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Abstract—Exploiting the benefits of partial run-time recon-
figuration requires efficient tools. In this paper, we introduce
the tool GOAHEAD that is able to implement run-time recon-
figurable systems for all recent Xilinx FPGAs. This includes
in particular support for low cost and low power Spartan-6
FPGAs. GoAhead assists during floorplanning and automates
the constraint generation. It interacts with the Xilinx vendor
tools and triggers the physical implementation phases all the
way down to the final configuration bitstreams. GOAHEAD
enables the building of flexible systems for integrating many
reconfigurable modules very efficiently into a system. The tool
targets (re)usability, portability to future devices, and migration
paths among reconfigurable systems featuring different FPGAs
or even FPGA families. Moreover, it provides a scripting interface
and all features can be accessed remotely.

I. INTRODUCTION

The overall goal of partial reconfiguration (PR) is to share
FPGA resources among multiple modules that are executed
mutually exclusively to each other. By time-sharing FPGA
resources, more functionality can be put into a single FPGA
or, alternatively, a given functionality can be implemented on
a smaller device. A higher level of integration or a smaller
device results in a more cost effective implementation. More-
over, this helps to save power. In the latest CMOS process
technology, in which static power consumption dominates
overall power consumption, the power savings are roughly
proportional to the area savings and even the power overhead
for the reconfiguration will become more negligible with
future CMOS processes where the static to dynamic power
ratio will probably continue to rise [1]. Therefore, partial
reconfiguration is in particular of interest for many embedded
systems that have strict power or cooling requirements.

There are several more use cases for partial reconfiguration;
however, the real challenges arise with the implementation of
corresponding systems. First of all, a run-time reconfigurable
system must improve a static only solution. This requires
that the logic overhead for the communication with the re-
configurable modules is kept low. Besides the efficiency of
the reconfigurable system, it is similarly important to have
an efficient way to implement reconfigurable systems. This
demands tools and design flows that are able to implement
efficient design methods for reconfigurable systems. For more
than a decade, a lack of tools has hindered the wide use of par-
tial reconfiguration and this technique was almost completely
restricted to academic projects where researchers with much
low level expertise created remarkable systems (e.g., [2], [3],
[4], [5]).

However, the two FPGA vendors Xilinx and Altera are now
providing reliable tools that hide all low level FPGA details
from the design engineer [6], [7]. In short, both flows are based

on an incremental design methodology where the static system
(the part of the system that will be present at any time, e.g,
a CPU or memory controller) will be implemented in a first
step. In order to implement the communication to and from
the reconfigurable modules, an anchor LUT (called proxy logic
by Xilinx) will be added into the reconfigurable regions and
connected, as shown in Figure 1. The partial modules are then
implemented as an increment to the static systems (where the
placement and routing will be preserved).

This is nicely supported by the tools but has three major
restrictions. 1) As the routing to the anchor LUTs is not strictly
constrained, it is in general different for each reconfigurable
area, as sketched in Figure 1. Furthermore, there might be
static signals crossing a reconfigurable area. This prevents
module relocation among different reconfigurable areas, even
if the different reconfigurable modules would be identical for
both areas. 2) The routing to the anchor LUT will in general
change each time the static system is changed. Consequently,
all permutations of module instance and placement position
have to be reimplemented on each change of the static system.
Finally, 3) a reconfigurable area can only host one module ex-
clusively (island style reconfiguration) and it is not supported
to share a reconfigurable area by multiple modules in a flexible
manner at the same time.

These restrictions have been circumvented by a few aca-
demic tools (e.g., ReCoBus-Builder [10] or OpenPR [9]) that
use hard macros for the interface routing and special blocker
macros to constrain the routing. With these tools, module
relocation, multi module instantiations, and sharing a recon-
figurable area by multiple modules are possible. However,
these approaches ignore some important design aspects like
the internal module timing and there are new challenges
with recent Xilinx FPGAs. Table I lists the most important
features of the old and new Xilinx design tools together with
the ReCoBus-Builder and OpenPR. The last column includes
the features provided by our new tool GOAHEAD , which
will be introduced throughout the next sections. GOAHEAD
provides important features for better utilizing partial run-time
reconfiguration and it supports the latest devices, including
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Figure 1. Partial module integration using proxy logic [6].



