
Exploring the concept of architecture in Technology

and Organization studies

Polyxeni Vassilakopoulou
 1
, Miria Grisot

 1

1 University of Oslo, Postboks 1080 Blindern, 0316, Oslo, Norway

{xvasil, miriag }@ ifi.uio.no

Abstract. In this paper we explore the use of the concept of architecture in

Technology and Organization studies. We identify three discourses on

architectures: one concerned with relationships among technical objects, one

extended to cover sociotechnical relationships, and one where architectures

themselves are the object of study (a discourse where there is an explicit

strategic interest on the effect of architectures). Finally, we trace how different

conceptualizations relate to different concerns related to change..

Keywords: Architecture, software, enterprise architecture, communication,

control, complexity

1 Introduction

The notion of architecture conveys the idea that a set of elements are clustered into

forms that are more or less stable and relate among themselves following a predefined

logic. When thinking processes of change, “architectures” are frequently objectified

as enabling or constraining factors: some architectures are viewed as better than

others for accommodating change (robust architectures) or even for prompting change

(generative architectures). However, the concept of ‘architecture’ is considered by

many researchers as ill-defined. For instance, Scheil (2008) describes architecture as

being ‘a plastic concept … a metaphorical idea that shapes the categories, discourse

and language used’ [1]; Smolander et al (2008) identify multiple metaphors that

describe different meanings of architecture as perceived by various actors, who

participate in the creation and use of software, and they argue that “Architecture, thus

serves as a shared boundary object (Star, 1989; Star & Griesemer, 1989; Bowker &

Star, 1999) between various stakeholder groups engaged in systems development,

satisfying their varying informational needs during the systems development

process”[2]; similarly, Bidan et al (2012) stress how: ”The notion of an architecture is

problematic in part because it seems to be usefully ambiguous and is often used at a

high level of abstraction where anyone can agree that it is a useful concept” [3].

Although conceptually elusive, architectures are central when discussing

processes of stability and change. For example, the US National Research Council in

a recent report argued: “organizations should architect healthcare IT for flexibility to

support disruptive change rather than to optimize today’s ideas about healthcare”

(Committee on Engaging the Computer Science Research Community in Health Care

Informatics 2009). And, in the much sited book of Cummings and Worely on

Organizational Development and Change [4] it is claimed that interventions need to

address “the organization’s architecture” (when discussing interventions that

transform the way organizations relate to its environment or operate internally).

The aim of this paper is to explore the conceptualization of ‘architecture’ in

technology and organization studies and to trace how different conceptualizations

relate to different concerns related to change. Therefore we ask: how is architecture

conceptualized and how it relates to change in technology and organization studies?

By identifying and expressing the differences in the content of the word architecture

and by tying these differences to distinct change concerns, we hope to contribute a

sharper understanding of a notion that remains ambiguous although extensively used.

The paper is structured in the following way. First, we present our method. Then,

we provide a brief overview of how the term architecture has been used in the

literature we examined. More precisely, we identify three discourses on architecture:

one concerned with relationships among technical objects, one extended to cover

sociotechnical relationships, and one where architectures themselves are the object of

study (a discourse where there is an explicit strategic interest on the effect of

architectures). Finally, in the discussion section we point to the different roles of

architecture in the three discourses.

2 Method

In order to investigate the use of the concept of architecture in technology and

organization studies we have conducted a search in google scholar with the keyword

architecture, information system, organization, technology. We have then ordered the

search results according to their citation index. In the review we focus on how authors

have conceptualized architecture, and how the term was used in the text for instance

in association with other key terms. We have started grouping publications into two

main categories, one dealing with technical issues of architectures, and one dealing

with architecture in the context of enterprise and business models. These two ways of

using the term architecture covered the majority of the studies. However, we also

considered studies that come from literature thematising strategy, innovation and

organizational change. While these studies may not strictly deal with implementation

of technologies, we found they opened up a different discourse on architecture than

the ones proposed by technical and business models studies. We labeled these studies

‘strategic approaches’. We have then further elaborated the profile of the three

conceptualizations and identified the most cited work (classics) within each.

