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Privacy preserving distributed computation

• Two natural models for privacy preserving mechanisms: 
‣ non-interactive (offline) 

- a data curator collects the data and publishes a sanitized version of the data 
(anonymization or de-identification) 

‣ interactive (online) 
- the trusted entity provides an interface through which users can query the 

data and obtain (possibly noisy) answers  
- often used if no information about the queries is known in advance



Privacy preserving distributed computation
• Different approaches: 

‣ Data perturbation / Output perturbation  
‣ Access control  
‣ Query restriction / Query auditing 
‣ Summary statistics  
‣ Removal of specific identifiers (k-anonymity, l-diversity, t-closeness) 
‣ Differential privacy 
‣ Secure multiparty computation (SMC) 
‣ Information flow properties  
‣ Homomorphic encryption
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Privacy preserving distributed computation

• Todays topics 
‣ Differential privacy 
‣ Secure multiparty computation (SMC)



Who am I?
• Professor in computer science 

‣ Cybersecurity 
‣ Machine learning 
‣ Mobile systems / context sensitivity / personalization 
‣ Adaptive middleware / distributed systems 
‣ Multimedia 

• Head of department (IFI @ UiT) 
‣ Since 2019 

• Other 
‣ Led national workgroup on ICT-security in education
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A short advertising break 
(a few words about IFI @ UiT)
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Helseteknologi
CYBERSIKKERHET 
– En femårig mastergrad i informatikk 

SØK SIVILINGENIØR I INFORMATIKK SØK SIVILINGENIØR I INFORMATIKK     

UIT UIT Norges arktiske UniversitetNorges arktiske Universitet

Cybersikkerhet sikrer det moderne samfunnet. 

Vær med å form den teknologiske framtida.

UiT Institutt for informatikk

• Har du interesse for teknologi og 
data? Ønsker du å være med å skape 
og utvikle framtidas teknologi? 

• Datateknologi bidrar til å løse 
samfunnsviktige utfordringer.

Søk sivilingeniør i informatikk 

UiT Norges arktiske universitet

Datamaskinsystemer  
– en femårig mastergrad i informatikk



Study programs IFI @ UiT
• Bachelor in informatics 

‣ 3-year 

• Master in Computer Science 
‣ 2-year 

• Integrated master 
‣ 5-year (sivilingeniør) 
‣ computer systems 
‣ health technology  
‣ cybersecurity 
‣ artificial intelligence (with IFT/IMS) 

• About the studies 
‣ practical 
‣ good evaluation 
‣ industry relevance 
‣ good collaboration 

with industry 

• Recruitment 
‣ mostly from Northern-Norway 
‣ increasing share of students  

from other places in Norway 
‣ some international students
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New study programs
• In Nordland, starting autumn 2023 

‣ 3-year bachelor at Helgeland 
‣ 2-year master in Bodø 

• Continuing education 
‣ Experienced based master in digital health services, from 2022 

– Pilot at Helgeland in collaboration with the hospital at Helgeland 
‣ Individual topics 

– Programming, ICT-security, analytics (AI / ML) 
‣ In collaboration with others 

– Experienced master «Ocean leadership» (BFE, Jur-Fak)



IFI @ UiT has 
become a 

multi-campus 
department

Tromsø

Bodø

Mo i Rana
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Research groups

• Cyber-Physical Systems 

• Open Distributed Systems   Faggruppe 1 (O. Anshus) 

• Health informatics and -technology 

• Cyber Security Group    Faggruppe 2 (R. Karlsen) 

• Arctic Green Computing 

• Health Data Lab     Faggruppe 3 (H. D. Johansen) 

• Computational Analytics and Intelligence



Back to the main program 



Privacy preserving distributed computation

• Todays topics 
‣ Differential privacy 
‣ Secure multiparty computation (SMC)



Differential Privacy

Roughly, an algorithm is differentially private if an 
observer seeing its output cannot tell if a particular 
individual's information was used in the computation



Differential Privacy — Background
• Example: publish statistical 

data about businesses: 
‣ Collect sales-numbers by 

business categories and not 
individual businesses 

‣ Leave out the business 
categories with a single 
business 

‣ Now, the sales-numbers for 
individual businesses are 
not known

Category 1

Category 2

Category 3

Category 4

Category 5

Category 6

Total 2500
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Differential Privacy — Background
• Example: publish statistical 

data about businesses: 
‣ Collect sales-numbers by 

business categories and not 
individual businesses 

‣ Leave out the business 
categories with a single 
business (only category 4) 

‣ Now, the sales-numbers for 
individual businesses are 
not known (not true)