Table I
COMPARISON OF DIFFERENT INDUSTRY AND ACADEMIC PR DESIGN TOOLS WITH OUR NEW TOOL GOAHEAD

feature PlanAhead (old) [8] PlanAhead [6] OpenPR [9] Recobus-Builder [10] GOAHEAD

supported devices V-II/Pro V4 V4, V5, V6 V4, V5 V-II/Pro, S3 V43, V5, V6, V73, S6
floorplanning GUI yes yes uses PlanAhead yes yes

script interface TCL TCL-like
module relocation no1 no yes yes yes

static/partial decoupling no1 no yes yes yes
partial region crossing yes yes no no yes

hierachical reconfiguration no no no no yes
component-based design no no no yes yes
communication method bus macro proxy logic bus macro various macros proxy logic, bus macro, direct wire

communication architecture no no no bus/streaming streaming
reconfiguration style

single island yes yes yes yes yes
multi island no1 no yes yes yes

slot-based no1 no yes2 yes yes
grid-based no1 no no yes yes

1: Module relocation and advanced reconfiguration styles are natively not supported, but has been shown in [5], [11];
2: Not well supported due to a missing on-FPGA communication architecture.
3: Due to lack in available FPGA boards, these devices are only verified using the Xilinx design tools, but have not been tested on an FPGA.

Xilinx Spartan-6 FPGAs that are not even supported by the
Xilinx vendor PR flow. The tool, documentation, and example
systems are available on our project website [12].

In the next section, we will introduce the tool and the
GOAHEAD design philosophy. After this, some distinguishing
features will be presented in dedicated sections, including a
methodology to avoid bus macros or proxy logic (Section III),
the technique to relocate modules in GOAHEAD (Section IV),
and an approach to permit static signals to cross areas hosting
reconfigurable modules (Section V). Section VI will show a
case study and the paper is concluded in Section VII.

II. THE GOAHEAD TOOL AND DESIGN FLOW

Implementing reconfigurable systems requires a few more
steps than the implementation of a static only system. The goal
of GOAHEAD is to support and to automate these steps for
enhancing design productivity and for avoiding an error prone
design flow. The overall GOAHEAD philosophy is to automate
low level design aspects that are required when implementing
run-time reconfigurable systems. To achieve this, we abstract
away from the target FPGA architecture (note that GOAHEAD
permits system mitigation among different devices or even
device families). The designer will mostly have a system
level view where he has to think in modules, interfaces,
geometrical aspects, or scheduling rather than in wires and
switch matrix multiplexer settings. However, the tool provides
several low level report and manipulation functions that are
all accessible via a scripting interface and a comfortable
GUI (see Figure 2). All complex commands that call other
commands can generate a trace, such that all processes can be
observed. Moreover, these traces can be put into a script file
(optionally manipulated) and executed again. This low level
scripting interface enables the building of very complex re-
configurable systems and can be used to integrate GOAHEAD
with further projects (e.g., for improving the floorplanning, or
implementing a component-based design methodology). The
overall GOAHEAD design flow is illustrated in Figure 3 and
the following sections explain the main steps.

Figure 2. GOAHEAD GUI showing a Spartan-6 LX16 FPGAs.

A. Initial Planning

At the beginning of the design process, a planning step is
required. Here, a design engineer has to define which parts
of the system will be static (i.e., parts available at any time)
and which parts (a set of modules) will be reconfigurable. In
general, it is difficult to automatically decide which modules
will be used mutually exclusively to each other at run-time.
However, this process is in most cases straightforward to
perform. Furthermore, it is also required to define partial
modules. This can be done bottom-up by defining a partial
region interface and by fitting modules into such a region.
Alternatively, in a top-down design flow, partial modules are
extracted from the hierarchy of a given design. Partial modules
can have any design hierarchy and also generics are supported,
but the modules must provide an entity containing only the
partial module interface signals. This has to be done for each



Figure 3. Simplified view on the different logic resource types (slices)
provided on Spartan-6 FPGAs.

module separately. The union of all interfaces of modules that
share a reconfigurable area defines the interface for the static
part of the system. This interface includes all signals except
the clocks, which are treated differently.

