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Introduction

What do Alice and Bob want?

Alice wants to send messages to Bob...
reliably and efficiently

Information theory (What can be achieved)
Coding theory (How to achieve it)
Communication theory (Physical implementation adapted to
channel)

securely: secretly,privately, authenticated, stealthily
Cryptography
Information Theory
Other security techniques
Anonymizing networks, Private Information Retrieval
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Introduction

Cast: Main characters II: Adversaries

Eve , a nosy eavesdropper who wishes to listen passively

to the contents of the messages from Alice to Bob.

Willie , a wiley warden who wishes to determine with

precision whether at all Alice transmits to Bob. Willie does not
care about the content of transmitted messages.
Fraudsters, impositors, active intruders, repudiators also exist...but
beyond the scope
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Introduction

Requirements for secure effective communication
(between Alice and Bob)

Bob needs some advantage over the adversaries:
A secret key (cryptography)
Other types of knowledge

Biometrics
Computation capabilities
Better communication channel: Information theory

alternative/addition to cryptography
also applied to metadata
applied in 5G
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Introduction to Information Theory

Information theory and noisy channels

What is Information?

Discrete stochastic variable (DSV) X , possible outcomes X
distributed as p(x). The entropy of X , measured in bits, is

H(X ) = −
∑
x∈X

p(x) log2 p(x) = H(p()). (1)

If p(x) is the uniform distribution on X , H(X ) = log2(|X |).
Consider two DSVs X and Y , set of joint outcomes X × Y
distributed as p(x , y). Then the equivocation is

H(X |Y ) =
∑
y∈Y

p(y)
(
−
∑
x∈X

p(x |y) log2 p(x |y)
)

The mutual information is

I(X ;Y ) = I(Y ;X ) = H(X )− H(X |Y ) = H(Y )− H(Y |X ). (2)

Ytrehus Information Theory and Secure Communications Finse, April 25, 2022 9 / 69



9/69

Introduction to Information Theory

Information theory and noisy channels

What is Information?
Discrete stochastic variable (DSV) X , possible outcomes X
distributed as p(x). The entropy of X , measured in bits, is

H(X ) = −
∑
x∈X

p(x) log2 p(x)

= H(p()). (1)

If p(x) is the uniform distribution on X , H(X ) = log2(|X |).
Consider two DSVs X and Y , set of joint outcomes X × Y
distributed as p(x , y). Then the equivocation is

H(X |Y ) =
∑
y∈Y

p(y)
(
−
∑
x∈X

p(x |y) log2 p(x |y)
)

The mutual information is

I(X ;Y ) = I(Y ;X ) = H(X )− H(X |Y ) = H(Y )− H(Y |X ). (2)

Ytrehus Information Theory and Secure Communications Finse, April 25, 2022 9 / 69



9/69

Introduction to Information Theory

Information theory and noisy channels

What is Information?
Discrete stochastic variable (DSV) X , possible outcomes X
distributed as p(x). The entropy of X , measured in bits, is

H(X ) = −
∑
x∈X

p(x) log2 p(x) = H(p()). (1)

If p(x) is the uniform distribution on X , H(X ) = log2(|X |).

Consider two DSVs X and Y , set of joint outcomes X × Y
distributed as p(x , y). Then the equivocation is

H(X |Y ) =
∑
y∈Y

p(y)
(
−
∑
x∈X

p(x |y) log2 p(x |y)
)

The mutual information is

I(X ;Y ) = I(Y ;X ) = H(X )− H(X |Y ) = H(Y )− H(Y |X ). (2)

Ytrehus Information Theory and Secure Communications Finse, April 25, 2022 9 / 69



9/69

Introduction to Information Theory

Information theory and noisy channels

What is Information?
Discrete stochastic variable (DSV) X , possible outcomes X
distributed as p(x). The entropy of X , measured in bits, is

H(X ) = −
∑
x∈X

p(x) log2 p(x) = H(p()). (1)

If p(x) is the uniform distribution on X , H(X ) = log2(|X |).
Consider two DSVs X and Y , set of joint outcomes X × Y
distributed as p(x , y). Then the equivocation is

H(X |Y ) =
∑
y∈Y

p(y)
(
−
∑
x∈X

p(x |y) log2 p(x |y)
)

