
A Communication Architecture for Complex Runtime
Reconfigurable Systems and its Implementation on

Spartan-3 FPGAs

Dirk Koch, Christian Beckhoff and Jürgen Teich
University of Erlangen-Nuremberg

Am Weichselgarten 3
D-91058 Erlangen, Germany

{dirk, christian}@recobus.de, teich@cs.fau.de

ABSTRACT
In this paper, we present and analyze a sophisticated com-
munication architecture that allows to integrate many dif-
ferent modules into a system by FPGA reconfiguration at
runtime. Furthermore, we examine how this architecture
can be implemented on low-cost Spartan-3 devices. It will
be demonstrated that modules can be exchanged in a system
without disturbing the communication architecture. The
paper points out, that the capabilities of Spartan-3 FPGAs
are sufficient to build complex reconfigurable systems.

1. INTRODUCTION
Supporting Spartan-3 FPGAs for building dynamically

reconfigurable systems is important as these FPGAs pro-
vide significant more logic per monetary cost as compared
to devices providing glitch-less partial reconfiguration modes
(e.g., all Xilinx Virtex FPGAs). As saving monetary cost
is one major goal for using partial runtime reconfiguration,
it is obvious to apply advanced partial reconfiguration tech-
niques also to these devices.

With the ReCoBus architecture, we developed a sophisti-
cated communication architecture that allows to build com-
plex reconfigurable systems with many runtime reconfig-
urable modules. Based on an analyzes of this architecture
in Section 3, we will focus on the implementation of this
architecture on the low cost Spartan-3-FPGA architecture
in Section 4. The goal is to Implement the ReCoBus archi-
tecture in such a way that modules can be exchanged in a
system at runtime without influence to other modules con-
nected to a ReCoBus. We classify disturbances due to a
reconfiguration process into three categories:

1. Glitch-less reconfiguration: No influence to other mod-
ules or bus transactions if modules are exchanged.

2. Glitch reconfiguration: A bus transfer may be dis-
turbed within one clock cycle

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

3. Interrupted reconfiguration: The bus is disturbed for
multiple clock cycles

In almost all cases when the Xilinx documentation reports
about glitches during runtime reconfiguration, this is not
only a short term event but an interruption or disturbance
for many hundreds of configuration clock cycles. The rea-
son for this behavior is that Spartan-3 are blockwise reconfig-
urable FPGAs that requires a clear operation to the reconfig-
urable area prior to the particular configuration data write
operation. After the clear operation, a new configuration
can be written in a frame by frame manner. A configura-
tion frame is the smallest atomic piece of configuration data
that stores a fraction of the configuration data of a com-
plete CLB column. A CLB is a configurable logic block that
clusters 8 four bit look-up tables and the according routing
fabric in one cell. In the case of Spartan-3 devices, it re-
quires to write 19 complete frames to configure a complete
CLB column. The delete operation is performed by send-
ing a so called snowplow command to the Spartan-3 FPGA.
With this command, the configuration data of one complete
column of CLBs will be reset to a logical ’0’ value.

2. RELATED WORK
Systems using FPGA resources in a time variant manner

by exploiting partial reconfiguration have been presented
in various academic publications. The main issue of this
work is the interfacing of runtime reconfigurable hardware
accelerators to on-chip buses (OCBs) and to dedicated I/O
channels on low cost FPGAs without glitches. Existing ap-
proaches for the on-chip communication of partially recon-
figurable modules are based on i) circuit switching tech-
niques, ii) packet switching mechanisms, and iii) on-chip
buses and will be outlined in the following.

Circuit Switching
Circuit switching is a technique where physically wired links
are established between two or more modules for a certain
amount of time. Typically, these links are implemented by
more or less complex crossbar switches. The switching state
of the switches may be controlled centralized by the static
part of the system [17] or distributed by some logic in the
crossbar switches itself with respect to the currently used
routing resources within the switches [5, 2]. All these ap-
proaches prevent any partially reconfigurable module from
directly accessing any memory of the system. In addition,
the large multiplexers required for circuit switching allow

only a very coarse-grained placement of modules. The large
multiplexers have also significant propagation delays leading
to decreased throughputs when using circuit switching.

For all proposed systems using circuit switching, we found
that the switching state for the multiplexers is only changed
when a module is deleted or loaded to the FPGA. As a
consequence, there is no switching activity in the crossbar
switches during the operation of the modules. Therefore the
crossbar switches should be implemented directly within the
routing fabric of the FPGA without using additional LUTs
for implementing the multiplexers.

Packet Switching
The motivation for packet switching comes from the ASIC
domain where more and more functional units were inte-
grated. Here, networks on a chip (NoC) [3] have been pro-
posed in order to deal with multiple clock domains, mod-
ularity for IP-reuse, and in order to support parallelism in
communication and computation This was the motivation
in [1] to integrate a dynamically reconfigurable network on
an FPGA called a DyNoC. Here, a grid of routers is used
for the communication among the reconfigurable modules.
Each router decides locally based on the destination address
where to send a packet further and the routers are capable
to deal with obstacles. However, the approach in [1] de-
mands a relatively fine grid of routers while the presented
implementation results revealed that the logic for a single
router requires several hundreds or even thousands of look-
up tables (depending on the supported packet sizes).