In addition, a resource budgeting is performed to determine
the resource requirements (e.g., # LUTs, # BRAMs) for the
static system and for the partial modules. For IP cores, the
requirements are typically known. Otherwise, we can run
an initial implementation (up to the technology mapping).
The resulting netlist can then be analyzed by GOAHEAD.
As the Xilinx vendor tools preserve hierarchy information,
GOAHEAD can list for each hierarchy branch of the design the
exact resource requirements. There is no restriction to perform
the resource budgeting in one netlist or in separate netlists (for
the different partial modules and the static system), because
GOAHEAD can optionally filter hierarchy branches in a design.

B. Floorplanning

With the knowledge of the resource requirements of the
partial modules, it has to be decided how many resources
each reconfigurable area should provide. In the case of an
island style reconfiguration where only one module will be
hosted exclusively in an island, this is the maximum of each
particular resource type (e.g., slices, BRAMs) over all modules
sharing an island. In the case of recent Xilinx FPGAs, this
value will be in most cases rounded up to the number of
resources available in the height of a clock region (the smallest
atomically reconfigurable unit on these devices). GOAHEAD
can compute these values for a set of modules (given as
individual netlists).

In the case that multiple modules should share a reconfig-
urable region at the same time, the resource requirements have
to be manually specified. Here it must be considered that due
to fragmentation it could be possible that the area must be

larger than what is required with respect to the set of modules
taking most resources at run-time.

The gathered information permits selection of the FPGA
(capacity), definition of reconfigurable areas, and definition of
module bounding boxes. GOAHEAD supports this via the GUI
and the scripting interface. Area or bounding box definitions
can be manually specified or automatically generated. The au-
tomatic mode follows the strategy to rise a reconfigurable area
starting in the center of the device by following approximately
the aspect ratio of the FPGA until the resource requirements
are met. In this case, clock resource columns will be excluded
and kept for the static system. This works reasonable well for
single island style reconfiguration as the modules will use the
same geometrical information.

In the initial planning phase, we defined module interfaces
in terms of VHDL entities. GOAHEAD provides a wizard
that can read module entities and build up the interface
definition for a reconfigurable area. Such a definition contains
signals with attributes such as input, output, or streaming (i.e.
inputs and outputs on compatible interfaces on both sides of
a module). In addition, the definition contains geometrical
information of where to place the interface and a signal-to-wire
assignment. This is very similar to the process of specifying
a physical plug on a printed circuit board (PCB) where we
also have to define positions and a pin assignment. The wire
assignment can optionally include timing information for the
signal propagation delays allowed on the static side and on
the partial side to reach the interface (located at the border
to a reconfigurable module). This information will be used
to generate timing constraints for the Xilinx vendor tools.
The GOAHEAD interface wizard can automatically create wire
assignments. The wizard fits all single bit interface signals into
vertically aligned interfaces that are placed at the left and/or
right border of the reconfigurable area (or a module). The
packing fits up to four signal wire connections in a single CLB
and vector signals are grouped such that LSBs to MSBs are
packed in a bottom up manner. This rule-based approach fits
well to Xilinx FPGAs where the carry chain logic comprises
four LUTs per CLB propagating in the same direction (see
also Figure 6b))1.

C. Static System Implementation

After performing the floorplaning, GOAHEAD creates all
required VHDL templates and physical implementation con-
straints. The VHDL templates include communication macro
instantiations (e.g., bus macros) and/or instantiations of con-
nection primitives. From a system level perspective, this
represents the logical plugs for the signals between the static
system and the modules and this is very similar to instantiating
an FPGA I/O pin primitive. For all macro instantiations, GOA-
HEAD creates placement constraints for the macros (derived
from the interface definition). At the moment, the VHDL
templates have to be included manually, while the UCF file

1In [13], [14], simulated annealing heuristics have been presented for the
interface packing that could be straightforward integrated into the GOAHEAD
framework. However, these approaches can take more than a day to process
and optimize only the static system. Our rule-based approach considers more
the partial modules where the routing is typically very congested.



manipulations can be performed automatically. However, an
approach to automate the VHDL manipulation is presented
in [13], and it is suitable for integration into our framework.

