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1 Dynamic Partial Runtime Reconfiguration is Becoming
Mainstream

The progress in silicon industry has resulted in a tremendous increase
in device capacity of FPGAs. As illustrated in Figure 1, the smallest
devices of the upcoming Altera Stratix 5 FPGAs as well as the announced
Xilinx Virtex-7 FPGAs provide more than double the amount of logic and
embedded memory as the flagship devices of the one decade old Stratix
or Virtex-II series FPGAs. By passing the one million LUTs border, high
density FPGAs are sufficient to host 250 softcore CPUs plus the required
peripherals.

Fig. 1. One decade of FPGA evolution. The figure denotes the increase in logic density
over time and over the corresponding process technology.
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Fig. 2. One decade of FPGA evolution. The figure lists the increase in configuration
memory size (total bitstream). By comparison, the largest currently available SRAM
device provides 18 MB (Cypress 2009).

As the functionality of the here regarded FPGAs is defined by SRAM
cells, the corresponding configuration data has also rose towards tens of
megabytes (see Figure 2). Note that the highest capacity FPGAs typically
provide more SRAM cells of what can be found in the largest SRAM
memories released at the same time.

This progress in device density results in two drivers for introducing
dynamic partial runtime reconfiguration in all future high-density devices:
1) increasing vulnerability to SEUs and 2) an increase in the configuration
time.

1.1 Increasing Vulnerability to SEUs

By dramatically increasing the total amount of configuration bits as well
as by shrinking the configuration memory cells at the same time, FPGAs
have become more vulnerable to single event upsets (SEU). As compared
to ASICs, a single event upset may not only result in an error in the
datapath but much more likely in a malfunction of the circuit. This results
from possible SEUs in the configuration SRAM cells that describe the
present circuit that has been loaded to the FPGA [1]. Not every SEU
results necessary in a malfunction as, for example, not all resources of an
FPGA (e.g., logic or routing resources) are used in a particular circuit.
However, if SEUs are not corrected, multiple event upsets might occur
and therefore dramatically increase the risk of a circuit failure [2].



Fig. 3. One decade of FPGA evolution. The figure lists the configuration time of a full
bitstream when considering the fastest possible configuration speed.

For dealing with SEUs, different application and safety scenarios have
to be considered [3]. If faults can be temporarily accepted (can be seen as
noise), it is sufficient to permanently overwrite the existing configuration
(or parts of it) while keeping the device in active operation mode. This
process is called configuration scrubbing. Note that configuration scrub-
bing can be combined with other fault tolerant techniques, such as triple
modular redundancy (TMR) [4, 5].

In other applications, the present configuration has to be validated
(e.g., by reading back the configuration data) before committing the re-
sult, like for instance, in banking applications.

We can summarize that partial runtime reconfiguration is required for
implementing safety critical systems.

1.2 Configuration Bootstrapping

As the configuration bitstream size has enormously increased (see Fig-
ure 2), FPGAs vendors have started to introduce faster configuration
interfaces in order to avoid an exponential rise in configuration time (see
Figure 3). This was mainly achieved by widening the configuration ports
(e.g. from 8-bit in Virtex-II to 32-bit in Virtex-4 FPGAs).

However, the initial configuration is typically still provided by a rela-
tively slow flash memory device [6]. This is critical for many applications
that demand fast availability after power-up, like for example, a PCIe
interfaces implemented on a FPGA [7]. This issue can be solved with



Fig. 4. Configuration bootstrapping example for PCIe solutions. a) After power-up,
mainly the PCIe core is configured while leaving the rest of the device empty in order
to fulfill fast PCIe core activation. b) Finally, the remaining system is loaded in a
second non time-critical phase to the device.

the help of bootstrapping where in an initial configuration step only the
modules requiring fast availability will be loaded to the device while fin-
ishing the configuration in a further step. An example of this procedure
is illustrated in Figure 4.

We can summarize that partial runtime reconfiguration allows to im-
plement faster start-up times. Together with the increasing vulnerability
to SEUs, this forces FPGA vendors to include partial runtime capability
in all their future devices. This can be identified be the vendor Altera
Inc. that recently announced to provide full support for dynamic partial
run-time reconfiguration in their Stratix-V series [8].

2 Context-Switching on FPGAs

With the widely introduction of partial run-time reconfiguration in all
future high-density FPGAs, the technical basis for implementing context
switching on FPGAs will be provided. In context switching FPGA-based
systems, parts of the FPGA fabric will be shared by multiple modules
over time. This is similar to multi-context task execution in software sys-
tems. However, in the hardware case, we have to distinguish between 1)
the context of the FPGA (device level) and 2) the context represented
inside the memories of the modules (module level). As depicted in Fig-
ure 5, the device level is given by the present module layout that can vary
when (partially) reconfiguring the FPGA. Respectively, the module level
is represented by the flip-flop values or the content of RAM blocks within
the entire modules located on the device.



Fig. 5. Context-switching on FPGAs. The context of an FPGA is twofold: on a) the
device level, it is represented by the present FPGA configuration and on b) the module
level, by the internal state of the modules.

3 COSRECOS: Making Context-Switching Available

Despite the technical basis and more than two decades of intensive re-
search on exploiting partial run-time reconfiguration, there still exist a
wide gap between the possibilities and what is currently available to im-
plement reconfigurable systems. This can be seen by the little acceptance
in industry for this topic, and despite the opportunity to save cost, area,
and power at the same time, partial runtime reconfiguration is still very
exotic.

The aim of the COSRECOS project (Context Switching Reconfig-
urable Hardware for Communication Systems) [9] is to bridge this gap.
By developing novel methodologies and advanced tools, we want to make
the implementation of reconfigurable systems and their operation as sim-
ple as it is known from the software world. Consequently, we are investi-
gating 1) design-time aspects, including models, analysis, debugging, and
tools as well as 2) run-time aspects where we focus on high-speed recon-
figuration, temporal module placement and interprocess communication.
Moreover, we will 3) demonstrate our approaches on applications from
the networking and general purpose domain.

With this project we want to contribute to the research community
with a strong emphasis on active collaborations as well as to enhance
acceptance in industry for using dynamic partial run-time reconfiguration.
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