We can conclude that a NoC for FPGAs makes only sense
if the routers are implemented as dedicated primitives within
the FPGA architecture. This would allow a reasonable area
efficiency and a high transfer bandwidth at the same time.

Buses
The most common way for linking together communicating
modules within an SoC is to use buses. Consequently, all
major FPGA vendors offer tools that allow easily integrat-
ing a set of user-defined modules or IP cores into complete
systems by the use of on-chip buses. Therefore, partially re-
configurable modules should also be able to directly connect
themselves via a bus into a system at runtime. The first
publications done in this field that are based on older Xil-
inx FPGAs utilize tristate wires spanning over the complete
horizontal device width [18, 14, 10, 4, 16]. However, tristate
buses come along with some place and route restrictions and
require timing parameters that must be met to turn buffers
on-and-off. This leads typically to lower clock speeds as com-
pared to multiplexer-based buses. Consequently, most es-
tablished bus standards including AVALON, CoreConnect,
and Wishbone provide multiplexer-based bus implementa-
tions with unidirectional wires and all newer FPGA archi-
tectures possess no more internal tristate drivers.

In order to permit to exchange modules by partial re-
configuration at runtime, the communication resources for
linking the partial must be bound to fixed positions for all
partial modules. In the case of busses, it is advantageous
to implement the communication infrastructure for partially
reconfigurable modules in a completely homogenous manner
for all possible module positions. This allows modules to be
exchanged and relocated to different positions on the chip.
In the case of a bus, this means that the communication
architecture should be constructed in a regular fashion with
regular tiles, each having exactly the same internal logic and

routing layout for providing the connectivity among the tiles
and to the modules.

In [18] and [13], systems are proposed where fixed resource
areas with also fixed connection points to a bus interface are
used for the integration of partially reconfigurable modules
into a runtime system. Here, all signals if the communica-
tion architecture are separated from the modules and dedi-
cated communication primitives bound to fixed positions of
the FPGA provide a bridge connection to the bus logic that
is located in the static part of the system. A drawback of this
solution is that all modules have to fit into a resource area
of the same size and the resource areas could not be shared
by multiple modules, even if the logic of multiple modules
would fit into the same resource area. A suitable bus in-
frastructure for integrating reconfigurable modules should
be able to connect modules of different sizes efficiently to
the system.

Hagemeyer et al. [6] presents a more flexible approach that
uses on-chip tristate drivers or alternatively distributed mul-
tiplexers in order to build buses for reconfigurable systems
with a much higher count of module tiles. In this work, the
complete bus based communication architecture is arranged
directly within the tiles allocated for reconfigurable modules
and modules may use multiple tiles to implement their logic.
However, this high flexibility comes along with an enormous
resource overhead for the communication architecture pre-
venting this approach to take a significant benefit of runtime
reconfiguration in many cases.

Runtime Reconfiguration on Spartan-3 Devices
A lot of recent work on runtime reconfiguration on Xil-
inx Spartan-3 devices deals with the fact that some mem-
bers of the Spartan-3 Family do not possess an internal ac-
cess to the FPGA reconfiguration port. Thus, for allowing
self-reconfiguration, these devices need an external feedback
path for sending the configuration data to the FPGA fabric
via external pins.

The implementation of complex systems with many recon-
figurable modules was not examined for Spartan-3 FPGAs.
And so far, no sophisticated communication architecture has
been presented for these devices that masks the effects of the
snowplow command to the rest of the system.

3. THE RECOBUS ARCHITECTURE
The ReCoBus architecture [12] was developed to provide

a sophisticated communication infrastructure for enabling
a new dimension in modular FPGA design. The goal of
the ReCoBus approach is to link together configuration bit-
streams or completely routed netlists based on a predefined
communication architecture. This is similar to the system
integration that is based on backplane buses where cards
are plugged together into bus sockets. In the case of FPGA-
based systems, this allows to exchange a module without any
influence to the rest of the system. Modules are placed in one
or more resource slots of the FPGA. A resource slot is the
smallest atomic piece of FPGA area that can be allocated
by a module while a module may occupy multiple resource
slots for implementing its logic. In this sense, a resource slot
has some similarities with a sector on a harddrive. A sector
is the smallest junk of memory that is directly accessible
and a file may occupy multiple sectors for storing its data.

The size of a resource slot should be small for reducing the
effect of internal fragmentation that arises when modules

have to be fit into resource slots boundaries. On the other
side, a high amount of resource slots may lead to a logic
overhead or a timing penalty for linking a module within a
resource slot to other modules, some I/O pins, or the static
part of the system. The ReCoBus architecture optimizes the
granularity (size of the resource slots), the logic overhead,
and the latency of the communication architecture at the
same time. The most important properties of the ReCoBus
architecture are:

i) Direct interfacing : Reconfigurable modules have a di-
rect interface to the on-chip bus (OCB) and to other
modules or I/O pins.

ii) Module relocation: Instead of binding modules to a
fixed reconfigurable area, they can be placed freely
within the span of the reconfigurable OCB.

iii) Flexible widths: Modules can be integrated into the
system with a fine resource slot grid.

iv) Multiple instances: Modules can be instantiated a cou-
ple of times and connected to the system.

v) Low logic overhead to implement the communication
architecture.

vi) High performance: The communication bandwidth and
the latency of the reconfigurable bus can compete with
traditional static only systems.