The mutual information is

I(X ;Y ) = I(Y ;X ) = H(X )− H(X |Y ) = H(Y )− H(Y |X ). (2)

Ytrehus Information Theory and Secure Communications Finse, April 25, 2022 9 / 69



9/69

Introduction to Information Theory

Information theory and noisy channels

What is Information?
Discrete stochastic variable (DSV) X , possible outcomes X
distributed as p(x). The entropy of X , measured in bits, is

H(X ) = −
∑
x∈X

p(x) log2 p(x) = H(p()). (1)

If p(x) is the uniform distribution on X , H(X ) = log2(|X |).
Consider two DSVs X and Y , set of joint outcomes X × Y
distributed as p(x , y). Then the equivocation is

H(X |Y ) =
∑
y∈Y

p(y)
(
−
∑
x∈X

p(x |y) log2 p(x |y)
)

The mutual information is

I(X ;Y ) = I(Y ;X ) = H(X )− H(X |Y ) = H(Y )− H(Y |X ). (2)

Ytrehus Information Theory and Secure Communications Finse, April 25, 2022 9 / 69



10/69

Introduction to Information Theory

Some remarks on information theory

Information and “Information”

Information versus entropy
Information theory versus probability theory
Information versus computation
The “Bandwagon” - good and bad application areas

“Easy to apply”: Digital communications, Experiment design,
Compressed sensing
“Hard to apply”: Biology? Medicine? Linguistics? Social Sciences?

Information versus psychology
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Reliable communication

Communication between Alice and Bob
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Reliable communication

Shannon’s noisy channel

Alice’s

Encoder

Noisy communication

channel

P ( b|a )

Bob’s

decoder

Alice

Bob

MessageM An Bn EstimateMB

CShannon = max
p(a)

I(A;B),
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Reliable communication

Shannon’s noisy channel: Tools used in proof

Typical sequences

of length n
x typical iff freq(x) ≈ p(x)⇒ p(x) ≈ 2−nH(x)

Jointly typical sequences
a typical, b ∼ P(b|a) : P((a,b) typical) ≈ 1
a typical, b typical : P( random a,b) typical) . 2−(nI(a;b)))

Random coding
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Reliable communication

Error correcting code
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Reliable communication

Error correcting code partitioning the space F n

Ytrehus Information Theory and Secure Communications Finse, April 25, 2022 17 / 69



18/69

Reliable communication

The Additive White Gaussian Noise (AWGN) channel

How?
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Reliable communication

The Broadcast Channel

R1 ≤ C1 = max
pa

I(A;B1),R2 ≤ C2 = max
pa

I(A;B2),

R1 + R2 ≤ C1,2 = max
pa

I(A;B1,B2),
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Reliable communication

The broadcast channel: Sketch of proof, and example

Jointly typical sequences

Superposition coding
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Reliable communication

The Broadcast Channel, Degraded

R1 ≤ I(A;B1|U),

R2 ≤ I(U;B2),

for some pmf p(u,a) and conditions on U.
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Reliable communication

What does this mean? What is U?

Assume n = 3 and that Bob1 has an error free channel, while Bob2
typically will see at most one bit error for each 3 sent.

An 
000 

001 

010 

011 

100 

101 

110 

111 

Choose U Є {000,111} 

Then send three bits by first selecting U and then sending A as U plus
one of the bit patterns {000,001,010,100}.
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Reliable communication

Error correcting code and coset
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Reliable communication

The Broadcast Channel, Generalized

Communication 

 channel 

P ( b1 ,…,bn|a ) 

Alice’s 

Encoder 

Bobn’s  

decoder 

Alice 

Bob 

Messages  

M1,…,Mn 

A
n 

Bob4’s  

decoder 

Bob3’s  

decoder 
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decoder 

Bob1’s  

decoder 
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Secure communication

The wiretap channel (Type I)

Alice’s

Encoder

Communication

channel

P ( b,e|a )

Bob’s

decoder

Eve’s

decoder

Alice

BobEve

MessageM An Bn

En

EstimateMB

EstimateME

CDM−WTC = max{0, max
p(u,m)

(I(U;B)− I(U;E))},

CDM−WTC−degr = max
p(m)

