PR" activity was not executed before
it. The parameters filled out as shown in Figure 5.12 mean that we search
for a path to "Merge changes" activity where "Approve PR" activity was
avoided (not executed). The result of this search is seen at the top of
Figure 5.12. It says that no paths that satisfy given parameters were
found, meaning that "No code changes that a peer does not approve can
be merged"-property is valid in the model.

Figure 5.12: Verifying "No code changes that are not approved by a peer
can be merged"-property with Scenario Search application

"No code changes that do not pass the build can be merged"-property
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can be verified in a similar way as shown in Figure 5.13.

Figure 5.13: Verifying "No code changes that do not pass the build can be
merged"-property with Scenario Search application

Since there are no counterexamples for each of the properties, we can
conclude that the desired property "Any code changes merged into the
main branch must be quality checked (peer review approved and build
is successful)" holds in the model.

Property 2

The second property that has to be verified for the software development
process is that "A task that is chosen for development must eventually be
completed". It means that each time the process of implementing a task
starts, it can not finish until the task is completed. In other words, the
"Complete task" activity must occur in each valid path. Based on Section
2.5.2, this is therefore a liveness property.

One way to verify this property could be to search for a path where the
process has reached its end (is completed), but the subactivities "Merge
changes" and "Move task from PR to Done" of "Complete task" activity
has not been executed. However, the Scenario Search application does not
provide a way to express the end state (the completion) of the process in
parameters. Thus, the verification of this property can not be done in the
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same way as for the first property.
Another possibility is to use the "full" option of the Scenario Search

application that returns a figure showing all possible executions of the DCR
Graph. This figure includes the end states, i.e. states where the process is
completed (execution is accepting). Then, it is possible to find whether all
paths leading to end states include "Merge changes" and "Move task from
PR to Done" activities. The result of the full path search for the model of
the task implementation process is shown in Figure 5.14. From the figure,
it is clear that going through it manually is an infeasible task.

A third option is making use of the Dead-end Analyzer application
provided in the App Store of DCR Tool. As mentioned in Section 3.5, the
Dead-end Analyzer application searches for paths where the goal of the
process can not be reached. In the context of DCR Graphs, it means finding
a path where an accepting state can not be reached.

For the process of task implementation, the accepting state can only be
reached in two cases. The first case is the initial state since there are no
pending events in this state. However, once the "Move task from backlog
to TODO" activity is executed, the "Merge changes" and "Move task from
PR to Done" activities become pending. It means that the only way an
accepting state can be reached again is if "Merge changes" and "Move task
from PR to Done" activities get executed since they become pending. Thus,
if it can be proved that all executions can be completed (i.e. there is no
deadlock in the process), then the desired property is satisfied. The absence
of a situation that prevents the process from completing can be proven with
the Dead-end Analyzer application. Figure 5.15 shows the result of running
dead-end analysis on the DCR Graph modelling the task implementation
process. It shows that the dead-end is not reachable in the graph, so it can
be concluded that the property "A task that is chosen for development must
eventually be completed" is satisfied.

Figure 5.15: Dead-end Analyzer result
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Limitation for verification using the DCR Tool

The DCR Tool, which has been used for modelling and verification in this
thesis, is a web-based tool. When the user initiates a computation process,
for example, searching for a scenario with the Scenario Search application
or finding dead-ends with the Dead-end Analyzer application, the tool
sends a request to a service that takes care of executing this process. Then,
the DCR Tool waits until the service returns a response containing the
execution result. However, the DCR Tool can not wait for the response
indefinitely. If a request takes long time to answer, it could indicate that the
service is down and will never return a response. Therefore, The DCR Tool
is set to wait for a limited amount of time (1,7 minutes) before it assumes
that the service did not receive a request and shows an error message to the
user. However, the reason for the service not responding in time could also
be that the computation takes longer time to complete than expected. In
the context of DCR Graphs executions, this would often be the case when
the number of all possible executions becomes large.

Section 5.2.5 mentioned that extending the model with more activities
to present a more detailed picture of task implementation activity led to
complications for verification. It also explained that the main reason is the
rapidly growing number of all possible executions when more activities are
enabled for execution. A larger number of possible executions also means
longer time needed for executing them.

During verification of the extended model, the problem related to
the time-out limit was faced. When running the Dead-end Analyzer
application on the extended graph, a generic error message saying that
something went wrong was returned. However, no counterexample
showing how the graph can reach a dead-end was presented. This response
does not provide a valuable result of verification. No counterexample can
only indicate that the dead-end was not reached before the request timed
out after 1,7 minutes. However, a dead-end could be reached after the time-
out. Therefore, it is impossible to interpret the result and state whether the
verification succeeded or not.
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6 Modelling and verification of Tellu
Diabetes App

This section addresses the work done on modelling and verification of the
system developed, focusing on the mobile application, Tellu Diabetes App.
The model is based on the application functionality described in Section
4.2.