The ReCoBus communication architecture is designed to
have a completely uniformed layout of the logic and routing
resources among all resource slots of the same type. In the
case of Spartan-3 FPGAs, we only have to distinguish if a
resource slot contains dedicated block ram resources or not.

One basic concept of the ReCoBus architecture is that the
module interface can grow with the module complexity. This
follows the observation that in typical systems a complex (or
larger) module has a wider interface than a simple one. For
instance, while for a simple UART an 8 bit connection to the
system bus may be sufficient, an Ethernet core will typically
demand a 32 bit interface.

Figure 1: Example of a system providing three re-
source slots R = 3, each being two CLBs wide W = 2
that are currently running two modules M = 2.
The fat boxes indicate CLBs used for implement-
ing the ReCoBus architecture. The resource slots
are twofold interleaved N = 2.

The flexible interface width is achieved by interleaving N
multiple independent connecting chains that are connected
once per N resource slots, as illustrated in Figure 1. As
shown in the figure, this still allows to build the complete
communication architecture in a completely homogeneous

Figure 2: Examples for the four signal classes al-
lowing to implement any bus protocol: shared read,
shared write, dedicated read, and dedicated write.

manner which permits to relocate modules to different re-
source slots. This can be used for building static only sys-
tems as well as for providing a flexible placement for runtime
reconfigurable systems.

Furthermore, the interleaving reduces the depth of the
combinatorial path of the ReCoBus architecture while still
allowing a fine resource slot grid. For Xilinx Spartan-3
FPGAs this means that a resource slot is only one or a
few CLB columns wide. We declare the granularity as the
width w of a resource slot in terms of CLB columns.

The ReCoBus architecture provides a physical implemen-
tation of the system communication infrastructure. Conse-
quently, it is not limiting the protocols that are used for
the communication. We found that all FPGA on-chip buses
can be implemented by the use of the following four signal
classes: 1) shared read, 2) shared write, 3) dedicated read,
and 4) dedicated write. Examples for all signal classes are
given in Figure 2 that shows a simple master slave system.
If we want to implement a multi master system, the bus
request from the master to the arbiter would represent the
same problem as to link an interrupt request to the mas-
ter, thus, it is also implemented as a dedicated read signal.
Respectively, the grant signal from the arbiter has to be
implemented as a dedicated write signal.

In the following, we will analyze the most common imple-
mentations of these signal classes more detailed with respect
to a homogeneous layout on an FPGA.

Shared Read Signals
Shared read signals have multiple sources among the re-
source slots and one output in the static part of the system.
An example for this signal class is the read data signal from
several slaves located in some resource slots that is linked to
a master in the static part. In common static only systems,
this signal class is implemented with wide multiplexers. As
revealed in Figure 3, such multiplexers can be implemented
in a completely regular fashion among a set of resource slots.

In this example, the amount of look-up tables required
to build a regular structured read multiplexer chain for R
resource slots and SSR shared read signals is R ·SSR LUTs.
If a module will never be exchanged by reconfiguration at
runtime, we can remove unused LUTs from the read multi-
plexer chains and the amount of required LUTs is simply the
sum of all used shared read outputs from all modules placed
in the resource slots that will not be exchanged at runtime.
Removing LUTs from a read multiplexer chain can also be
used for runtime reconfigurable modules but would lead to

Figure 3: a) Common implementation of a shared
read signal in a multiplexer-based bus. b) Homoge-
neous distributed read multiplexer chain.

Figure 4: System with N=4 interleaved read multi-
plexer chains and additional alignment multiplexers.

an interruption of the chain during the reconfiguration of
such a module.

We can compare the cost of a regular read multiplexer
chain with a static and heterogeneous implementation of a
multiplexer. In the best case, the number of lookup tables is
the minimum resource requirements for all multiplexers over
each individual shared read bit signal. The minimum look-
up table requirements for implementing specific multiplexers
on Xilinx Spartan-3 FPGAs have been determined by using
the Xilinx ISE 8.2 suite. The results are listed in Table 1.
If we assume an example with four 8-bit wide modules and
three 32 bit wide modules, it requires 8 7-input multiplexers
and 24 3-input multiplexers that need 8·4+24·2 = 80 LUTs
for the implementation.

Table 1: Relationship between the look-up table
count and the input width of a multiplexer imple-
mented on a Spartan 3 FPGA.

Mux inputs 2 3 4 5 6 7 8 9 10 11 12
4-bit LUTs 1 2 2 3 4 4 4 5 5 6 6

However, as the modules are spread somehow over the FP-
GA, these multiplexers are typically not implemented in the
most resource efficient way in order to enhance the speed of
the multiplexers. In typical systems, the amount of look-up
tables is in the range of what a homogeneous read mul-
tiplexer chain would require when unused connections are
removed from the chain.