(I(M;B)− I(M;E)),

CDM−WTC−K = max
p(m)

min(I(M;B)− I(M;E) + RK , I(M;B)).
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min(I(M;B)− I(M;E) + RK , I(M;B)).
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Secure communication

The wiretap channel (Type I), Simple case

Simplest example: Degraded Bob’s channel is noiseless, Eve’s
channel has noise. How to encode?

select [n, k ] error correcting code according to
(n − k)/n < CDM−WTC

Represent message by a coset
Alice sends U = random codeword + corresponding coset leader
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Secure communication

Error correcting code and coset
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Secure communication

Degrees of Secrecy

Encoded message M is n-bit vector, Eve sees noisy n-bit En, n large
Perfect secrecy: I(M;En) = 0

Strong secrecy: I(M;En) ≤ ε for some small ε > 0
Weak secrecy: I(M;En)/n ≤ ε for some small ε > 0
Semantic secrecy: maxpm I(M;En) ≤ ε for some small ε > 0
regardless of distr. pm

Perfect⇒ Semantic⇒ Strong⇒Weak
Note: I(∗ : ∗) can be replaced by Renyi information.
Note: Independent of Eve’s computational resources.
Note: Category of secrecy may depend on code and coding scheme
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Secure communication

Now, the practice...The Type I AWGN channel

The different roles of Bob and Eve
Bob wants a simple and efficient decoding to get the best decoding
solution: Bit error rate reasonable metric
Eve willing to spend more efforts, maybe try out different option:
Mutual information
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Secure communication

Now, the practice...The Type I AWGN channel

How?

Ytrehus Information Theory and Secure Communications Finse, April 25, 2022 36 / 69



37/69

Secure communication

Now, the practice...The Type I AWGN channel

The different roles of Bob and Eve
Bob wants a simple and efficient decoding to get the best decoding
solution: Bit error rate reasonable metric
Eve willing to spend more efforts, maybe try out different option:
Mutual information

How to compute the mutual information (or, equivalently the
equivocation)?
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Secure communication

Now, the practice...The Type I AWGN channel

How to compute the mutual information (or, equivalently the
equivocation)?

Syndrome coding
Can be computed with complexity 2n−k

Direct communication
Bounds exist (not very tight)
Exact computation: Trellis computation Complexit ≤ min{2k ,2n−k}
Joakim Algrøy, Angela Isabel Barbero and Øyvind Ytrehus,
“Determining the Equivocation in Coded Transmission Over a Noisy
Channel”, accepted for IEEE International Symposium on
Information Theory, June 26-July 1, 2022
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Secure communication

Now, the practice...The Type I AWGN channel

The different roles of Bob and Eve
Bob wants a simple and efficient decoding to get the best decoding
solution: Bit error rate reasonable metric
Eve willing to spend more efforts, maybe try out different option:
Mutual information

How to compute the mutual information (or, equivalently the
equivocation)?
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Secure communication

Now, the practice...The Type I AWGN channel

Comparison between syndrome coding and regular communication
coding:

(Figure:
Joakim Algrøy)
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Secure communication

Now, the practice...The Type I AWGN channel

The different roles of Bob and Eve
Bob wants a simple and efficient decoding to get the best decoding
solution: Bit error rate reasonable metric
Eve willing to spend more efforts, maybe try out different option:
Mutual information

How to compute the mutual information (or, equivalently the
equivocation)?
Bob’s channel is not noiseless

Alice’s message is not infinitely long
How to deal with the tradeoff between secrecy, and power
efficiency for Alice?
That is, with a fixed redundancy r , devote rB to help Bob and
rE = r − rB to confuse Eve. What is the optimum rB?
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Secure communication

The wiretap channel (Type II)
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Secure communication

The wiretap channel (Type II)

How to encode?
Choose a code with large generalized Hamming weights in the
dual code
Represent message by a syndrome vector
Alice sends random codeword + corresponding coset leader
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Wise words

“... as we know, there are known knowns; there are things we know we
know. We also know there are known unknowns; that is to say we know
there are some things we do not know. But there are also unknown
unknowns - the ones we don’t know we don’t know. ...”- D.Rumsfeld
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Deniable communication

Covert, deniable, subliminal, invisible, undetectable
communication

What if Alice and Bob do not want a listener to know that there is
communication
In general, communication can be reliably detected unless Alice
and Bob has an advantage:

shared randomness
better channel
more channels
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Deniable communication