Our subsequent analysis of the collected material is informed by a meta-level

discussion on the use of the concept of architecture as a communication tool. For

instance, much of the literature on software architecture we have reported has

discussed issues of multiple views, problems of communication between stakeholders,

and the lack of one ‘single’ understanding of architecture in software projects due to

‘multiplicity of structures’. Such discussions seem to point to a function of

architecture as ‘boundary object’ [5] among different communities. As Bass et al.

claim, an architecture is a set of structures to reason about a system [6], however such

reasoning is a collective endeavor of an heterogeneous community. Accordingly,

Smolander et al claim that research on software architecture may benefit from the

work in fields such as CSCW where the topic of reconciling different views is

discussed, and the concept of boundary object is one of the core concepts of the

research field [2]. Gorton [7] stresses how the architecture is an abstract description of

the system that “has to” employ abstractions in order to be understandable by the

team members and project stakeholders. Abstractions allow to black box components

in order to focus on their external properties, and allow flexibility in composition and

decomposition work. Similarly, boundary objects are organic infrastructures that arise

due to the ‘information and work requirements’ of the group cooperating [8].

A similar point is raised by Scheil when he argues that IT architecturing is a learning

process as “one or more meaningful interpretations of the continuous organizing,

emerging from the interrelationships between a sociotechnical system’s parts” [1].

Here, the emphasis of architecture/ing is not on the relationships between various

parts of a larger system, but on the human interpretation and understanding of these

relationships (a sense making process with reference to [9]). Further Scheil argues

that this view recognizes technology as “intentional and subjective in its nature, and

not an objective instrument, where the tangible use determines its position” [1]. He

sees architecturing as indicating the necessary role that humans play when mediating

between various architectural semantics such as business architecture, and software

architecture.

In the line with this meta-level discussion, we have approached the reviewed

literature on architecture with attention to how the concept of architecture identified

in the three profiles conveys the understanding of change.

3 A Technical View: Components and their Interrelations

The common understanding of ‘software architecture’ is that of structure describing

systems’ components, their operational principles and their interconnections. An

example is the classic definition given by Bass et al. (1998): “The software

architecture of a program or computer system is the structure or structures of the

system, which comprise software components, the externally visible properties of

those components, and the relationships among them”[10]. In this understanding the

term architecture has a structural and technical connotation and indicates the

components of a system and their arrangement. The basic syntactic elements of an

architectural description are components, connectors, and configurations of

components and connectors. Components are the active, computational entities of a

system that accomplish tasks through internal computation and external

communication with the rest of the system via a collection of interaction points

defined as ports. Connectors define the interaction between components and each

connector provides a way for a collection of ports to come into contact in addition to

defining the protocol through which a set of components will interact. A

configuration is a collection of component instances which interact by means of

connector instances [11].

In a more recent work, Bass et al define software architecture as “the set of

structures needed to reason about the system, which comprises software elements,

relations among them, and properties of both” [6]. It follows that software systems

are composed by many structures, and no single structure is the architecture of the

system. It also follows that a structure is architectural if it supports reasoning about

the system and the system’s properties.

A main problem discussed in software architecture literature is that of architectural

representations. In one of the classic works, Zachman (1987) is concerned with

developing awareness on the use of representations of software architecture for

improving professional communication among owners, designers, and builders in the

process of building complex information systems[12]. He shows how in this process a

variety of representations are created at different levels of detail, are different in

nature, content and semantics, forming a set of multiple architectural representations

depending on different roles, as illustrated in figure 1.

Figure 1: Different architectural representations for different roles [12]

Another classic work is the one by Krutchten on architecture views [13]: he

identifies a way of describing an architecture based on four views: logical, process,

physical, development views. These views describe the system from different

perspectives according to different users' needs, and a ‘scenario’ view overlaps the

others and relates the design to its context. These views represent different

stakeholders’ interests as a set of coherent, logical, harmonized descriptions.