If a read multiplexer chain is used in runtime reconfig-
urable environments that support a completely glitch-less
exchanging of modules, all LUTs of a read multiplexer chain
that are not connecting any output signals are producing
an overhead. This overhead can be extensive if the system
provides high placement flexibility for many reconfigurable
modules of different size. As mentioned earlier in this sec-
tion, the ReCoBus architecture may interleave bus signals
for reducing this overhead in systems containing many small
resource slots. This is illustrated in Figure 4 for a simple
system with two modules being connected to a master in the
static part of the system. Let us assume that each of the

N = 4 interleaved read multiplexer chains represents 8 in-
dividual bit signals. Then, the first module (module 0) has
a 16-bit interface and the second module has access to all
N · 8 = 32 bits of the bus. In order to allow a free module
placement to the resource slots of the system, we have to
put an alignment multiplexer between the read multiplexer
chains and the component located in the static part of the
system. This alignment multiplexer adjusts the order of the
different chains depending on the placement position. This
multiplexer is controlled by a small configurable look-up ta-
ble that is connected to the address selecting a particular
module within the slot.

The amount of look-up tables required to implement SSR

shared read signals for R resource slots that are N times
interleaved is:

LSR = SSR · MUX(N) + SSR +

‰
SSR

N

ı
· R. (1)

With MUX(N) being the amount of LUTs required to
implement an N-input multiplexer (see Table 1). The addi-
tional amount of SSR LUTs is required to built the routing
towards the static part of the system in the same homoge-
nous fashion as it is between the resource slots. The example
in Figure 4 with N = 4 interleaved chains with an assumed
width of 8 bit per chain requires 32 · 2 + 32 + 8 · 8 = 160
LUTs. The depth of the combinatory path is in the example
five look-up table levels deep: two for the read multiplexer
chains, two for the alignment multiplexer, and the additional
LUT providing the homogeneous routing layout to the static
system.

Shared Write Signals
As a counterpart to shared read signals, a bus has to provide
some signals in backward direction for driving data from the
static part of the system to all resource slots. An exam-
ple would be the write data or the address from a master
that is located in the static region of the system. We are
able to share resources for implementing shared write sig-
nals with the resources used for implementing shared read
signals. This is possible as Xilinx FPGAs permit to use
the flip-flop and the look-up table within a logic element
independent from each other. Note that the flip-flops can
alternatively be configured as latches that can be perma-
nently enabled for allowing a pure combinatorial signal path
through the flip-flop terminals.

If shared write signals are interleaved, we have to put an
alignment demultiplexer between the static system and the
resource slots. This demultiplexer requires the same amount
of look-up table resources as the alignment multiplexer ad-
justing the shared read signals from the different read multi-
plexer chains. If the system demands more shared write sig-
nals as shared read signals (SSW > SSR), we are not able to
share all write signals in the resources used for implementing
the read multiplexer chains of the shared read signals. Then

S′
SW + dS′

SW
N

e · R additional LUTs are required within the
resource slots for providing the connections to the additional
S′

SW shared write signals (with S′
SW = SSW − SSR). Note

that in a ReCoBus signals of different interleaving factors N
can be combined within the same bus. For example, we may
interleave multiple address chains, but we may distribute a
control signal to each resource slot.

Shared write signals came typically along with a high fan
out. The resources providing access to a shared write signal

Figure 5: Address map of an example system with
two independent ReCoBus subsystems.

act also as a driver. This decouples the timing of the Re-
CoBus from the entire modules connected to this bus.

Dedicated Write Signals
A ReCoBus implements dedicated write signals with a LUT
comparing an address or identifier within the resource slots.
If a dedicated write signal is not interleaved, as typical for a
module select signal, it requires one LUT per resource slot
plus a LUT per internal bus signal (for linking the internal
address or identifier) for its implementation. As a conse-
quence, the amount of LUTs scales only with the number of
resource slots R. In the case of 4-bit LUTs this holds true for
up to 15 different select signals within a complete ReCoBus
subsystem. Note that by taking one or more shared write
signals into account (e.g. an address), multiple modules may
share the same dedicated write signal encoding.

Related approaches [6, 8] use a slot identifier to provide a
dedicated write signal to a particular resource region. This
also allows individually accessing multiple modules in a flex-
ible manner but comes along with a much larger resource
overhead for the comparators. The look-up table overhead
for all comparators scales with R · log(R). A system with 50
resource slots, for example, requires 200 LUTs when com-
paring slot addresses and only 50 LUTs when directly com-
paring an address value within the resource slots. In addi-
tion, directly comparing addresses is much faster (shorter
combinatorial path).

Figure 5 reveals an address space mapping of an example
system with a 16-bit overall address space (64K). A com-
plete ReCoBus subsystem will be mapped into one consec-
utive address space of the system. In the example, this is a
13-bit (8K) wide address block that is selected by the 16-
13=3 most significant address bits. The next 4 address bits
are directly connected to the address comparator look-up
tables within the resource slots. All 16-3-4=9 lower address
lines are connected as shared write signals to the resource
slots and allow to address the internal registers within the
individual modules located in the resource slots of the sys-
tem. Note that a system may contain multiple independent
ReCoBus subsystems.