When implementing a reconfigurable system, we must
strictly ensure that FPGA resources are used either for im-
plementing the static system or for a partial module. For the
primitives (e.g., Slices or BRAMs), Xilinx provides different
possibilities and by default, GOAHEAD generates CONFIG
PROHIBIT statements. For the static system, such a state-
ment will be generated for each primitive located within a
the reconfigurable region. Consequently, only the remaining
primitives around the reconfigurable areas will be used for
implementing the static system.

Unfortunately, Xilinx does not provide a comparable con-
straint for the routing resources. As an alternative, GOAHEAD
creates blocker macros. These macros occupy a definable set
of wires (e.g., all wires inside a reconfigurable area). Such a
blocker is included into a design before starting the Xilinx
vendor router. The router will recognize all blocked wires
as already occupied and continue with the remaining routing
resources. With the recent Xilinx design tools, every individual
wire can be blocked in this way. Blocking has also been
used by the ReCoBus-Builder [10] and in OpenPR [9], but
GOAHEAD can create blockers more flexibly as shown in
Section III and Section V.

As shown in Figure 3, the static part will be implemented
completely independently from the partial module implemen-
tation. The modified VHDL code has to be compiled, and
the result will be placed by following the extra constraints
generated by GOAHEAD . This can be done using a third party
synthesis tool or the Xilinx vendor tools (on the command line
or in the ISE design environment). The final steps are carried
out by a script (here gen_static). This script merges the
blocker into the placed design using the Xilinx Design Lan-
guage (XDL) [15]. The following routing is done by the Xilinx
FPGA editor (the command line version). For the final routed
design, the script runs a timing analysis and the bitstream
generation. This is basically the same flow as described for
OpenPR [9]. The main difference is that GOAHEAD uses
blockers to provide clock signals in reconfigurable areas. This
means that we basically include dummy primitives (e.g., slices
or BRAMs) into the design and connect them to global clock
nets and let the vendor tools create the final clock tree routing.
In OpenPR, the tool adds the clock tree routing without using
the vendor tools. Both approaches are completely transparent
to the user and permit multiple clock domains.

D. Partial Module Implementation

The partial module implementation follows the same idea
of constraining that was used for the static system. However,
instead of generating prohibit statements and blockers in a
region, these constraints will now be generated around it.
Consequently, we will not use any primitive or routing outside
the module bounding box. This is implemented by defining
bounding boxes (according to the resource requirements) in
GOAHEAD . By using the interface description that has been
used for the static system, our tool generates VHDL templates,
UCF constraints, and a blocker. These files will be used in
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Figure 4. Partial bitstream generation using the differential bitstream option
(bitgen -r). a) where the partial part is implemented as an increment to
another (typically static) system. b) where the partial module is completely
separated. c) as an alternative to b), we can delete the parts that should
be added to the bitstream. Note, by changing first with second, a blanking
bitstream can be generated.

a very similar way to that during the static system imple-
mentation. Note that the partial module implementation is
completely decoupled from the static system implementation.
Furthermore, all modules are implemented individually in the
way described here. Consequently, there is no dependency
between a partial module and the static system or any other
partial module. The only shared part is the interface descrip-
tion.

As shown in Figure 3, another script (gen_partial) is
used for the blocker insertion, final routing, and bitstream
assembly. This script works similarly to the static routing script
except for the final bitstream assembly, which has to create
partial bitfiles. In previous versions of the Xilinx bitstream
generation tools, there was an option for generating a partial
bitstream for a definable region of the FPGA fabric. This
option is unfortunately not available for recent FPGA families.
However, there is an option to generate differential bitstreams
using the bitgen -r switch. Without further options, the
command is called as follows:
>bitgen to.ncd -r from.bit diff.bit

This command will create a partial bitstream that contains the
differences to switch from the from file to the to file. The
to file is always in the NCD netlist format and the from file
is always a bitstream (*.bit). Consequently, before running
this command, bitgen has to be called to generate the from
file. By swapping the from file with the to file, we will
generate a blanking bitstream that removes the partial module
from the system (if loaded to the FPGA).