6.1 Properties

The system as a whole and the application must satisfy several properties.
The data handled by the application (mainly health-related measurements)
is sensitive, so it must be ensured that it is transmitted and stored securely.
Some of the properties are summarised as follows:

1. Only logged in users can access the application functionality related
to the viewing of personal information

2. The data transmitted between medical BLE devices and the applic-
ation can not be received by any mobile device (smartphone, tablet)
other than the user’s

3. The data transmitted over the network (for example, between
application and TelluCloud) can not be available for attackers to read

4. TelluCloud must eventually receive measurements sent from the
mobile application so that the medical personal can be notified in time
in case any additional actions are needed

As we can see, many of these properties are related to parts of the
system that lie outside of the mobile application. For example, properties
2 and 3 are related to communication links (network and Bluetooth
connections), while property 4 relies on the correct function and uptime
of TelluCloud services. Since this thesis focuses mainly on modelling and
verification of the mobile application, some assumptions must be made.

6.2 Assumptions

Analysing the properties specified in the previous section, we can list the
following assumptions:
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• The services provided by TelluCloud behave correctly. TelluCloud
may still respond with error codes or be temporarily down, but if it
responds with success codes, it is expected that TelluCloud handles
the data correctly.

• Once the Bluetooth connection is established between two devices
(in this case, medical BLE device and smartphone/tablet running the
application), the connection is secure.

• When the application makes a request to TelluCloud, the library
used by the application for making network calls, handles the data
transmission in a secure way (for example, by encrypting the data
sent)

6.3 Model

We will construct a model of application functionality based on the
functional requirements described in Section 4.2.

Following the DCR process methodology from Section 3.5, we will first
define activities that can be executed in the application and who executes
them.

6.3.1 Activities

• Login process

– User loges into the application by filling out the login form

– Mobile application validates the login form

– In case login form validation fails, the mobile application
displays an error message

– In case login form validation succeeds, the mobile application
sends a request to TelluCloud to authenticate the user

– TelluCloud returns a response (either success or error)

– In case of authentication failure, the mobile application displays
an error message

• Pairing of BLE device and mobile

– User turns off Bluetooth on smartphone

– User turns on Bluetooth on smartphone

– User pairs the devices

• Process of adding new measurement automatically

– Mobile application fills out the measurement form automatically
with data received from medical BLE device

– User submits the form
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• Process of adding new measurement manually

– User fills out the measurement form

– User submits the form

• Process of validating measurement form

– Mobile application validates the measurement form

– If form validation fails, the mobile application displays an error
message

• Process of sending "add measurement" request to TelluCloud (same
for submitting either manually or automatically filled out form)

– Mobile application makes a request to TelluCloud to add a new
measurement

– TelluCloud returns a response (either success or error)

– In case of error response code, the mobile application displays
an error message

• Viewing previous measurements

– User navigates to the screen with previous measurements in the
application

– Mobile application sends "get all my measurements" request to
TelluCloud

– TelluCloud returns a response (either success or error)

– If TelluCloud responds with OK, the mobile application displays
the list of previous measurements

– If TelluCloud responds with error code, mobile application
displays an error message

• Logout process

– User logs out of the application by clicking a button

– Mobile application sends logout request to TelluCloud

6.3.2 Roles

Following is a list of all roles that appeared in the activities defined above.

• User

• Mobile application

• TelluCloud
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6.3.3 Model as DCR Graph

The DCR process methodology described in Section 3.5 suggests defining
all rules representing dependencies between the activities before construct-
ing the model. However, this process contains many activities that, in turn,
contain other subactivities. Thus, it was considered more appropriate to
start with defining rules and construct model including top-level activities
only before narrowing down to the rules between subactivities.

Top-level model

In order to explain dependencies between different features the application
provides, a model that only includes top-level events is presented first.

Rule 1 The main rule that the top-level activities need to conform to is
that no features are accessible before the user logs in. Put in a more formal
way, the events representing the execution of any application feature (like
accessing previous measurements or submitting new measurements) can
not be executed unless the "Log in" event has occurred before. Furthermore,
if the user logs out of the application, the "Log in" event must occur again
before executing any other events. We assume that the user is initially
logged out.

Rule 2 The second rule is that in order to get measurements from a BLE
device, it must be paired with the user’s smartphone/tablet. We assume
that the devices are initially not paired.

These rules can be expressed as DCR Graph as demonstrated in
Figure 6.1. Initially, only "Log in" and "Pair BLE device to smartphone"
activities are included in the process. The other activities are not included
(graphically represented with dotted lines), meaning that they are not
enabled for execution (by Definition 3.4.2).

The "Log in" activity has include relations (green arrows) to events
representing other functionalities of the application. It also has an exclude
relation (red arrow) to itself. These relations express that when "Log in"
activity gets executed, it becomes excluded from the process, while "Log
out", "Fill out measurement form manually", "Fill out measurement form
automatically" and "Access previous measurements" activities become
included (by Definition 3.4.3). It means that after the user logs in, he or she
can access the other features of the application. However, it is not possible
to log in when the user is already logged in.

Further, the "Log out" activity has exclude relations to all events
representing application functionality (also itself) and an include relation
to "Log in" activity. These relations express that after the user logs out, the
only thing that the user can do in the application is to log in.