Steganography

Methods for encoding hidden messages in an apparently
legitimate and apparently innocent host message

Alice may tattoo a hidden message on a messenger’s shaved
head
Alice may write a message in invisible ink between the lines of an
innocent-looking pretext letter.
alice may write a message So That a rEceiver GAN fOcus on
larGe letteRs And PHorget anY small ones.
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Deniable communication

Steganography
Suppose Alice purports to send a message to Bob from the set
{Alice, Bob, Marilyn}, representing the message as a picture. Let

Alice = { , },

Bob = { , }, and

Marilyn = { , }

It follows that Alice may send one bit to Bob by selecting a
pre-agreed image for each of the three possible cover messages.
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Deniable communication

Simmons’ prisoner’s problem

Alice and Bob are prisoners who want to exchange information so
that Willie is unable to detect the information transfer

Using protocol redundancy
Concrete example: Using cryptographic signature schemes

Signature protocol uses random nonce
Alice and Bob sneakily agree to encode information into the choice
of nonce
“Steganography”, but hard for Willie to detect and prove
Can be blocked by zero-knowledge proofs etc, but still allows 1-bit
subliminal channel (Desmedt)
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Deniable communication

Reliable deniable channels
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Figure 1: An information theoretic view of a reliable deniable channel,
corresponding to a “noisy subliminal channel”.
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Deniable communication

Reliable deniable AWGN channels with randomness
common to Alice and Bob

Alice’s

Encoder
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2)

An, Bn, and W n are real-valued n-dimensional vectors, and Z n
B and Z n

W
are n-dimensional AWGN noise vectors. Alice and Bob need to share
a secret key.
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Deniable communication

A reminder of complexity notation

f (n) = O(g(n)) if there exist constants m,n0 > 0 such that
0 ≤ f (n) ≤ mg(n) for all n ≥ n0. This means that “f (n) grows
roughly at the same rate as g(n)”.

f (n) = o(g(n)) if, for any constant m > 0 there exists a constant
n0 > 0 such that 0 ≤ f (n) < mg(n) for all n ≥ n0. This means that
“f (n) grows slower than g(n)”.
f (n) = ω(g(n)) if, for any constant m > 0 there exists a constant
n0 > 0 such that 0 ≤ mg(n) < f (n) for all n ≥ n0. This means that
“f (n) grows faster than g(n)”.
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“f (n) grows faster than g(n)”.
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Deniable communication

Reliable deniable AWGN channels with randomness
common to Alice and Bob: Results

1 For any ε > 0 and unknown σ2
W , Alice can reliably transmit o(

√
n)

information bits to Bob in n channel uses while lower-bounding
Willie’s sum of the probabilities of detection errors α+ β ≥ 1− ε.

2 If Alice knows a nontrivial lower bound σ̂2
W > 0 on the noise power

on Willie′s channel (i.e., σ2
W ≥ σ̂

2
W ), she can reliably transmit

O(
√

n) information bits to Bob in n channel uses while
lower-bounding Willie′s sum of the probabilities of detection errors
α+ β ≥ 1− ε.

3 Conversely, if Alice attempts to transmit ω(
√

n) bits in n channel
uses, then, as n→∞, either α+ β is arbitrarily close to zero or
the communication to Bob is not reliable, regardless of the length
of the shared secret.
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Deniable communication

Reliable deniable AWGN channels with randomness
common to Alice and Bob: Interpretation

1 The capacity limn→∞
O(
√

n)
n = 0. But for finite codeword lengths n,

a substantial amount O(
√

n) of information may be reliably
transmitted with low probability of detection.

2 Proof: A random coding argument, with actual code disguised by
“key”.

3 Bob faces a noisy channel decoding problem.
4 The amount of randomness: Simple scheme requires n coded

bits, for an O(
√

n)-length message. A more refined scheme
requiring O(

√
n) log n is also presented.