However, the discussion in the field has been directed mainly at representing and

documenting a system’s architecture from different perspectives without really

offering a detailed description of the rationale that guides the architecting process

[14]. For instance, Smolander et al (2008) argue for broadening the focus of current

approaches to representing, designing and communicating software architectures in a

way to support the role that different stakeholders play in the creation and use of

software architecture [2]. Based on a study on three-software producing

organizations, they have focused on understanding how the different stakeholders

generate, represent, use and share knowledge regarding software architectures. Their

findings stress the coexistence of different views on software architecture, and

recognize the need for addressing the communication needs of stakeholders. Bosch

(2004) argues that one of the key challenges of the software architecture community

has been that software architectures need to be designed carefully because changes

after the initial design are typically very costly. Software architectures change

independent of how carefully they are designed. Thus, he argues that “Rather than

components and connectors, we need to model and represent a software architecture

as the composition a set of architectural design decisions, concerning, among others,

the domain models, architectural solutions, variation points, features and usage

scenarios that are needed to satisfy the requirements”[15]. Thus, software

architectures should be represented in several phases of the lifecycle. Finally he

redefines software architecture as the composition of architectural design decisions,

and not a set of components and connectors (Idem.).

4 Extended Conceptualizations: Enterprise Architectures

Going beyond the technical focus, the architecture notion has also been used to map

holistically relationships among heterogeneous components that together constitute

purposeful work systems. The term “enterprise or business architecture” has been

used to encompass sociotechnical arrangements of software, hardware, organizational

structures, human competences and incentive schemes, [16-19]. These architectures

address enterprise-level objectives like efficiency and effectiveness and mirror

managerial choices for the desired level of standardization and integration within

large scale work systems: “The enterprise architecture is the organizing logic for

business process and IT capabilities reflecting the integration and standardization

requirements of the firm's operating model”[19].

The use of architectural maps to associate diverse components of complex work-

oriented sociotechnical arrangements is not new. The increasing complexity of work

settings has triggered the development of numerous reference models and design

frameworks for sociotechnical architectures during the last 30 years (see figure 2).

These are either industry specific like: "Computer Integrated Manufacturing Open

System Architecture- CIMOSA" (aims to support the enterprise integration of

machines, computers and people in computer integrated manufacturing settings) and,

“Purdue Enterprise Reference Architecture-PERA” (provides a consolidated view of

production facilities, people/organization, and information systems) or generic such as

GERAM (Generalized Enterprise Reference Architecture and Methodology), ARIS

(Architecture of Integrated Information Systems) that covers process design,

management, work flow, and application processing, or TOGAF (The Open Group

Architecture Framework) that aims to encompass simultaneously: business strategy,

governance, organisation, processes, data structures, applications, hardware

capabilities and standards [20-25]. All these architectural models and frameworks

support the figurative definition of relationships but at the same time they aim to

serve as control tools. They aim to put in place specific rigid regulatory setups that

will guide the development of novelty into specific directions. Following this fully

planning ideal, the role of the “architect” within specific project teams is then stripped

from ingenuity and resourcefulness connotations and is reduced to a role similar to the

one that compliance officers have. In their book “Enterprise Architecture as Strategy”,

Ross, Weill and Robertson write: “project architects are responsible for ensuring that

individual projects are compliant with technology standards and that related projects

reuse technologies as appropriate. If a project architect feels an exception to the

standards is warranted, he or she either seeks approval from one of the assistant vice

presidents authorized to grant exceptions or refers the request to the architecture

committee” [19]. Segars and Grover 1994 argue: “unlike bottom up approaches which

typically emphasise the information needs of traditional functional areas, the

architecture approach is ‘top down’ in nature” [26].

Figure 2: Schematic of different frameworks for enterprise architectures

Today, within informatics there is a lot of discussion on “ecosystems” within

which different technical components evolve following trajectories that are not

dictated by traditional hierarchies and are not mere instantiations of fully pre-planned

courses [27-29]. To cater for this new situation, a recent Gartner report puts forward

the new concept of panarchitecture: “Network-centric and biologically based dynamic

models are needed in order to design solutions, enterprises and industries that are

more resilient in the face of transformative change, especially unforeseen

transformations. Such models include "panarchy" from ecological science,

"hyperconnected networks" from network science and "relationship coordination"

CIMOSA

PERA

ARIS
TOGAF

from organizational science. These emerging models will be integrated using hybrid

thinking to complement enterprise architecture with a new paradigm of renewal

known as panarchitecture". [30]

Table 1. Definitions of architecture.