Two previous paragraphs explain how Rule 1 is modelled. This is
the rule that is mainly concerned with access to the mobile application’s
functionality. Rule 2, on the other hand, specifies a requirement related
to an event outside of the main application flow. "Pair BLE device to
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Figure 6.1: Top-level model of Tellu Diabetes App as DCR Graph

smartphone" is an activity that can occur independently from the other
activities. However, one of the application functionalities depends on
its execution. This dependency is expressed with pre-condition relation
(yellow arrow), going from "Pair BLE device to smartphone" to "Fill out
measurement form automatically" activity. As can be recalled from 3.3,
the pre-condition relation is a combination of condition and milestone
relation. The condition part means that "Pair BLE device to smartphone"
must occur before "Fill out measurement form automatically" can occur.
The milestone part means that if "Pair BLE device to smartphone" becomes
pending, then "Fill out measurement form automatically" can not occur
until pairing has occurred again. The milestone relation between these
activities is redundant in the top-level model, but it is essential for the
further extension of the device pairing process. Therefore, the need for
milestone relation is explained later in Section 6.3.3.

We will now continue the modelling process by extending the top-
level activities with their subactivities and specifying the rules that apply
between them.
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Extending "Log in" activity

First, we will consider the "Log in" activity in more detail and explain some
of the relation patterns used for expressing certain rules. Subactivities of
"Log in" activity have to conform to the following rules:

1. User has to fill out the login form before it can be submitted

2. When the user submits the form, the mobile application must verify
it. If form validation fails (for example, if no password was provided),
an error message is displayed. Otherwise, a request to a service
responsible for authentication at TelluCloud is sent.

3. When a request is sent to TelluCloud, it must eventually respond
either with OK or an error response (in case the request has timed out,
it is interpreted as an error response). On successful authentication,
the user is logged in and gets access to other application features.
Otherwise, an error message is displayed.

4. After the user has submitted the login form, he or she can not
fill out the form again until the processes of form verification and
authentication request to TelluCloud have completed. If either of
them is completed with an error, the user can fill out the form again.

Figure 6.2 demonstrates the relations between subactivities of "Log in"
activities. "Log out" activity and three include relations are included in the
model, so the relations described in the previous subsection are visible.

Initially, only the "Fill out login form" activity is included in the process.
Other subactivities are not included (graphically represented with dotted
lines). It means that only the "Fill out login form" activity is enabled for
execution by Definition 3.4.2. For example, it would not be reasonable to
be able to execute the "Send authentication request" activity before the form
is filled out and submitted. The include relations (green arrows) going from
one activity to another can be interpreted as the order in which the activities
can happen. For instance, "Fill out login form" includes "Submit login form"
in the process, so it becomes enabled for execution (by Definitions 3.4.3 and
3.4.2). This include relation expresses Rule 1 specified in the list above.

Further, "Submit login form" includes "Login form validation failure"
and "Login form validation OK" since they only can happen after the form
is submitted. We also see response relations (blue arrows) between "Submit
login form" and "Login form validation failure" and "Login form validation
OK" relations. Additionally, the "Login form validation failure" and "Login
form validation OK" activities have exclude relations (red arrows) to
each other and themselves. This pattern is used to express that when
a validation process starts, it must complete either with success or error.
When one of the activities gets executed, it excludes the other, preventing
the same verification from completing with both results simultaneously.
The exclude relation to itself means that the activity can not be repeated
until it is included again. For example, suppose the "Login form validation
failure" activity occurs. In that case, it is removed from the set of pending
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responses and the set of included events and "Login form validation OK"
is excluded, so it can not happen until the next time the user submits the
form and it is validated again. The same pattern is used multiple times for
expressing rules similar to Rules 2 and 3 from the list above.

We can also see that the "Submit login form" activity excludes the "Fill
out login form" activity. It can then be included again by "Login form
verification failure" and "Send auth failed response" activities. It means that
the user can not fill out the login form until the form verification process
and the following request are completed. The combination of exclude
relation between "Submit login form" and "Fill out login form" activities
and include relations going from "Verification failure" and "Send auth failed
response" activities to the "Fill out login form" activity express Rule 4 from
the list above.

Figure 6.2: Extended model of "Log In" activity (excerpt from complete
DCR Graph)

Extending "Device pairing" activity

Section 6.3.3 mentioned the pre-condition (combination of condition
and milestone) relation going from "Pair BLE device to smartphone"
activity to "Fill out measurements automatically" activity. The condition
relation is necessary to express that the devices have to be paired before
measurements can be transmitted from BLE device to smartphone. Now,
we will explain how the extension of "Pair BLE device to smartphone"
introduces the need for milestone relation and why condition relation alone
is not sufficient.
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Figure 6.3: Extended model of "Device pairing" activity (excerpt from
complete DCR Graph)

The definition of condition relation says that if an event A is a condition
for an event B, A must be executed before B. In this case, it would mean
that the "Pair BLE device to smartphone" activity must occur before "Fill
out form with measurement from BLE device" can occur. After "Pair BLE
device to smartphone" has been executed once, the "Fill out measurements
automatically" activity can be executed (provided that it is included in the
process and no other conditions going to it prevent it from being executed).
Let us now consider the following situation: the user pairs the devices
and then switches off Bluetooth on the smartphone. In this case, the
devices are no longer paired, so measurement transmission should not
be allowed to be executed. However, this execution would be accepting
in the model containing only condition relation. When the events "Pair
BLE device to smartphone" and "Switch off Bluetooth on smartphone" are
executed, they are added to the set of executed events. Since "Pair BLE
device to smartphone" is executed, it does not prevent "Fill out form with
measurement from BLE device" from being executed. This behaviour is
undesired, so the model must be adjusted.