As illustrated in Figure 4, we support three different meth-
ods to generate partial bitstreams using bitgen:

a) Incremental: here, the partial module is generated as an
increment to an existing design (typically a static system).
This is the method used by the Xilinx vendor PR flows.

b) Isolated: this is the GOAHEAD default partial bitstream
generation method. Here, the partial module is strictly



separated from any other parts of the system in order
to generate a differential bitstream among a completely
empty system. The isolation is supported by GOAHEAD
with the command CutOffFromDesign.

c) Remove: here, the GOAHEAD CutOffFromDesign
command is used to delete the part of the design for
which a bitstream is going to be generated. By taking
the original bitstream as the target (to file), a partial
bitstream containing only the deleted parts is generated.

E. Further GOAHEAD Features

GOAHEAD is feature-rich and due to space limitations we
cannot reveal the following features in more detail:

1) Hierarchical Reconfiguration: This is possible, because
we can define a reconfigurable area inside a partial module
bounding box in exactly the same way a reconfigurable area
is defined in the static system. We used this to implement
reconfigurable instruction set extensions in a partially recon-
figurable softcore CPU.

2) Communication Architecture Synthesis: GOAHEAD can
create homogeneous communication architectures for stream-
ing ports that are required for slot or grid based reconfigurable
systems. In such systems, a larger reconfigurable area is parti-
tioned in regular tiles and the architecture provides interfaces
in each tile such that all tiles provide the same footprint (see
also Section IV-A). The streaming architecture is similar to
existing approaches (e.g., [5], [10], [2]), but supports latest
Xilinx FPGAs.

3) PR Simulation: We developed a library for cycle ac-
curate RTL simulation of reconfigurable systems using multi
island style reconfiguration. Here, the idea is to scan the ICAP
port configuration data to determine which module is written
where in order to (de)activate modules as they would be
available at run-time. During reconfiguration, interface signals
and partial module states will be forced to be undefined.

III. DIRECT WIRE BINDING

Many reconfigurable systems use bus macros to integrate
reconfigurable modules into a system. In bus macros, one logic
primitive is placed in the static system and another one in
the reconfigurable area and wires between them are used to
carry out the routing between the static and the partial part.
By placing the macro on the partial area border, an interface
signal to wire binding is achieved due to the internal bus macro
routing that will be maintained through all implementation
steps [8]. Interface signal wires work similarly to a physical
plug located on a PCB and the binding of interface signals to
wires has to be identical for the static system and all partial
modules.

However, integrating partial modules using bus macros or
proxy logic, has several drawbacks, including logic cost, addi-
tional latency, and restrictions on the module placement. GOA-
HEAD provides an alternative that circumvents these problems
by binding the interface signals directly to the wires crossing
the PR border without the help of logic resources. This is
achieved by blocking. Here, it is important to understand
that wire blocking basically specifies an allocation of FPGA
routing resources that are used for a specific routing step, but

interface wire static systemPR regioninterface wire static systemPR region

blocker

connection
primitive

to
partial

from
partial

a) b)

Figure 5. Direct wire binding. a) during the implementation of the static
system, connection primitives act as a placeholders for the partial modules. A
blocker placed into the reconfigurable region congests all wires except some
tunnels for the interface wires. b) during the implementation of the partial
modules, connection primitives act as a placeholder for the static system. A
blocker placed around the reconfigurable region congests all wires except
some tunnels for the interface signals. In both cases, the same wire was used
for a specific signal and there will be no connection primitive remaining, if
a partial module will be placed into the static system.

we cannot directly define the binding. In this case, binding
means that we cannot define that a specific signalx has to be
routed using a certain wirey. The trick is to create blockers
that leave only one option to route a path between the static
system and a reconfigurable module.

As illustrated in Figure 5, this can be implemented very
similarly to the original bus macro flow, by splitting the macro
in two parts, one part for the static system and one for the
modules. Note that the blockers are identical to the blockers
that would have been created for a bus macro.