Term Definition Reference/Source

Software

architecture

The fundamental organization

of a system embodied in its

components, their

relationships to each other, and

to the environment, and the

principles guiding its

design and evolution.

ISO/IEC 42010

Software

architecture

Software architecture involves

the structure and organization

by which modern

system components and sub-

systems interact to form

systems, and the properties

of systems that can best be

designed and analyzed at the

system level.

[14]

System architecture The underlying structure of a

system, such as a

communication network, a

neural

network, a spacecraft, a

computer, major software or an

organization.

[31]

Information systems

architecture

Architecture is relative

depending on ‘who’ you are

(see also figure 1).

[12]

5 Strategic Approaches

In the context of inter-organizational innovation, Andersson, Lindgren and

Henfridsson study a process of architectural knowledge development [32].

Architectural knowledge is defined as "knowledge developed and enacted in

innovation processes of aligning heterogeneous business and technical elements".

This definition draws from n Henderson and Clark’s theory of architectural

innovation. According to Henderson and Clark “the essence of architectural

innovation is the reconfiguration of an established system to link together existing

components in a new way” [33]. Thus, in this view innovation is the result of changes

in assembling already existing components that remain the same, while radically

improving customer value and satisfaction. It refers to those: “innovations that use

many existing core design concepts in a new architecture and that therefore have a

more significant impact on the relationships between components that on the

technologies of the components themselves” (idem.). Andersson et al. (2008) define

architectural knowledge as a specific type of knowledge concerning how to draw

linkages between each of the components. In the following paragraphs we elaborate

on three important architectural knowledge concepts, namely: modularity, layering

and end- to-end topologies.

Henderson & Clark have identified modularity as a key concept for architectural

innovation. This is a concept initially introduced by Simon who identified the

property of “near decomposability” of complex systems [34]: “Such systems consist of

a hierarchy of components, such that, at any level of the hierarchy, the rates of

interaction within components at that level are much higher than the rates of

interaction between different components. Systems with this property are called

nearly completely decomposable, or more briefly, nearly decomposable (ND). The

explanation for the ubiquity of the ND property is that, under the usual conditions of

mutation and/or crossover and natural selection, ND systems will increase in fitness,

and therefore reproduce, at a much faster rate than systems that do not possess the

ND property”. Nearly decomposable systems tend to be better in adapting to their

environment than systems that do not exhibit this property. The importance of

architectural modularity has been identified repeatedly by design theorists from

various fields such as: civil architecture [35, 36], product design [37], software

development [38], innovation studies [39], developmental economics [40, 41].

Aiming for architectural modularity is a key strategic direction in the design of robust

heterogeneous arrangements that include significant technological components, but

this is far from straightforward. The aim for Service Oriented Architectures [42, 43]

where the modular structure consists of services is an exemplary case of applying the

modularity concept .

Layering is an architectural concept frequently used complementarily to

modularity when developing strategies for complex interconnected systems. Layering

has been traditionally employed by software engineers that came up with the concept

of multi-tier architectures to disentangle the complexity of multiple interconnected

components. Layering can also help reconcile different timeframes and lifecycles of

various components within the same system. The “shearing layers” idea from

traditional architecture conceptualizes buildings as a set of components that evolve in

different timescales [44]. Similarly, complex interconnected systems can be viewed as

sets of components with qualitatively different rates and scales of change [45, 46] and

be constructed in shearing layers, with a clear demarcation between parts that should

change at different rates.

Finally, a third concept that contributes to our architectural knowledge is the

topological “end-to-end” concept. An “end-to-end” architecture allows control

devolution to the periphery: “the ends”. This allows multiple interconnected

components to be gradually replaced, expanded or eliminated without threatening the

survival of the whole system. The “end-to-end” architecture is widely held to be the

key reason for Internet’s flexibility and strong generative capacity [47-49]. What’s

more, applying an “end-to-end” architecture means acknowledging that no centralized

authority and no well-prepared plan could possibly synthesize all of the knowledge

required and anticipate all possible needs.