5 The constants involved can become very small.
6 Prior probability distribution on T is assumed unknown, does it

matter?
7 Quantum channel version
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Deniable communication

Reliable deniable BSC channels without randomness
common to Alice and Bob

Alice’s

Encoder

Bob’s

decoder

Willie’s

observation

Alice

Bob

Willie

MessageM An Bn

Wn

EstimateMB

Estimate TW

T
ra
n
sm
is
si
o
n
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at
u
s 

T

ZW
n ~Bern(pW)

ZB
n~Bern(pB)

The binary symmetric subliminal channel. Here An, Bn, and W n are
binary n-dimensional vectors, and Z n

B and Z n
W are binary

n-dimensional noise vectors in which elements are generated
independently according to their respective Bernoulli distributions.
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Deniable communication

Reliable deniable BSC channels without randomness
common to Alice and Bob: Results

1 Deniability. When T = 0, Willie should observe a fraction of pw
1’s. So if Alice uses a code with codewords of weight larger than
npw , then Willie will suspect that T = 1.

2 Reliability and deniability: upper bound on code rate. If Bob’s
channel is noisy and reliable communication to Bob is required,
any code selected by Alice can convey at most O(

√
n) information

bits per n channel uses.
3 Reliability and deniability: lower bound on code rate. If Bob’s

channel is sufficiently much better than Willie’s, then there exist
(random) codes that can convey to Bob O(

√
n) information bits

per n channel uses. If Bob’s channel is noiseless, there exist
(random) codes that can convey to Bob O(

√
n) log n information

bits per n channel uses.
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Deniable communication

Reliable deniable BSC channels without randomness
common to Alice and Bob: Interpretations

1 This channel also has “zero capacity”, but still allows, in theory, a
substantial reliable and undetectable information transfer.

2 When T = 0, Alice transmits nothing, and Willie observes only
noise. For T = 1, Willie observes the (mod 2) sum of a codeword
and random Bernoulli noise.

3 Bob faces a (modified) BSC decoding problem. When T = 0, such
decoding will be unsuccessful with overwhelming probability. Thus
the channel will not produce “false information” to Bob. When
T = 1, such decoding will be successful with overwhelming
probability, provided that the code is appropriately selected.
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Deniable communication

Reliable deniable BSC channels without randomness
common to Alice and Bob: Bob’s decoder
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Discussion: Questions, caveats, open problems
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Discussion: Questions, caveats, open problems

Why Alice and Bob may have a harder time in practice
than in theory

Codeword synchronization

Key synchronization (for the AWGN case)
For the AWGN channel: How is Willie’s observed signal to noise
ratio obtained?
For the BSC channel: How is pw obtained?
Consider an example of a malware (software/hardware) agent that
uses a “compromising emanations” secondary wireless channel
for sending messages to Bob.
In this case Willie typically will have a better SNR than Bob.
Implementation in practice? Random coding is merely a
theoretical tool and has no practical usage. What practical coding
schemes can be used?
AWGN: possible to use a normal LDPC code?
Noisy BSC subliminal channel: Need constant (low) weight codes;
nonlinear.
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Discussion: Questions, caveats, open problems

Why Willie may have a harder time in practice

From Willie’s perspective, the assumption of knowing the code
agreed between Alice and Bob is a best-case scenario.
Reasonable approach in cryptanalysis, maybe less so in the
context of deniable channels?

For the previous issue, will a compressed sensing approach be
sensible for Willie? That is, can we observe communication
knowing that a code is used, but not which code is used?
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Discussion: Questions, caveats, open problems

Other issues

In an AWGN channel where Bob has a better channel than Willie,
do Alice and Bob need common randomness?

Schemes that require common randomness between Alice and
Bob: can Alice and Bob use a hybrid scheme?
“O(
√

n) information bits per n channel uses”⇒ asymptotic code
rate zero. Normally, throughput improves as n→∞. Here, is
there an optimum value of n?
The concepts of detectability and provability are related, but they
are not equivalent. Does this distinction matter?
Some practical research problems: study typical emanating
channels, or study theoretical channel models that may be forced
into practice by a malware agent.
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Conclusion Single-path communication

Conclusion, Single-path communication

A covert entity Alice may use a communication channel to pass
information to an accomplice Bob in a way that cannot be detected by
a warden Willie.

1 undetectable low rate information transfer is feasible, but there
remain serious challenges for Alice and Bob, having to do with
implementation, with the set of parameters, and with the set of
assumptions.

2 For the warden Willie, there exist realistic scenarios that are worse
than those assumed in the literature, and this creates extra
problems.
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