The module addresses are directly encoded within the
comparator LUTs as a one-hot encoded value. This value
can either be set by manipulating the LUT value in the con-
figuration bitstream or by shifting in this value after the
module reconfiguration in a second step. In the latter case,
we implement the comparator with the help of a so called
SLR16 shift register primitive. This primitive configures the
LUT flip-flops to a shift register with a write port and ran-

Figure 6: Dedicated read signal distribution exem-
plary shown for interrupts.

dom read access to the LUT values. More details on this
addressing technique can be found in [12].

Dedicated Read Signals
The last ReCoBus signal class is required for providing di-
rect connections from a module located in some resource
slots to the static part of the system (for example, an in-
terrupt line). The difficulty that arises at the implemen-
tation of this signal class is to allow multiple instances of
the same module while constructing the logic and routing
layout of the resource slots completely homogeneous. The
approaches discussed in [7] solve this issue but require an
enormous amount of logic and are consequently not suitable
for systems with many individual resource slots.

The ReCoBus architecture allows to select between two
implementation alternatives. The first one, illustrated in
Figure 6 a) allocates a set of homogeneous routed wires that
run over the resource slots. Within the resource slots, there
exists another wire that drives the dedicated output signal.
Connections between both signals can be set by directly
modifying the configuration bitstream. The driver within
the resource slot can be shared with resources required to
implement the dedicated write signals. Thus, this approach
is almost for free, but requires the capability to perform
simple bitstream manipulations at runtime.

The second alternative for implementing dedicated read
signals uses a time multiplexed shared read multiplexer chain,
as shown in Figure 6 b). This chain requires one LUT plus
another one for the select generation within each resource
slot. This reasonable overhead is bought with an additional
latency for transferring the dedicated write state into the
static part of the system.

3.1 Point-To-Point Links
Beside the pure ReCoBus, we developed a further tech-

nique called I/O bars for providing point-to-point commu-
nication for modules located in the resource slot of the sys-
tem. The idea of the I/O bars is to allocate homogeneously
routed wires similar to the ones allocated for the dedicated
read lines in Figure 6 a). In each resource slot, we can decide
to either route through this signal or to access this signal by
a module that may modify the incoming data while sending
the results further on the same set of wires. Thus, I/O bars
can be segmented to allow data streaming among multiple
modules within the resource slots. This technique requires
only one LUT per signal wire of a bar in each resource slots
that requires access to the particular I/O bar. Depending
on the system requirements, multiple I/O bars may be inde-
pendently used for different data streams (e.g. a video bar
and an independent audio bar). More details on I/O bars
can be found in [11].

3.2 The Cost of Modularization
This work aims to completely encapsulate modules in pre-

defined resource slots that provide the communication in-
frastructure to the rest of the system. The impact on rout-
ability, power consumption, and speed when constraining
modules into fixed resource slots was examined in [9]. The
authors found that smaller modules pay a considerable pen-
alty with respect to the achievable clock frequency for ex-
treme aspect ratios. For example, a divider that is just
one CLB column wide and spanning over the full height of
the device has had a 94% increase in the propagation delay.
For larger modules with more than 1000 slices (equivalent to
2000 4-bit LUTs), the timing overhead was in average below
10%.

We performed similar experiments and explored in ad-
dition the impact of blocking specific wires for implement-
ing the internal routing of a module. This points out the
cost of the ReCoBus communication architecture in terms
of routability and latency. Xilinx FPGAs provide different
routing resources and we put focus on blocking some hori-
zontal double and hex lines (wires that span two and respec-
tively 6 CLBs far) from the module routing. We examined
four different modules that all occupy more than 90% of the
available logic resources in a bounding box that is 32 CLBs
height and 5 CLBs wide, thus, providing 1280 look-up ta-
bles. Beside a FIR filter, a DES56 core, and a FFT module,
we used a synthetic module that implements a huge barrel
shifter in order to have one benchmark module that will lead
to strong congestion during the routing steps. The exper-
iments have been carried out on a Xilinx Virtex-II device
that has 10 double as well as 10 hex lines starting in each
cell towards all horizontal and vertical directions. However
the results are still related to Spartan-3 FPGAs that pro-
vide just 8 double and hex lines towards all directions but
have a similar logic architecture. We blocked in each CLB
from one to five double lines, hex lines, and double and hex
lines together. The blocking was only done for horizontal
wires, but in both directions, as the ReCoBus architecture
occupies almost only horizontal wires.

Table 2 lists the total number of wires that can be used
to distribute data over the entire test module. This implies
that wires are interleaved and that a wire is extended if
it ends in a CLB switch matrix within the module bound-
ing box. For example in the case of blocking 3 hex & double
lines in both horizontal directions, the hex lines will be inter-
leaved in 6 independent chains each containing three wires
that are starting and respectively stopping in six horizontal
consecutive aligned CLBs outside the module bounding box.
Analogous, the double lines are interleaved in 2 independent
chains. Therefore, one CLB row reserves (6+2)·3 = 24 wires
per horizontal direction that may be used to implement the
ReCoBus architecture. These are 48 wires for both direc-
tions and 1536 wires in total over the full module height of
32 CLBs.