It can be done by introducing activities and relations as shown in
Figure 6.3. The response relations (blue arrows) going from "Switch
off Bluetooth on smartphone" to "Switch on Bluetooth on smartphone"
and "Pair devices" mean that they become pending when the "Switch off
Bluetooth on smartphone" activity is executed. By definition of milestone
relation, "Fill out form with measurement from BLE device" can then not
be executed. "Pair devices" can, in turn, not be executed until "Switch
on Bluetooth on smartphone" is executed since these activities have a
pre-condition relation. Therefore, the combination of pre-condition and
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response relations ensures that after Bluetooth is switched off, it must be
switched on again for the devices to get paired.

Extending activities related to submission of new measurements

We will now consider the activities related to submitting new measure-
ments to TelluCloud, either by filling out the form manually or automatic-
ally. This process has several rules that should be satisfied.

1. When the form filled out manually by the user or automatically by the
application (based on measurements received from the BLE device) is
submitted, it gets validated. Validation completes either with success
or failure. If the former is the case, an "add measurement" request is
sent to TelluCloud. Otherwise, an error message is displayed.

2. When the "add measurement" request is sent to TelluCloud, it must
eventually respond with either OK or error code. In both cases, a
suitable message is displayed to the user.

3. The form can not be filled out again until the processes of form
validation and request to TelluCloud complete.

These rules are expressed with activities and relations as demonstrated
in Figure 6.4. The combination of include, response and exclude relations
between "Submit form", "Form validation failure", "Form validation suc-
cess" and "Send add measurement request to TelluCloud", "Send OK re-
sponse", "Send error response" express Rules 1 and 2 from the list above.
The same pattern was explained earlier for validation of login form in Sec-
tion 6.3.3.

Rule 3 is expressed by the milestone relations (violet arrows) from "Send
measurement to TelluCloud" and "Measurement form validation" to "Fill
out measurement form manually" and "Fill out form with measurement
from BLE device". When the form is submitted, the "Form validation
failure" and "Form validation success" activities become pending. By
definition of milestone relation, the activities representing the process of
filling out the form are then no longer enabled for execution. Further, when
the form is successfully validated and the request is sent to TelluCloud,
the "Send OK response" and "Send error response" activities become
pending, preventing form filling activities from being executed. "Fill out
measurement form manually" and "Fill out form with measurement from
BLE device" will remain unenabled for execution until all child activities
of "Send measurement to TelluCloud" and "Measurement form validation"
either are executed or excluded.

Extending activity related to viewing previous measurements

The process of viewing previous measurements has similar rules and
representation to those of measurement submission.

72



Figure 6.4: Extended model of activities related to measurement submis-
sion (excerpt from complete DCR Graph)

1. When a "get all measurements" request is sent to TelluCloud, it must
eventually respond with either OK (returning the list of previous
measurements) or an error code. In the former case, the list is
displayed. Otherwise, an error message is displayed.

2. User can not navigate to the "my measurements" screen again until
the request process is completed.

Both rules are expressed with the relation patterns that were already
explained for similar cases in previous paragraphs. The process of viewing
all previous measurements is illustrated in Figure 6.5.
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Figure 6.5: Extended model of activities related to viewing previous
measurement (excerpt from complete DCR Graph)

The final model

The previous paragraphs presented the main parts of the model and
explained the relations between the activities. These parts can now be
unified in the final model as presented in Figure 6.6. Additional milestone
relations (violet arrows) were added between activities related to processes
of form validation and request sending. They express that no other
activities can be executed while they are ongoing.

6.4 Verification

6.4.1 Testing process behaviour with scenarios

The first method used to verify the correctness of the model was defining
some executions representing desired and undesired behaviour and check-
ing that the actual results correspond to the expected ones. As we may
recall from Section 3.5, this can be done with the DCR Swimlane Editor.

Figure 6.7 shows a selection from the list of defined scenarios, including
paths expected to be accepting and forbidden in the model. Results of the
verification indicating that the graph behaves as expected are represented
with checkmarks on the left of each scenario.
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Figure 6.7: Examples of scenarios for Tellu Diabetes App model

The required scenarios are paths expressing the desired behaviour of
the model. Figure 6.8 shows a swim lane diagram for one of the required
scenarios, namely a successful attempt to submit a new measurement from
the BLE device. In this scenario, the user logs in to the application, switches
on Bluetooth on the smartphone and pairs it to the medical BLE device
before adding a new measurement. As shown in the figure, all boxes
(activities) are green, meaning that the scenario is accepting.
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Figure 6.8: Swim lane diagram showing an accepting scenario

On the other hand, the forbidden scenarios are paths expressing the
undesired behaviour of the model. Figure 6.9 demonstrates one of such
scenarios. This scenario represents a path where the user logs in to the
application, then logs out and attempts to navigate to the screen with
previous measurements afterwards. This behaviour is undesired since only
logged in users should access the application functionality, like fetching
previous measurements. From the figure, we can see that this execution
is not accepting in the model since one of the boxes ("Navigate to my
measurements screen" activity) is marked yellow, meaning that executing
this event violates the rules of the DCR Graph. It indicates that the model
from Figure 6.6 contains correct relations to prevent this scenario from
being accepting.