Category 1 315

Category 2 890

Category 3 545

Category 4 x

Category 5 140

Category 6 360

Total 2500

x = 2500−(315+890+545+140+360) = 250



Differential Privacy — Background
• Tracker: 

‣ an adversary that could learn the confidential contents of a 
statistical database by creating a series of targeted queries and 
remembering the results (Denning, Denning, Schwartz 1979) 

• Fundamental Law of Information Recovery: 
‣ it is impossible to publish arbitrary queries on a private statistical 

database without revealing some amount of private information 
(Nissim, Dinur 2003)  

‣ in the most general case, privacy cannot be protected without 
injecting some amount of noise → this led to the development of 
differential privacy 



Differential Privacy
• Calibrating Noise to Sensitivity in Private Data Analysis 

(Dwork, McSherry, Nissim, Smith 2006): 
‣ formalized the amount of noise that needed to be added 
‣ proposed a generalized mechanism for doing so  

• The concept of ε-differential privacy: 
‣ a mathematical definition for the privacy loss associated with any 

data release drawn from a statistical database 
‣ a person's privacy cannot be compromised by a statistical release if 

their data are not in the database  
‣ with differential privacy, the goal is to give each individual roughly the 

same privacy that would result from having their data removed



Differential Privacy
• Each individuals contribution to the result of a query: 

‣ how much any individual contributes to the result of a database query 
depends in part on how many people's data are involved in the query 

‣ If the database contains data from a single person, that person's data 
contributes 100% 

‣ If the database contains data from a hundred people, each person's 
data contributes 1% 

• Key insight of differential privacy: 
‣ as the query is made on the data of fewer and fewer people, more 

noise needs to be added to the query result to produce the same 
amount of privacy



Differential Privacy — final comments
• The tradeoff between data utility and individual privacy: 

‣ If the privacy loss parameter is set to favor utility, the privacy benefits are 
lowered (less “noise” is injected into the system) 

‣ if the privacy loss parameter is set to favor heavy privacy, the accuracy 
and utility of the dataset are lowered (more “noise” is injected into the 
system)  

• Data privacy and security: 
‣ differential privacy is robust to still unknown privacy attacks  
‣ however, it encourages greater data sharing, which if done poorly, 

increases privacy risk  
‣ depends on the privacy loss parameter chosen and may lead to a false 

sense of security



• Differential Privacy: A Survey of Results, C. Dwork. TAMC 2008, LNCS 4978, pp. 1–19, 
2008. Springer-Verlag 2008. 

• The Algorithmic Foundations of Differential Privacy, C. Dwork, A. Roth. Foundations 
and Trend in Theoretical Computer Science Vol. 9, Nos. 3–4 (2014) 211–407, 2014. 

• The Tracker: A Threat to Statistical Database Security, D. E. Denning; P. J. Denning; M. 
D. Schwartz. ACM Transactions on Database Systems, Vol. 4, No. 1, March 1979, 
Pages 76-96. 

• Revealing information while preserving privacy, I. Dinur and K. Nissim. In 
Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on 
Principles of database systems (PODS '03). ACM. 

• Calibrating Noise to Sensitivity in Private Data Analysis, Cy. Dwork, F. McSherry, K. 
Nissim, A. Smith. In Theory of Cryptography Conference (TCC), Springer, 2006 / 
Journal of Privacy and Confidentiality, 7 (3), 17-51.

Differential Privacy — some publication



This is a break in the lecture 
— 

This slide separates the previous part from the next part



Privacy preserving distributed computation

• The problem 
‣ Data distributed on nodes 
‣ Data from multiple nodes 

included in computation 
‣ Leakage of original data 

between nodes problematic 

N1

N2

N3

N4

N5

dc dd

di dj

dg dh

de df

da db

Computation including data 
da, …, dj from node N1, …, N5
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Privacy preserving distributed computation

• Simple example 
‣ Compute the average value 

of da, dc, de, dg, and di 
‣ Cannot collect the values at 

a single node (leakage) 
‣ Combine local and 

distributed computation? 
‣ Prepare values?

N1

N2

N3

N4

N5

dc dd

di dj

dg dh

de df

da db

Computation including data 
da, …, dj from node N1, …, N5

a = (da+dc+de+dg)/5

da

dg
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di



Secure multiparty computation

• Improved example 
‣ Don’t send individual data 

directly to node doing the 
computation 

‣ Distribute the current sum 
between the nodes

N1

N2

N3

N4

N5

dc dd

di dj

dg dh

de df

da db

Computation including data 
da, …, dj from node N1, …, N5

a = r5/5

r1 = da

r2 = r1+dc r3 = r2+de

r4 = r3+dg

r5 = r4+di



Secure multiparty computation

• Improved example 
‣ Don’t send individual data 

directly to node doing the 
computation 

‣ Distribute the current sum 
between the nodes 

‣ Individual data and small 
set data still exposed

N1
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Secure multiparty computation