In addition to the amount of blocked wires, the table lists
the relative achieved latency after routing the module with
respect to a routed module without area constraints. In the
case of the synthetic module, the table lists also the number
of signals that could not be routed at all. With two marked
exceptions, all place and route steps have been successfully
completed for all other modules. Note that we forced the
router not to cross the module border.

The first row of the table shows the influence of just fitting

Table 2: Impact of wire blocking on the latency and
the number of unrouted nets (only for the synthetic
module in the last column). The results are for a
Virtex-II FPGA.

#wires FIR DES FFT synthetic
no 0 113,1% 103,1% 102,5% 123,6% 317

d
o
u
b
le

1 128 114,1% 105,6% 94,9% 142,7% 392
2 256 113,2% 106,2% 98,0% 156,5% 400
3 384 120,9% 108,3% 97,5% 156,1% 450
4 512 121,1% 111,1% 106,4% 128,1% 523
5 640 136,7% 114,3%* 106,9% 129,5% 580

h
ex

1 384 111,7% 100,2% 102,5% 132,4% 333
2 768 113,9% 102,1% 95,5% 131,1% 372
3 1152 110,6% 102,1% 95,5% 122,5% 372
4 1536 113,2% 102,1% 95,9% 138,2% 385
5 1920 115,4% 100,5% 97,5% 148,5% 365

h
ex

&
d
o
u
b
le 1 512 114,3% 107,0% 94,8% 130,4% 393

2 1024 121,7% 112,3% 103,1% 133,2% 407
3 1536 126,6% 105,4% 100,4% 128,3% 505
4 2048 116,6% 117,6% 103,4% 131,3% 560
5 2560 131,5% 145,7%* 112,7% 116,4% 645

*less than 5 unrouted nets

a module into a fixed bounding box. The determined values
confirm the results presented in [9]. All other values reveal
the impact of the wire blocking. As expected, we haven’t
found a strong influence when blocking hex lines. The reason
for this is that the module is only 5 CLBs wide. Therefore,
only 40% of all hex lines can be accessed within the module
bounding box via the mid-ports that allow to tab each hex
line in the middle after a routing distance of three CLBs.
In other words, 60% of all horizontal hex lines could not
be used for implementing the module routing because these
wires would leave the module bounding box.

4. RECOBUSES ON SPARTAN-3 FPGAS
In the last section, we have presented and analyzed the

ReCoBus architecture that can be directly used for runtime
reconfiguration on Xilinx Virtex FPGAs without taking the
risk of glitches. Here, we will examine how this architecture
can be implemented on Spartan-3 FPGAs with the same
capability and how much overhead this will produce

We will firstly examine the implementation of shared read
signals before looking on write signals

4.1 Read Multiplexer Chains for Spartan-3
FPGAs

In order to perform completely glitch free reconfigurations
on block erasable FPGAs, such as Xilinx Spartan-3-FPGAs,
we must be able to set up the exchanged logic and routing
without influence to the surrounding system. In addition, we
must be able to bypass the communication after any block
erase.

In order to achieve the first point, we examined the be-
havior of wires that are driven from a CLB column that is
deleted and reconfigured again on a Xilinx Spartan-3-FPGA.
We found that all horizontal double and hex lines carry a
logical ’1’ value if the column is deleted. This is indepen-
dent to the state of all possible sources to such a line. We
assume that the multiplexers of the Spartan-3 routing fabric
are implemented with pass transistors. Then a level restorer

Figure 7: Signal path of a read multiplexer chain.

is required for restoring the threshold voltage drops of the
pass transistors. This level restorer works as a ’1’ keeper
latch together with the according line driver. More infor-
mation on switch matrix design can be found in [15].

When the CLB-column is reconfigured again by writing
all 19 frames to the FPGA, we found that the value may
change from frame to frame. To overcome this problem, the
configuration write was split into two phases. In the first
phase, the complete CLB-column is configured with the ex-
ception that the routing resources that may influence the
rest of the system will be configured in a second step. The
signals in the second reconfiguration step are typically the
outgoing signals to the reconfigurable bus. For simplifica-
tion, let us assume that a module and the according resource
slot is only one CLB-column wide when being implemented
on a Spartan-3-FPGA.

With respect to the example shown in Figure 7, this means
that after the snowplow command, we will configure firstly
all look-up table values and internal routing (e.g., the mul-
tiplexers Ma and Mb). After this, the multiplexer Mc that
connects the look-up table output to the bus is configured
in a second step. This establishes the connection to slot i-1.