6 Discussion

In this paper, we have explored the concept of architecture and its use in IS literature.

The software architecture literature mainly uses the term to indicate technical objects

(components) and their combination. In this view it is possible to predefine relations

between components by defining the ‘architecture’ of the system. Encompassing both

technical and non-technical components, enterprise architecture literature discusses

how to map and structure relations among heterogeneous components. In this

approach components are of sociotechnical nature: hardware but also organizational

processes including people performing them. The last stream we have described deals

with an even higher level of complexity and relates architecture/ing to technical

elements, sociotechnical elements and strategic interests such as innovation or

generativity. However, moving beyond a mere understanding of the elements

characterizing each architectural view, we now trace how different conceptualizations

relate to different concerns related to change. .

1. Architecture as a way of determining relations – Design. Much of the literature

on software architecture sees architecture as a prescriptive concept that defines how

artifacts should be realized [50]. Gorton sees a software architecture representing a

complex design artifact[7]. The term architecture is used to signify a coherent set of

principles and rules that guide design. All these principles and rules are about the

relationships among components that constitute an identifiable bounded technical

system with a certain operational purpose. A requirement for the system itself might

be that it will handle turbulences and variation (external change). This is a reactive

stance on change, centered on the designed capabilities of the technological object.

2. Architecture as a way to control evolution – Regulation. In the enterprise

architecture literature ‘the architect’ is responsible for controlling the compliance of

novel endeavors to technical standards, business objectives and operational

archetypes and architecture has a ‘top-down’ regulatory role. Architectures are

exhaustive, fully inclusive blueprints that cover all aspects of purposeful work

systems. Even though this “control ideal” has been proved unrealistic in practice

for large scale systems with significant social components, it is not abandoned.

Recent literature that adopts “ecosystem” views still pursues ways to put in place

mechanisms and enabling/constraining structures that can make systems to have

desirable behaviors (e.g. be more resilient). These new approaches draw from

network theories and biological archetypes in order to pursue new types of control

[30, 51].

3. Architecture as a way of handling complexity – Sensemaking. In the literature

that focuses on the design of multilevel, heterogeneous and large-scale systems

(within economy, society, and technology) architectural knowledge is put forward as

means for complexity handling. Architectural notions such as modularity, layering

and end-to-end topological arrangements have been proposed as ways to

conceptualize disentanglement and power devolution for complexity containment.

This literature discards the “control ideal” [52, 53] but acknowledges the influence of

architectural choices. The emphasis is not on preparing complete maps of components

and interrelationships but on applying architectural principles and developing an

awareness of the choices that are already in place: “An explicit understanding of the

underlying architecture is a prerequisite for the design, evolution and maintenance of

modern information systems that must complement today’s complex business

processes spread across internal divisions and external partners” [2]. Smolander et

al. go as far as proposing that multiple dissimilar views of architecture can be

maintained simultaneously to accommodate complex relationships and multiple

perspectives: “the work by Ciborra (2000) may provide another pointer to deriving

architectural specifications that take into account their emergent and improvized

nature as opposed to carefully planned common road maps (i.e., maintaining multiple

and even conflicting views of architecture simultaneously.” (idem).

7 Conclusion

In conclusion, in this paper we have explored the concept of architecture and its use in

technology and organization studies. We have identified three discourses on

architectures: one concerned with technical objects, one extended to cover both

technical and non-technical components of enterprises, and one developing an explicit

strategic interest in architectures. Based on an understanding of architecture as

communication tool, we have then examined the different views with a focus on

understanding change. In the first view, architectures are used in order to bring into

existence something that did not exist previously: prescriptive architectures are used

to build new technological artifacts with predefined behavior. In the second view,

architectures are related to a regulatory concern. The purpose here is to control

changes within complex sociotechnical arrangements (such as enterprises). Finally,

in the third view, architectures serve as sensemaking instruments that can support

complexity handling. Taken together, the identified range of architecture related

conceptualizations can help developing a sharper understanding of a notion that

remains ambiguous although extensively used.