IV. MODULE RELOCATION AND
COMPONENT-BASED DESIGN

The capability to isolate modules and to relocate them
to different positions on an FPGA is essential for all more
advanced reconfigurable systems (or for a component-based
design methodology). For instance, this is required to be able
to instantiate the same module multiple times in a system.
Relocating modules requires that the FPGA provides the same
kinds of resources with the same internal layout at different
positions of the FPGA. This is commonly considered in the
way that the layout of logic (CLB), memory (BRAM), or
multiplier (DSP48) primitive columns has to fit a module at
the target reconfigurable area on the FPGA fabric. However,
this model does not reflect further aspects, including routing,
timing and configuration bitstream aspects. We summarize all
these aspects by the term footprint and a module footprint
must match the footprint of the FPGA at the target position.
The following sections will clarify this in more detail:

A. Resource Footprint

As already mentioned, the different primitive columns result
in a heterogeneous layout which has to be considered when
relocating modules. And in addition to CLB, BRAM, and
DSP48 columns, the more recent Virtex-series FPGAs from
Xilinx, consist of columns of I/O cells, clock generation
blocks, and many further dedicated function blocks target-
ing domain specific applications (e.g., high-speed transceiver
blocks, PCIe interface cores, or memory cores). The module
resource footprint reflects the layout of primitives within a
module which has to be provided at the target position by the
FPGA.
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Figure 6. Simplified view of the different logic resource types (slices)
provided on Spartan-6 FPGAs.

Furthermore, on Spartan-6 FPGAs, the logic primitives
differ and there are a) simple LUT primitives, b) primitives
with carry chain logic, and c) primitives with carry chain logic
and distributed memory, as sketched in Figure 6. As a more
complex primitive can work also as a simpler one, module
relocation is possible, even of the logic resource footprint
varies among different reconfigurable islands. For example, if
a module uses only SLICEX logic primitives (logic only), it
could also work at positions that provide SLICEL (with carry
chain logic) or SLICEM (distributed memory) slice primitives.

B. Wire Footprint
Not only does the logic resource primitive footprint have to

compatible, the same holds for the footprint of the routing
resources. For example, on the smallest Spartan-3 FPGAs,
there are no hexline wires available that exist on all larger
FPGAs within the Spartan-3 family. This has to be considered
when migrating modules among different FPGAs (e.g., for a
component-based design methodology).

In general, it might be necessary that the static system
occupies routing resources within a reconfigurable region. If
a module demands those routing resources, module relocation
is not possible due to a wire footprint mismatch.

C. Timing Footprint
There is also a timing footprint of the FPGA fabric that has

to be considered when relocating modules. For example, the
configuration logic on Xilinx FPGAs is arranged in a (hidden)
column located in the center of the fabric. Consequently,
this logic results at some points in longer routing delays.
Furthermore, the clock signals on Xilinx FPGAs are routed in
multiple horizontal paths from where they branch into vertical
splines up and down. Relocating a module from an upwards
clock spline to a downwards spline will consequently impact
the timing. This is because a vertically routed signal within
the module will propagate once with the clock wave and once
against it.

When using a communication architecture to integrate re-
configurable modules in a flexible manner, this architecture
will have an internal latency which may impact the attached
partial module. The latency can be placement position de-
pendent (e.g., if no registers are used at the interface of
the communication architecture). Consequently, the timing
footprint includes also the latency on interface signals.

D. Bitstream Footprint

On Xilinx FPGAs, modules can be relocated by changing an
address field in the configuration bitstream header. However,
on Xilinx Spartan-6 FPGAs, modules using only the LUT
function generator functionality (i.e., not using carry chains
or distributed memory) can be relocated on a netlist level (as
mentioned in the resource footprint section). This is possible
without any changes to the internal logic and routing of
such a module. However, the bitstream encoding differs for
CLB columns providing distributed memory (CLEXM CLB
columns) as compared to other logic columns (see Figure 6 for
an illustration of the different logic primitives). Consequently,
it can require more than one partial module bitstream for
supporting arbitrary module relocation.

E. Module Relocation in GOAHEAD

In order to ensure that a module will operate correctly at
all intended positions, GOAHEAD can compose a netlist for
any configuration state a system would have after loading a
reconfigurable module onto an FPGA. For all these netlists,
we run the timing analyzer and we can generate a corre-
sponding partial bitstream. A timing violation will typically
require a reimplementation of the module. For the bitstreams,
GOAHEAD checks if more than the address field differs for
all bitstreams generated for a specific module at the different
placement position. If this is the case, more than one bitstream
is required at run-time. This ensures a fit of the timing and
bitstream footprint. Note that this process would be straight-
foward to parallelize. Moreover, by decoupling modules at
their interfaces (e.g. using registers at the module I/Os), we
can prevent that different modules from interfering with each
other. Consequently, each module can be verified individually
and we do not have to create all possible permutations of
module instances and placement positions.