• Second improved example 
‣ Start with a large random 

number r0

N1

N2

N3

N4

N5

dc dd

di dj

dg dh

de df

da db

Computation including data 
da, …, dj from node N1, …, N5

a = (r5−r0)/5

r1 = r0+da

r2 = r1+dc r3 = r2+de

r4 = r3+dg

r5 = r4+dir0



Secure multiparty computation

• Second improved example 
‣ Start with a large random 

number r0 
‣ We have a secure multiparty 

computation (SMC) 
algorithm 

‣ Each node does not 
increase their knowledge 
about the other nodes data

N1

N2

N3

N4

N5

dc dd

di dj

dg dh

de df

da db

Computation including data 
da, …, dj from node N1, …, N5

a = (r5−r0)/5

r1 = r0+da

r2 = r1+dc r3 = r2+de

r4 = r3+dg

r5 = r4+dir0



Secure multiparty computation

SMC for N institutions with different data sets who wish to evaluate 
a result r (e.g. the correlation of usage of medication x and the 
adverse effect y) based on the data sets is subject to four constrains: 

1. The correct value result r is obtained and known to all institutions.  
2. No institution learns more about the other institutions values than it 

can deduce from its own data set and the result r. 
3. No trusted third party—human or machine—is part of the process. 
4. Semi-honesty: Institutions perform agreed upon computations 

correctly using their true data. However, they are permitted to retain 
the results of intermediate computations.
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Secure multiparty computation 
The four constrains
SMC (Goldwasser 1997, Karr 2009) for N institutions with different 
data sets who wish to evaluate a result r (e.g. the correlation of usage 
of medication x and the adverse effect y) based on the data sets is 
subject to four constrains: 

1. The correct value result r is obtained and known to all institutions.  
2. No institution learns more about the other institutions values than it 

can deduce from its own data set and the result r. 
3. No trusted third party—human or machine—is part of the process. 
4. Semi-honesty: Institutions perform agreed upon computations 

correctly using their true data. However, they are permitted to retain 
the results of intermediate computations.

For practical purposes, the zero 
information disclosure implied by 
constrain 3 is sometimes difficult to 
implement efficiently (Du, Zhan 2002).

No human or machine is allowed to have access to both the patient identifier, and data of that patient not previously known.



Privacy preserving distributed computation 
Represent the computation as a graph

• A directed graph where the 
nodes are sub-processes in 
the computation 

• The arrows are messages 
between nodes 

• Local data and processing at 
each node, including at the 
coordinator

N1

N2

N3

N4

N5

dc dd

di dj

dg dh

de df

da db

Computation including data 
da, …, dj from node N1, …, N5

Coordinator

m1

m0 m5

m4

m3m2



Privacy preserving distributed computation 
A note on the notation used in the following examples

{m} A message containing m

s{m} m encrypted with secret key s

{m}p m encrypted with public key p

{m}a m signed by a

{m}p
a m signed by a and encrypted with public key p

{a,p}c CA c binds public key p to identity (address) a

A → B : {m} Message {m} sent from A to B
Implementation detail: 

{m}p = {{s}p, s{m}}



Privacy preserving distributed computation 
A real SMC example: Calculate Pearson’s r

• Pearson’s r is used to measure the correlation (linear 
dependence) between n samples of two variables x and y

• In the case of m health institutions with sj samples of xji and yji 
at each institution, r can be rewritten



Privacy preserving distributed computation 
A real SMC example: Calculate Pearson’s r

• Pearson’s r is used to measure the correlation (linear 
dependence) between n samples of two variables x and y

• In the case of m health institutions with sj samples of xji and yji 
at each institution, r can be rewritten

uj

vj wj



Privacy preserving distributed computation 
A real SMC example: Calculate Pearson’s r

• At each node j (health institution) the following three 
intermediate results have to be calculated:

• The initial mean values x̄ and ȳ can be securely calculated using an 
approach similar to the SMC example calculating the mean value



nc

0� x̄ = . . .
ȳ = . . .

2� r = . . .

n31�
u3 = . . .
v3 = . . .
w3 = . . .

{x̄, ȳ}

{u3, v3, w3}

n2

1�
u2 = . . .
v2 = . . .
w2 = . . .

{x̄, ȳ} {u2, v2, w2}

n1 1�
u1 = . . .
v1 = . . .
w1 = . . .

{x̄, ȳ}

{u1, v1, w1}



Privacy preserving distributed computation 
A real SMC example: Calculate Pearson’s r

• When all intermediate results are received at the coordinator, 
Pearson’s r can be calculated:



nc

0� x̄ = . . .
ȳ = . . .