References

1. Scheil M. IT Architecturing: Reconceptualizing Current Notions of Architecture in IS

Research. ECIS 20082008.

2. Smolander K, Rossi M, Purao S. Software architectures: Blueprint, Literature, Language or

Decision? European Journal of Information Systems. 2008;17(6):575-88.

3. Bidan M, Rowe F, Truex D. An empirical study of IS architectures in French SMEs:

integration approaches†. Eur J Inform Syst. 2012;21(3):287-302.

4. Cummings TG, Worley CG. Organization development & change: South-Western Pub;

2009.

5. Star SL, Griesemer JR. Institutional ecology,translations and boundary objects: Amateurs

and professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39. Soc Stud Sci.

1989;19(3):387-420.

6. Bass L, Clements P, Kazman R. Software architecture in practice: Addison-Wesley

Professional; 2012.

7. Gorton I. Essential software architecture: Springerverlag Berlin Heidelberg; 2011.

8. Star SL. This is not a boundary object: Reflections on the origin of a concept. Science,

Technology & Human Values. 2010;35(5):601-17.

9. Weick KE. Making Sense of the Organization. Oxford: Blackwell Publishing; 2001.

10. Bass L, Clements P, Kazman RSAiP. Software Architecture in Practice. Reading, MA:

Addison Wesley; 1998.

11. Shaw M, DeLine R, Klein DV, Ross TL, Young DM, Zelesnik G. Abstractions for software

architecture and tools to support them. Software Engineering, IEEE Transactions on.

1995;21(4):314-35. doi: 10.1109/32.385970.

12. Zachman JA. A framework for information systems architecture. IBM systems journal.

1987;26(3):276-92.

13. Kruchten P. The 4+ 1 view model of architecture. Software, IEEE. 1995;12(6):42-50.

14. Kruchten P, Capilla R, Dueas J. The decision view's role in software architecture practice.

Software, IEEE. 2009;26(2):36-42.

15. Bosch J. Software architecture: The next step. Software architecture: Springer; 2004. p.

194-9.

16. Gharajedaghi J. Systems thinking: Managing chaos and complexity: A platform for

designing business architecture. Burlington, MA: Elsevier Science; 1999.

17. Nevo S, Wade MR. The Formation and Value of IT-Enabled Resources: Antecedents and

Consequences of Synergistic Relationships. Mis Quart. 2010;34(1):163-83.

18. Uhl-Bien M, Marion R, McKelvey B. Complexity Leadership Theory: Shifting leadership

from the industrial age to the knowledge era. The Leadership Quarterly. 2007;18(4):298-

318. doi: 10.1016/j.leaqua.2007.04.002.

19. Ross JW, Weill P, Robertson D. Enterprise architecture as strategy: Creating a foundation

for business execution: Harvard Business Press; 2006.

20. Kosanke K. CIMOSA--Overview and status. Comput Ind. 1995;27(2):101-9.

21. Doumeingts G, Vallespir B, Darricau D, Roboam M. Design methodology for advanced

manufacturing systems. Comput Ind. 1987;9(4):271-96.

22. Williams TJ. The Purdue enterprise reference architecture. Comput Ind. 1994;24(2-3):141-

58.

23. Schmidt C, Buxmann P. Outcomes and success factors of enterprise IT architecture

management: empirical insight from the international financial services industry. Eur J

Inform Syst. 2011;20(2):168-85.

24. Kozina M. Evaluation of Aris and Zachman frameworks as enterprise architectures. Journal

of Information and Organizational Sciences. 2006;30(1):115-36.

25. Josey A, Harrison R, Homan P, Rouse M, Sante van T, Turner M, et al. TOGAF Version 9:

A Pocket Guide. Zaltbommel, NL: Van Haren Pub; 2009.

26. Segars A, Grover V. Communications architecture: towards a more robust understanding of

information flows and emergent patterns of communication in organizations. European

journal of information systems. 1994;3(2):87-100.

27. Bosch J, editor From software product lines to software ecosystems. Proceedings of the

13th International Software Product Line Conference 2009; San Francisco, CA: Carnegie

Mellon University.