When configuring a framewise reconfigurable FPGA, it is
possible to exchange smaller portions of configuration data
than a complete frame by overwriting frame data with the
same content that is already stored inside the FPGA. In
the case of Spartan-3-FPGAs, we found that the configu-
ration data within a frame can be selectively written to ’1’
while it is only possible to delete a bit by clearing all frames
within a complete CLB-column. For instance, let us as-
sume that the configuration bits for the multiplexers Ma,
and Mc are stored within one frame in the order a1 a0 c1 c0

(see Figure 7). Then during the first configuration step, we
set the internal routing in this frame by writing a 10 00 to
the FPGA. This connects the lookup-table input with the
preceding slot i+1. Then, after writing the complete internal
logic and routing configuration, we can connect the outgoing
bus signal that is controlled by multiplexer Mc by writing a
10 10 to the FPGA. In the case of an Spartan-3-FPGA it is

alternatively possible to write a 00 10 to the FPGA, because
configuration bits can only be set by write operations.

So far, we have assumed that configuration bits of the mul-
tiplexer Mc are stored inside the same frame. In general,
this multiplexer has much more inputs and consequently
more control bits that may be spread over multiple con-
figuration frames. We classify this situation with the frame
distance FD that we define as the number of frames that
differ between two configuration settings for a particular re-
source (e.g., a single wire). FDmax specifies the number
of all frames that store configuration data for a particular
resource. To be more general, FD denotes the minimum
number of atomic write operations to an FPGA that are
required to change a particular configuration setting for an
individual resource. The frame distance is defined analog to
the Hamming distance HD that specifies the number of bits
that differ between two codewords.

During the second reconfiguration step where the connec-
tion to the bus is activated, it is possible that the bus is dis-
turbed for the time required to write FD − 1 frames to the
FPGA. A frame distance larger one indicates that a config-
uration codeword cannot be written in one atomic step. As
the write time for one frame can be up to several hundreds
of clock cycles, resources should be selected for implement-
ing the bus that can be set with a frame distance of one
(FD = 1). In the case of the Spartan-3-FPGA example,
all ’1’ configuration bits defining the setting of a single out-
put wire to the bus must be stored inside the same frame.
With this limitation, we found that the state of an output
wire to an adjacent resource slot will stay on a ’1’ value
during the configuration of a single frame. However, when
the Hamming distance between two configuration codes to
activate a particular bus wire is larger than 1, the according
bus wire may glitch, because different propagation delays to
exchange the value of multiple configuration bits may set
the output multiplexer to an unintended input for a short
time. We have been able to detect such glitches on Xilinx
Spartan-3-FPGAs on write operations as well as on clear
operations with the snowplow command.

In order to deal with glitches on Spartan-3-FPGAs we can
chose an adjusted timing that includes effects from the re-
configuration or we chose routing resources that can connect
a wire to the reconfigurable bus by exchanging only a single
bit. In the case of a Spartan-3-FPGA, this is equivalent to
a one-hot configuration code to activate a bus wire as the
state of all configuration bits within a CLB-column is reset
to a ’0’ value due to a snowplow command. Note that it is
not important that we configure the output multiplexer (Mc

in the example in Figure 7) with a direct connection to the
look-up table output. Other multiplexer inputs are possible
by the use of additional routing resources.

A test system on a Spartan-3-FPGA board demonstrated
that bus wires can be connected completely glitch-less de-
spite the CLB columnwise clear operation required on these
devices. A reconfiguration of a module that is one CLB-
column wide (w = 1) can be performed glitch-less when the
following steps are performed:

1. Disable any read or write operations to the modules
that are involved into the reconfiguration process. The
logic in the look-up tables of the read multiplexer chains
must result in a logical ’1’ value when the resource slot
is not selected.

2. Clear the complete CLB column by sending the col-
umn address information followed by the snowplow
command to the Spartan-3-FPGA.

3. Write the module configuration with the bus logic to
the FPGA. All configuration bits that connect the out-
put wires are cleared in this process.

4. Configure the output wire connections to the bus.

5. Enable all read and write operations to the bus.

Within the steps 2) to 4), the inputs of the adjacent re-
source slots will detect a ’1’ value without any glitch. The
assumption that a resource slot and a module is just one
CLB column wide is in general to restrictive. If multiple
CLB columns have to be reconfigured, the steps 2) and 3)
have to be repeated for each involved CLB column until a
complete resource slot is reconfigured. With this method,
the logic of one resource slot is connected glitch-less to the
bus in step 4). This process repeats from step 2) again until
all resource slots of a module are reconfigured.

In our test system we proved the absence of glitches by
sending static and random values to all unused multiplexer
inputs that select the output wire source. In the example in
Figure 7 this would be the input with the index 1 that links
the output wire with the input from the previous slot.

So far we have presented techniques that ensure that the
state of an outgoing signal from a CLB-column will stay
constant and glitch-free on an ’1’ value during the complete
columnwise clear operation and the following framewise re-
configuration process. In order to perform communication
during the reconfiguration process of a Spartan-3-FPGA, we
have to find a possibility to bypass a CLB-column that is
deleted or reconfigured.

Figure 8: Read multiplexer chain for glitch-less re-
configuration on Xilinx Spartan-3-FPGAs.