Figure 6.9: Swim lane diagram showing a forbidden scenario

Figure 6.7 lists several scenarios specified for testing purposes. How-
ever, it is only a fraction of all possible executions of the DCR Graph from
Figure 6.6. Therefore, stating that the model behaves correctly in all pos-
sible situations based exclusively on the scenarios would be wrong. Thus,
we need to use another method to verify the model’s correctness.

6.4.2 Verification through execution of all possible paths

As Sections 6.1 and 6.2 explained, many of the desired properties depend
on factors that lie outside of the mobile application. Verifying them would
require lower level abstraction models of the specific parts of the system
that the properties are related to. However, Property 1, "Only logged in
users can access the application functionality related to viewing of personal
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information", depends mainly on the application functionality and can be
verified in the model from Section 6.3.3 using DCR Tool.

The property "Only logged in users can access the application function-
ality related to viewing of personal information" can be rephrased to "A
user that has not logged into the application can not view any personal
information". This sentence expresses a requirement about undesired be-
haviour that should not occur. As can be recalled from Section 2.5.2, this is,
therefore, a safety property.

To verify a safety property, it must be proven that there are no
executions among all possible executions where the undesired behaviour
occurs. If at least one such execution can be found, then the property is
not valid in the model. In the context of DCR Graphs, it means that if
a sequence of events violating the desired behaviour exists, then this path
will be a counterexample proving that the model is wrong. As we can recall
from Section 3.5, the DCR Tool has an application that analyses all possible
executions and helps to search for a scenario based on specified parameters,
namely Scenario Search application. We will now attempt to use this
application to verify "A user that has not logged into the application can
not view any personal information" property by filling out the parameters
in a way that expresses the undesired behaviour and running the search.

Since Tellu Diabetes App has multiple features that should not be
accessed without logging in to the application, we must verify the property
for each of the features. We will start with the functionality of accessing
previous measurements without successful login. The successful login
process is completed when TelluCloud sends an OK response ("Send auth
OK response" activity in the model). The process of accessing previous
measurements is initiated when the user goes to the "my measurements"
screen of the application ("Navigate to "my measurements" screen" activity
in the model). Thus, to find out whether the undesired situation when the
user can access previous measurements without logging in, we can search
for a path such that "Navigate to "my measurements" screen" is the goal
activity and "Send auth OK response" is avoided in the execution. This is
demonstrated in Figure 6.10. The result can be seen at the top of the figure.
Scenario Search application returned a message saying that no such paths
were found. It means that paths where the undesired sequence of events
occurred, do not exist. Thus, we can conclude that the user can never access
previous measurements without logging in first.
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Figure 6.10: Scenario Search result for fetching previous measurements
activity

The same procedure was repeated for the other features of the
Tellu Diabetes App, "Fill out measurement form manually", "Fill out
measurement form from BLE device" and "Press log out" as goal activities
and gave similar results. They can be seen in Figure 6.11.

From the results of applying Scenario Search on the model, we can
conclude that no features are available for a user who has not logged
in previously. However, it is only sufficient to verify a part of "A
user that has not logged into the application can not view any personal
information" property. Scenario Search application helps us verify the
situations where the "Log in" activity is avoided altogether. However, it
does not consider executions where the user logs in first and then logs
out. In this case "Send auth OK response" activity is not avoided since
it is executed once. However, the user should still not be able to execute
activities expressing other application functionalities (like "Navigate to "my
measurements" screen"). This case demonstrates a significant limitation of
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the Scenario Search application as a tool for verifying safety properties
since its’ parameters only allow to specify individual activities and not
sequences and relations between them.

Figure 6.11: Scenario Search results for other application features
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7 Discussion and future work

Chapters 5 and 6 explained the process of modelling and verification
of the task implementation process and application functionality with
DCR Graphs. They also presented considerations that were made and
limitations that were met during the process, as well as the results of the
verifications. This chapter summarises and reflects on the findings. The
first two parts of the chapter are related to the two goals defined for this
thesis, while the third part provides additional thoughts on using the DCR
Tool. Further, the possible extensions of this work are outlined in the last
part.

7.1 Towards satisfying requirements for software de-
velopment process

The first goal of this thesis was to study how modelling and verification
of software development process using DCR Graphs can help to satisfy
safety standard requirements. As we can recall from Section 2.3.1, safety
standards specify a number of requirements for each of the software
development activities, specification, design, implementation, verification,
validation and evolution. However, the main challenge pointed out by
Tellu was that for each change in the code, it must be proved that the
software still behaves as expected. Therefore, the main focus of the
modelling process in Chapter 5 was on the evolution of the software,
including re-verification.

First, the DCR Graph presenting the process of implementing an
individual task (which could be a bug fix or new feature) was developed in
Section 5.2. The final model was demonstrated in Figure 5.1. Then, the
correctness of the model was verified as explained in Section 5.3 using
several different methods available in the DCR Tool. It was proved that
in all possible executions of the graph, the changes made during the
implementation of the task go through two quality check mechanisms
before they become a part of the main codebase.

The first mechanism modelled is peer review, the process where
the developer working on a task asks a colleague (peer) to review the
modifications and additions made in the code. As we may recall from
Section 2.3.1, peer review is a static verification technique. The peer review
process is initiated when the developer creates a pull request in the version
control system and adds a reviewer to it. The peer can comment on
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errors in the code, bad coding standards, structural flaws or other points
of improvement and require changes that should be made to increase code
quality. The verification process in Section 5.3 proved that only when the
peer is satisfied and approves the pull request, the changes are merged into
the main codebase. In other words, it was verified that all modifications in
the code go through static analysis as a part of the verification process.