28. Messerschmitt DG, Szyperski C. Software ecosystem: understanding an indispensable

technology and industry. MIT Press Books. 2005;1.

29. Jansen S, Finkelstein A, Brinkkemper S, editors. A sense of community: A research agenda

for software ecosystems2009: Ieee.

30. Gall N. From Hierarchy to Panarchy: Hybrid Thinking's Resilient Network of Renewal.

Stamford, CT: Gartner; 2010. 27 p.

31. Rechtin E. Systems Architecting: creating and building complex systems. Upper Saddle

River, NJ: Prentice Hall 1991.

32. Andersson M, Lindgren R, Henfridsson O. Architectural knowledge in inter-organizational

IT innovation. The Journal of Strategic Information Systems. 2008;17(1):19-38.

33. Henderson RM, Clark KB. Architectural innovation: the reconfiguration of existing product

technologies and the failure of established firms. Admin Sci Quart. 1990;35:9-30.

34. Simon HA. The architecture of complexity. Proceedings of the American philosophical

society. 1962;106(6):467-82.

35. Alexander C. Notes on the synthesis of form. . Cambridge, MA: Harvard University Press.;

1964.

36. Alexander C, Coplien JO. The origins of pattern theory: The future of the theory, and the

generation of a living world. Ieee Software. 1999;16(5):71-82. PubMed PMID:

ISI:000082851000017.

37. Schilling MA. Towards a General Modular Systems Theory and its Application to Interfirm

Product Modularity. Acad Manage Rev. 2000;25(2):312-4.

38. Parnas DL. On the Criteria to Be Used in Decomposing Systems into Modules. Commun

Acm. 1972;15(12):1053-8. PubMed PMID: ISI:A1972O176500009.

39. Hippel von E. Task Partitioning: An Innovation Process Variable. Res Policy. 1990;19:407-

18.

40. Langlois RN. Modularity in Technology and Organization. Journal of Economic Behavior

and Organization. 2002;49:19-37.

41. Langlois RN, Robertson PL. Networks and Innovation in a Modular System: Lessons from

the Microcomputer and Stereo Component Industries. Res Policy. 1992;21(4):297-313.

42. Channabasavaiah K, Holley K, Tuggle E. Migrating to a service-oriented architecture. IBM

DeveloperWorks. 2003;16.

43. Vassiliadis B, Stefani A, Tsaknakis J, Tsakalidis A. From application service provision to

service-oriented computing: A study of the IT outsourcing evolution. Telematics and

Informatics. 2006;23(4):271-93.

44. Brand S. How buildings learn: What happens after they're built. New York, NY: Penguin

Books; 1994.

45. Papantoniou B, Nathanael D, Marmaras N. Moving Target: Designing for Evolving

Practice. In: Stefanidis, editor. HCI: Inclusive Design in the Information Society;

Heraklion, Crete: Lawrence Erlbaum Associates, Mahwah; 2003.

46. Simmonds I, Ing D. A shearing layers approach to information systems development. In:

Huhns M, Gasser L, editors. The structure of ill-structured solutions: boundary objects and

heterogeneous distributed artificial intelligence 2000.

47. Zittrain JL. The Future of the Internet and How to Stop It. New Haven, CT: Yale

University Press; 2008.

48. Agre P. P2p and the promise of internet equality. Communications of the ACM.

2003;46(2):39-42.

49. Abbate J. Inventing the internet: MIT press; 2000.

50. Hoogervorst J. Enterprise architecture: Enabling integration, agility and change.

International Journal of Cooperative Information Systems. 2004;13(03):213-33.

51. Kephart J, Chess D. The vision of autonomic computing. Computer. 2003;36(1):41-50.

52. Garud R, Jain S, Tuertscher P. Incomplete by design and designing for incompleteness.

Organ Stud. 2008;29(3):351-71.

53. Pollock N, Williams R. e-Infrastructures: How Do We Know and Understand Them?

Strategic Ethnography and the Biography of Artefacts. Comput Support Coop Work.

2010;19:521-56.