2� r = . . .

n31�
u3 = . . .
v3 = . . .
w3 = . . .

{x̄, ȳ}

{u3, v3, w3}

n2

1�
u2 = . . .
v2 = . . .
w2 = . . .

{x̄, ȳ} {u2, v2, w2}

n1 1�
u1 = . . .
v1 = . . .
w1 = . . .

{x̄, ȳ}

{u1, v1, w1}

Privacy preserving distributed computation 
A real SMC example: Calculate Pearson’s r



Privacy preserving distributed computation 
A real SMC example: Calculate Pearson’s r
• However, if the intermediate results uj, vj 

and wj are considered private it is easy to 
see from the computation graph and 
processing step 2 that the values will be 
exposed at the coordinator 

• This is solvable since the first thing the 
coordinator has to do in step 2 is to 
summarize all the values received from 
the nodes

nc

0� x̄ = . . .
ȳ = . . .

2� r = . . .

n31�
u3 = . . .
v3 = . . .
w3 = . . .

{x̄, ȳ}

{u3, v3, w3}

n2

1�
u2 = . . .
v2 = . . .
w2 = . . .

{x̄, ȳ} {u2, v2, w2}

n1 1�
u1 = . . .
v1 = . . .
w1 = . . .

{x̄, ȳ}

{u1, v1, w1}



Privacy preserving distributed computation 
A real SMC example: Calculate Pearson’s r

• Instead of sending these values to the coordinator directly, a 
similar approach to the one done when calculating the mean 
value in the first SMC example 

• At each node j the following calculations are performed (where 
u0, v0, and w0 are large random numbers



n1 1�
u1 = u0 + . . .
v1 = v0 + . . .
w1 = w0 + . . .

n2

2�
u2 = u1 + . . .
v2 = v1 + . . .
w2 = w1 + . . .

n33�
u3 = u2 + . . .
v3 = v2 + . . .
w3 = w2 + . . .

nc

0� x̄ = . . . ; ȳ = . . .
u0 = . . . ; v0 = . . . ; w0 = . . .

4� r = . . .

n
{x̄, ȳ, u0, v0, w0}p1 , b1

onc

n
{x̄, ȳ, u1, v1, w1}p2 , b2

on1
n
{x̄, ȳ, u2, v2, w2}p3 , b3

on2

n
{x̄, ȳ, u3, v3, w3}pc , bc

on3



Privacy preserving distributed computation 
A real SMC example: Calculate Pearson’s r

• The coordinator calculates Pearson’s r:



Privacy preserving distributed computation 
A real SMC example: Calculate Pearson’s r

n1 1�
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Secure multiparty computation 
Some publications
• S. Goldwasser, “Multi party computations: past and present”, in 

PODC’97, Proceedings of the sixteenth annual ACM symposium on 
Principles of distributed computing. New York: ACM, 1997, pp. 1–6.  

• A. F. Karr, “Secure statistical analysis of distributed databases, 
empha- sizing what we don’t know”, Journal of Privacy and 
Confidentiality, vol. 1, no. 2, pp. 197–211, 2009. 

• W. Du and Z. Zhan, “A practical approach to solve secure multi-party 
computation problems”, in Proceedings of the 2002 workshop on 
New security paradigms. New York: ACM, 2002, pp. 127–135.



Secure multiparty computation

• The security comes from the algorithm/protocol 

• Often combined with crypto-concepts (encryption, public-key 
systems, digital signatures, and so on) 

• We have implemented SNOOP for practical SMC 
‣ Supports the computation graph, the messages, local processing, 

guards and rules, mechanisms to ensure progress, failure models, 
and much more



SNOOP
Anders Andersen, Merete Saus. Privacy preserving distributed computation of community health 
research data. In Elhadi Shakshuki, editor, The 4th International Workshop on Privacy and Security 
in Healthcare (PSCare 2017), volume 113 of Procedia Computer Science, page 633–640. Elsevier, 
2017. ISSN 1877-0509.  

Anders Andersen, SNOOP: Privacy preserving middleware for secure multi-party computations, 
Proceedings of the 13th Workshop on Adaptive and Reflective Middleware (ARM 2014), 15th 
International Middleware Conference (Middleware '14), Bordeaux, France, ACM 2014. 

Anders Andersen, Kassaye Yitbarek Yigzaw, Randi Karlsen, Privacy preserving health data 
processing, IEEE Healthcom 2014, IEEE Communications Society 2014. 

Anders Andersen, An implementation of secure multi-party computations to preserve privacy when 
processing EMR data, 2013 Eleventh Annual Conference on Privacy, Security and Trust, IEEE 
conference proceedings 2013.
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Thank you for your attention