To ensure a resource footprint and wire footprint match,
GOAHEAD provides design rule checks and some powerful
functions. The tool makes it possible to cut out arbitrary
regions from a design in the granularity of a CLB or any other
tile of the fabric. This cut-out can be stored as a module. As
GOAHEAD has an internal wire database, it tracks if there
are routing tracks crossing the border of the selection. In this
case, the tool will add module ports. Such a port is defined
by a name (derived from the net name), a direction (input
or output) and the physical wire resource used to cross the
module border. For a given system, GOAHEAD can scan for
all possible module placement positions and the result can be
shown in the GUI tile view or printed to the command line
or a file. This scan checks module ports, wire violations, and
resource mismatches.

As a counterpart to the cut-out function, GOAHEAD pro-
vides a module place function. To instantiate a module, a
instance name and a placement position have to be specified.
The instance name will be used as a prefix for all nets and
primitives for this module when integrating it into another
design (typically the static system). This permits multi module
instantiations. In addition, the module ports are used to join
nets. This includes a design rule check if ports of two adjacent
parts (two modules or a module and the static system) match.



When following a reconfigurable design flow, this results in
a fully routed netlist. This netlist could even be simulated
(post place & route simulation). For a component based design
methodology, it is alternatively possible to place multiple
modules on the FPGA without respecting any ports. In this
case, the Xilinx vendor router can be used to accomplish the
final top level routing.

The functions provided for the component-based design
part have commonalities with features provided by Torc [16]
and RapidSmith [17] that use also XDL to perform netlist
manipulations. However, GOAHEAD provides distinguished
features for composing run-time reconfigurable systems and
a component-based design flow can be arbitrarily combined
with a partial design flow. When following the clock region
constraint on Xilinx FPGAs, partial reconfiguration could then
be used without side effects to other modules.

V. STATIC ROUTING IN RECONFIGURABLE AREAS

While the blocker approach presented in [9] permits module
relocation, which is not available using the Xilinx vendor PR
design tools, it has the drawback that no static routing can
cross the reconfigurable region. In other words, a partial area
in [9] is an obstacle for the static system routing and all signal
paths have to route around this obstacle2 which might result in
considerable congestion and increased latency. Moreover, such
static routing can be implemented in many cases ”for free”.
The reason for this is that most partial modules will have an
aspect ratio that is tall rather than wide. This is because of the
column-wise reconfiguration scheme and because of the carry
chain logic is arranged in vertical columns on Xilinx devices.
In addition, there are routing wires spanning a wider distance
and typically both sides of a wire (begin and end) have to
be located inside the module bounding box. For example, on
Spartan-6 FPGAs there exist quad lines that route four CLBs
further. If we consider only horizontal quadlines, a partial
module must be at least five CLB/BRAM/DSP48 columns
wide to use quadlines at all. Otherwise, these quadlines would
remain completely unused.

In GOAHEAD, which also uses blocking to constrain the
routing, we permit static routing through reconfigurable areas
as this was in particular required for highly utilized Spartan-6
FPGA designs. The fundamental principle behind partitioning
the FPGA resources into one set allocated to the static system
and another set of resources allocated to the reconfigurable
modules is that both sets are separated from each other. As a
consequence, we can allow static routing in a reconfigurable
area as long as no module will demand the corresponding
wire resources. The latter one can be ensured by blocking
the specific wires used to cross a reconfigurable area during
the physical implementation of the modules. In this case, the
routing of the blocker will speculatively route all reserved
paths through the reconfigurable region, regardless of whether
they will be used or not by the static system. Consequently, the
partial module bitstream does not have to be further adjusted
at run-time.

2In Virtex FPGAs there are long lines available that can hop over a
reconfigurable area. However, there are only a few long lines available and
these wires are not available at all on Spartan-6 FPGAs.

Figure 7. Reconfigurable instruction set extension. a) RTL b) FPGA
implementation showing the direct wire communication architecture.