The second mechanism modelled is running tests automatically with
the help of the build system. As we may recall from Section 2.3.1, testing
is an example of dynamic verification techniques. When the changes are
pushed to the remote repository, the build process gets triggered. This
process consists of building the application, running all the tests that exist
in the codebase and reporting the results. Re-running the tests for each
modification ensures that the changes in the code did not break any existing
functionality. The verification process in Section 5.3 proved that only if all
the tests pass, the changes can be merged into the main codebase. Thus, it
was verified that all modifications in the code undergo testing as a part of
the verification process.

As presented in Table 2.3, both static analysis and testing are recommen-
ded for the lowest safety integrity level (SIL) and highly recommended for
safety integrity level (SIL) higher than 2. The model developed in Section
5.2 shows that both techniques are used in the development process, so
both of these requirements are satisfied by the model. Furthermore, since
this process is repeated for each modification in the code, it also satisfies
some of the requirements related to software evolution specified in Section
2.3.1. First, the model shows that the system is re-tested when new changes
are introduced. In addition, the description of the task in the Jira ticket may
serve as documentation of the modification and the reason for why it must
be introduced.

All in all, the DCR Graph in Figure 5.1 and the following verification
process shows that the process model satisfies several requirements for the
software development process posed by the safety standards.

However, one of the weaknesses of modelling is that a model is only
a reflection of reality. Verifying that safety standard requirements are
satisfied by the model developed in Section 5.2 does not necessarily mean
that the actual process satisfies them. For example, if version control
system history contains at least one pull request that was merged to the
main branch without approval, the actual process does not correspond to
the model any longer.

Nevertheless, The DCR Graph and verification results can serve
as documentation of the development process in formal mathematical
language and be an addition to descriptions in natural language.

7.2 DCR Graphs for modelling of Internet of Things
system

As Section 3.1 describes, the DCR Graphs were developed with the primary
purpose of modelling and analysis of business processes in order to
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increase their productivity and quality. A business process is a sequence of
activities that must be performed by people or machines in order to achieve
a business goal. Similarly, computer systems can be seen as a process
consisting of a number of activities performed by the system components.
However, DCR Graphs have not been widely used to model this kind
of processes. Therefore, the second goal of this thesis was to investigate
whether DCR Graphs are suitable for this purpose using a real system as
the use case.

The process of modelling and verification of the Tellu Diabetes App,
a mobile application that is a part of an Internet of Things system, was
explained in Chapter 6. Based on the described work, this section will
first address the similarities and differences between modelling a business
process and computer system with DCR Graphs and which challenges the
differences lead to. Then, some advantages of using DCR Graphs for the
task are pointed out. Finally, the reflection on whether modelling with DCR
Graphs can be a part of a software development process and contribute to
safety standard compliance is presented.

As mentioned previously, components of computer systems perform
a sequence of activities in a similar way as participants of a business
process. When constructing a DCR Graph, each operation executed by
a system can be seen as an event with the component executing the
operation assigned as a role. The operations may have dependencies
among each other, for example, "operation A must precede operation B"
or "operation A triggers execution of operation B". These dependencies can
in DCR Graphs be expressed using relations between activities. Therefore,
the basic structural components of the DCR Graphs make it possible to
model a computer system just like business processes to a large extent.
This point is demonstrated by the DCR Graph in Figure 6.6 that models
the functionality of the Tellu Diabetes App, its’ communication with the
services of TelluCloud and the user’s interaction with it.

At the same time, a mobile application differs from a business process
in an important respect. While a business process usually has a goal,
representing the end of the process, a mobile application does not
necessarily need to achieve any goal. Furthermore, the processes inside
the mobile application should not have an end since a finished process
would indicate a crash of the application. The two parts of this thesis can
even exemplify this difference. While the process of task implementation
presented in Chapter 5 has an end goal - completing the task and merging
the changes into the main codebase - Tellu Diabetes App does not have such
a goal. Of course, when a user initiates an operation in the application (for
example, by submitting a new measurement), he has a goal of completing
this operation. However, it is not the end goal of the process. On the
contrary, once the user enters the Tellu Diabetes App, it should continue
running until he chooses to leave the application. It means that the
execution of the DCR Graph modelling the processes inside the Tellu
Diabetes App could be infinite.

However, infinite executions do not pose a challenge for reasoning
about the model. The Definition 3.4.4 provides a condition for an execution
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to be accepting, namely that no required response event can continuously
be included and pending without it happens or becomes excluded. This
condition does not rely on a run/execution to be finite in order to determine
whether it is accepting or not.

In addition, a mobile application differs from a business process in the
way the current state of the process is represented. When describing the
state of a business process, one is usually interested in which activities can
be executed in the next step, must be executed to complete the process or
which of them are blocked. On the other hand, for a mobile application, it
is common to describe the state in terms of the current values of variables.
For example, in Tellu Diabetes App, there could be a variable holding
information about the current user of the application. If the variable’s
value is null, it indicates that no user is logged in, so the only functionality
available to the user is to log in. When this variable is initialised as a result
of a user logging in, it means that the user can access other features of
the application. When the user logs out, the variable is reset to null value
again. As we have seen, the current state of a DCR Graph is expressed by
the marking M containing sets of executed, pending and included events.
When modelling the application, it was, therefore, necessary to think of
variable value state in terms of whether the activity causing the change in
this state was executed or not. While applying this mindset for the first-
time execution of "Log in" activity is easy, it is more challenging to consider
the possibility of "Log out" activity happening afterwards. As described in
Section 6.3.3, the result is an increased number of additional relations that
make the model more complex.

Otherwise, the DCR Graphs contain the relations needed to express the
relations between activities that were needed for our purpose.

The DCR Graphs as a tool for modelling the systems as a part of a
software development process has several advantages. The first advantage
is related to the agile development processes widely used in industry
today. The mobile application itself and the system it is a part of can
undergo many changes both during the development process and after the
application is deployed for the users. Various errors and bugs may need to
be fixed and new features introduced to the application. In this case, the
DCR Graphs make it easy to make changes in the model as well, so that it
reflects the modification of the application. In order to adjust the model,
one needs to add new activities and relations to the graph or modify or
delete existing ones.

However, for larger and more complex graphs, the process of modi-
fying the model can be more difficult and error-prone. For example, the
model of Tellu Diabetes App in Figure 6.6 contains a significant num-
ber of activities and relations between them. Even at this relatively high
level of abstraction, it might be challenging to follow all the dependencies
between activities without additional explanations, considering the num-
ber of boxes and arrows. When adding new activities, it can be easy to
forget an essential relation to some of the existing activities and introduce
a mistake in the model. Fortunately, the verification mechanisms, like spe-
cifying predefined scenarios that should be accepting or forbidden in the
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process using DCR Swimlane Editor, can help to reassure that the graph
still behaves correctly after new changes.

Another advantage of using DCR Graphs as a part of the software
development process is that they have a graphical representation in
addition to formal semantics. The graphical notation may make it
easier for developers without logical and mathematical background or
experience to create and understand the models. Therefore, usage of
DCR Graphs could lower the costs of using formal methods as part of the
software development process compared to other formal method tools that
exclusively use hard-to-understand mathematical notations.

Furthermore, the use of DCR Graphs can contribute to satisfying
some of the requirements for the use of formal methods posed by safety
standards. As can be recalled from Section 2.3.1, formal methods are
recommended during the software specification and design process for
SIL2 and SIL3 and highly recommended for SIL4. The formal proof is also
suggested as a part of the verification process. The model developed in
Chapter 6 can be used to satisfy some of these requirements.

Demonstrating the functionality of the application, communication
with backend services, and interactions between the user and the applic-
ation, the model in Figure 6.6 serves as an overall formal model of the sys-
tem. It presents the functional requirements of the Tellu Diabetes App, how
the data flows between the system components and how the application re-
acts both to user inputs and the different responses from TelluCloud. Thus,
it could satisfy the requirements for the use of formal methods during soft-
ware requirement specification and the overall system architecture process.
However, when it comes to designing individual components, the model
should have a lower level of abstraction (for example, include more details
on which operations are performed by which modules of the application).
Such a model would be larger and more complex. To avoid this problem,
one could create several models, each addressing a single functionality of
the application. This way, the model could be more detailed but feasible to
understand at the same time. However, the disadvantage of this approach
is that the dependencies between different functionalities of the application
would not be visible any longer.

7.3 Reflection on using the DCR Tool

Since the DCR Tool was used as the primary tool for modelling and
verification in this thesis, it is in its place to comment on some findings
related to the tool, including the limitations for the thesis work.

First, the DCR Graphs Community has created comprehensive docu-
mentation of DCR Graphs that has been useful during the work on this
thesis. Ranging from simple and intuitive explanations on the website [14]
to formal definitions in academic research papers, it provides an excellent
base for understanding DCR Graphs. However, the amount and organisa-
tion of documentation on the website have occasionally made it challen-
ging to find the desired information. In addition, since the DCR Graphs
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technology is still developing, some of the formal descriptions were out-
dated and some features that are available in the DCR Tool have yet to
appear in academic papers.

Second, the DCR Tool is easily accessible since it is web-based. Since
it does not require installation of any software, it has a lower threshold
for getting started for anyone who wants to explore the possibilities of
DCR Graphs. In addition, the DCR Tool provides a guide on using the
tool, called DCR Tour. It is an interactive guide that demonstrates the basic
functionality of the graphical tool required to create and edit a DCR Graph.
The DCR Tool also keeps a log of all changes the user makes to the graph,
so it is easy to revert the changes in case of a mistake. The web-based tool
also makes it easy to share the graphs with other people and collaborate on
simulations of the graphs.

Furthermore, the App Store provides several useful applications in
addition to the core functionality of the DCR Tool. Some of the applications,
like Scenario Search and Dead-end Analyzer, were already described
in detail throughout the thesis. Another application, called Publisher
App, can be used to generate documentation of the model containing
information about activities, roles, relations and scenarios. This feature
allows collecting both description of the model in natural language and
the model itself in one file instead of keeping it in several different places.

Despite all the benefits provided by the DCR Tool, it contains some bugs
and problems with long loading times and has a somewhat unintuitive user
interface for particular features. The following errors were encountered
and had an impact on the thesis work:

• Somewhat long loading time when logging into the DCR Tool and
opening the graphs. During the editing of the graphs, the page
sometimes hangs up, so the user is forced to reload the page and can
lose the recent changes.