Using this approach has some limitations. While it is in most
cases noncritical to reserve plenty of horizontal wires for the
static routing, vertical wires are typically heavily used by the
partial modules themselves [18]. Note that there are up to 256
horizontal quadlines available per direction within the height
of a clock region (16 CLBs in height) on a Spartan-6 FPGA.
In addition, we can only define a wire allocation, but not an
exact routing by blocking, as discussed in Section III. This has
two consequences: 1) the allocated wires for the static routing
should not leave any freedom to the router; and 2) the allocated
wires should not interfere with the communication architecture
used to integrate partial modules. The latter constraint is
bound to the direct wire integration technique (Section III)
that is also based on a neat wire allocation and there are
no aftereffects when using bus macros. The first constraint
removes the need to manipulate a partial module bitstream
in the case a reconfigurable module should work at different
reconfigurable areas on the FPGA (that are assumed to have
a different static routing).

GOAHEAD can automatically generate all constraints for the
blockers that are required to allocate a definable number of
wires to be used as static routing within a reconfigurable area.
This is supported for a straight crossing in any horizontal
and/or vertical direction. By applying this feature after the
communication architecture definition, no wires will be allo-
cated that might interfere with the communication architecture.
This is possible as GOAHEAD has full knowledge about all
possible switch matrix settings.

VI. CASE STUDY

GOAHEAD can implement complex reconfigurable systems
and one particularly challenging example is the efficient inte-
gration of reconfigurable custom instructions into a softcore
CPU. The problem is difficult, because there are many signals
to be connected within a relatively small area. In this example,
we will extend a 32-bit MIPS softcore running on a Spartan-
6 FPGA with up to four different instructions that are freely
placeable into a reconfigurable area that is tiled into four slots.
As shown in Figure 7a), this requires the connection of at least
three 32-bit signal vectors per resource slot. We chose a slot to
be one CLB wide and eight CLBs in height. This corresponds
to two 6-input LUTs per result bit. Note that some modules
could perform valuable work without using the LUTs at all.
For instance, a bit permutation function would be basically
only wiring but would easily save more than a hundred MIPS
instructions. However, larger instructions can simply allocate
multiple consecutive slots.



Figure 8. Regular communication architecture implementation for integrating
custom instructions into a MIPS CPU.

Figure 7b) shows the communication architecture that neatly
uses the different wire resources available on Spartan-6 FPGAs
to implement direct wire binding, as introduced in Section III.
The connection primitives in the figure are placeholders for
the reconfigurable modules and will be replaced by reconfig-
urable modules (custom instructions) at run-time. Due to space
limitations we only show the static implementation of the
CPU. It can be seen from Figure 7b) that the communication
architecture is quite complex. However, the corresponding
GOAHEAD script can be easily reused for different systems
like a black box.

An FPGA editor screen-shot of the reconfigurable system
is shown in Figure 8 We have been able to connect 2 times 4
input signals in each CLB of the reconfigurable area (for the
two operands) and 4 wires are connected individually back to
the static system from each CLB. The whole communication
architecture is implemented using only the FPGA routing
fabric and no further logic overhead will affect the run-time
system. For comparison, implementing the same system using
bus macros would require for four slots 4 · 3 · 32 · 2 · 1

4 = 196
slices (assuming the connection of four wire ports per slice).
However, the whole reconfigurable region is in our example
just 64 slices large.

In this example, module bitstreams are not relocatable as
we don’t use the full clock region height as a reconfigurable
region. The number of instructions than can be integrated into
such a system is virtually unbounded and we implemented
several custom instructions (e.g., CRC checksum, permute
functions, or a 64 bit parity checker) that all save more than
one hundred MIPS instructions. Note that custom instructions
could in principle be provided as part of a binary program.

VII. CONCLUSIONS

In this paper we introduced our new PR tool GOAHEAD.
The tool, documentation, and ready-to-start design examples
are available on [12]. GOAHEAD provides unique features
that are required for implementing run-time reconfigurable
systems on latest Xilinx FPGAs, such as Spartan-6 FPGAs.
This includes static routing in reconfigurable modules, module
relocation, resource aware bitstream generation, and integra-
tion of partial modules without logic overhead. Moreover, the
tool is designed for usability and it abstracts most of the low
level details of the FPGA fabric from the design engineer.

An addition to the development of more examples on more
FPGA boards, we are currently investigating how GOAHEAD
can be used to parallelize the place and route implementation
phase on a compute farm.
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