• When using DCR Swimlane Editor in one window and making
changes to the graph in another window, the user has to refresh the
DCR Swimlane Editor window to get the most recent version of the
graph. Before the need for refreshing was discovered, it was a source
of confusion about the results of scenario validations.

• Scenario Search and Dead-end Analyzer applications open in their
own dialogue boxes. When running one of the applications first and
then the other, the result of running the second application appears
in the first application’s dialogue box. It is confusing since the user
does not get any feedback in the current dialogue box.

• The DCR Swimlane Editor displays the results of scenario validation
in a snack bar that appears on the screen just for a couple of seconds.
If the validation fails, the content of the snack bar is an error message
explaining the cause of failure. Sometimes the error message is too
long to manage reading it before the snack bar disappears. Thus,
making correct modifications in the scenario or the graph becomes
more challenging.
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However, the DCR Tool evolves continuously and the design was
improved significantly while the thesis work was in progress.

Finally, the DCR Tool had a couple of limitations related to the
verification process in this thesis. Chapters 5 and 6 explained how
the models of the task implementation process and Tellu Diabetes App
functionality were verified using different features of the DCR Tool, among
others, the Scenario Search application. As we saw from these chapters, the
Scenario Search application allowed us to find paths through the graph by
specifying parameters like end goal activity (in the "To" field) and activities
that should be used or avoided in the execution ("Use" and "Avoid" fields).
This feature was used to verify some of the safety properties that had to
be satisfied in the models. However, this way of specifying properties has
limitations. Section 5.3.2 showed that there is no way to specify the end
of the process as a "To" event. Further, Section 6.4.2 mentioned that it is
impossible to express any more complex relations between activities other
than that they should be used or avoided.

The DCR Tool clearly focuses on the verification of models by specify-
ing individual scenarios with DCR Swimlane Editor and simulations. Scen-
ario Search and Dead-end Analyzer applications provide some functional-
ity for verification of properties for all possible executions of the graph.
However, it is limited to a particular type of properties and may not be
intuitive to understand. In addition, these applications have a limitation
related to time-outs that were visible for verification of larger and more
complex models as explained in Section 5.3.2.

7.4 Future work

Considering the reflections and limitations provided previously in this
chapter, some items can be pointed out as possible extensions of the work
performed in the thesis. These items are presented in the following list.

1. As explained in the previous section, the DCR Tool does not provide
extensive enough support for analysis of all possible executions of
the graph. Instead, it could be an idea to use model checkers for
this purpose. Bringing this idea to life requires mapping the DCR
Graphs to the modelling language used by the model checker first.
Some work on the mapping and verification of some properties
for simple DCR Graphs using SPIN model checker and verification
modelling language Promela has already been described in [38].
However, scaling it up for larger and more complex DCR Graphs and
attempting to integrate it in the DCR Tool would be an interesting
task.

2. As Section 7.2 explained, the model of Tellu Diabetes App construc-
ted in this thesis has too high abstraction level to provide significant
benefits in terms of satisfying safety standard requirements for the
use of formal methods during the design of individual software mod-
ules. Therefore, it would be interesting to study whether the construc-
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ted model can be extended further with more code-specific activities
and relations while still being feasible to understand and modify.

3. The task implementation process modelled in Chapter 5 and the
functionalities of the application modelled in Chapter 6 go hand in
hand since newly introduced modifications in the code can cause a
change in the application functionality. Therefore, an idea could be
to investigate whether these models can be joined, so the result of
activities executed during the task implementation process can be
reflected in the model of the application.
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8 Conclusion

This thesis’s main aims were to study the use of DCR Graphs to ensure
that a development process satisfies safety standard requirements and
investigate whether DCR Graphs are suitable for modelling an Internet of
Things system. With the help of the Tellu Diabetes App as the use case, two
models were constructed and verified using the DCR Tool.

The first goal was addressed by modelling and verifying the process
of introducing new changes in the code of the application and looking
at which parts of safety standard requirements could be satisfied with
the help of the model. The discussion showed that the model satisfies
several requirements for the software verification and evolution processes
and could serve the purpose of documenting the process. However, the
possible mismatch between the model and the actual process was pointed
out as a weakness.

Achieving the second goal involved constructing a DCR Graph repres-
enting the functionalities of the Tellu Diabetes App. This process and fur-
ther discussion showed that DCR Graphs are suitable for modelling an In-
ternet of Things system in a similar way as business processes to a large
extent. However, some challenges related to differences between computer
systems and business processes and the size and complexity of the model
were encountered. In addition, dynamicity and graphical notation of the
DCR Graphs were pointed out as advantages for using them for modelling
purposes as a part of the software development process. Finally, the model
developed could contribute to satisfying some of the requirements for the
software development process. Although, only the requirements related to
top-level system design activities were covered by the model in this thesis.

To sum up, this thesis touched upon a broad spectrum of topics, like
the Internet of Things, safety standards, software development process
methodologies and formal methods. It also required insight into various
software development tools and understanding of DCR Graphs syntax and
semantics. This variety made the thesis work was an exciting process with
a great learning outcome. Theoretical knowledge and practical experience
gained throughout the process are invaluable and will surely be helpful for
my future career in Information Technology.
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