We solved this problem by the use of a bypass wire (see
the fat dashed wire in Figure 8). This wire allows to main-
tain the communication over the ReCoBus even in the case
of a reconfiguration of resource slots on a Xilinx-Spartan-3-
FPGA. As presented before in this section, our techniques
allow reconfiguring a single CLB-column in such a way that
output signals of this column will hold a stable ’1’ value
during the complete delete and reconfiguration process on a
Spartan-3-FPGA. Thus, we have to build the read-multiplexer

chain in such a way that this ’1’ value will code the inac-
tive state on the bus. The inactive state is the state of an
unselected module or an unused resource slot. This can be
achieved by applying De Morgan’s theorem on the original
read multiplexer chain (see Figure 7):

R−1_
k=0

(enk ∧ datak) =

R−1_
k=0

(enk ∧ datak) =

R−1̂

k=0

(enk ∧ datak)

Instead using an distributed OR-chain over all R resource
slots as shown in Figure 7, the structure can be implemented
by a distributed AND-gate. The result is shown in the top
of Figure 8. For the distributed AND-gate a ’1’ value will
not propagate through the chain. Figure 8 demonstrates
that the complete read multiplexer chain together with an
additional bypass wire can be evaluated by a single 4-bit
look-up table. Furthermore, on all Xilinx Virtex or Spartan
devices the already mentioned hex and double lines have a
center tab. For example, on these devices the double lines
reach from slot i (see Figure 8) slot i-1 and with the same
double line also slot i-2. By using such routing resources,
the extra bypass wire together with the according output
multiplexer (multiplexer Md in Figure 8) can be omitted.

4.2 Write Signal Distribution for Spartan-3
FPGAs

The bypass technique presented in the last section can
also be applied to write signals as shown in Figure 9. Here,
we used again a wire that is connected to the next and to
the second next resource slot. The output wire configuration

Figure 9: Write signal distribution for blockwise re-
configurable FPGAs using a bypass wire.

can only be ensured to be glitch-less if the according multi-
plexer can be set with a one-hot configuration codeword as
mentioned in the last paragraph. In case of a Xilinx Spartan-
3-FPGA, we found that we have to route the signal over a
stopover point in order to set the output multiplexer glitch-
free with an one-hot configuration codeword. The configu-
ration data for this stopover point must be written prior to
the configuration word that sets the output multiplexer.

As an alternative implementation, we tested a triple wire
redundancy technique that is also suitable to distribute write
signals completely glitch-less on Xilinx Spartan-3-FPGAs.
As shown in Figure 10 this technique uses three different

Figure 10: Triple wire redundancy write signal dis-
tribution.

Figure 11: Write signal distribution with three in-
terleaved chains for glitch-less operation on Spartan-
3 FPGAs.

signal paths in parallel for distributing the write signal. The
signal paths are displaced in such a way that a reconfigura-
tion process of a resource slot (here a single CLB column)
may disturb only one path, while the other paths are not in-
fluenced. A majority voter in each destination resource slot
will mask these disturbances. We tested both techniques
successfully on a Spartan XCS3-200 FPGA. In both cases,
no glitches have been detected on a snowplow clear opera-
tion or the following reconfiguration step on the module side
of a write signal that is evaluated behind in the currently
reconfigured CLB column in the datapath.

As we require additional logic for masking the configu-
ration effects from the bus, we cannot share write signals
and read signals as mentioned for shared write signals in
the last section. But it is possible to apply the interleaving
technique. This reduces the overhead for all SMW write sig-
nals in a system with N interleaved signal paths to dSMW

N
e

LUTs per resource slot. Thus, a module requiring all SMW

write signals mast be at least N resource slots wide. Let
us assume a simple example with SMW = 3 shared master
write signals that are interleaved in N = 3 signal paths, as
shown in Figure 11. In this example, a module being placed
at the resource slots 5 to 7 is just wide enough to access all
possible write signals. Figure 11 gives an example for the
bypass wire approach tailored to Xilinx Spartan-3 FPGAs
that provide hex lines that route over a span of six CLBs
with a tab in the middle. The example shows the case where
each resource slot is W = 1 CLB column wide. In general,
each of the N signal paths consists of two tracks that span
each over a routing distance of 2 · N · W CLBs. The two
tracks are displaced by N ·W CLBs and the paths are tapped
in the middle such that the AND-gate for each interleaved
write signal in a resource slot is connected to both according
tracks (see also Figure 9).

4.3 Further Issues
The write signal distribution techniques for blockwise re-

configurable FPGAs are not limited to signals that are routed
just straight across the area used for the runtime reconfig-
urable modules. As demonstrated in Figure 12, these tech-
niques can be adapted to any zigzag path over a resource
area reserved for partial runtime reconfiguration. This tech-
nique matches ideal to the current partial design flow pro-
vided by the Xilinx cooperation. In this flow, a resource
area is allocated for exact one partial reconfigurable mod-
ule at a time. Multiple resource areas can be defined and
signals can cross such areas in the case of an implementa-
tion for a Xilinx Virtex-FPGA. In contrast, for Spartan-3-
FPGAs this option is not available, thus limiting the usage
this cheap FPGA family in such dynamic reconfigurable sys-
tems. However, using the techniques presented in Figure 12
would allow to cross signals related to the static part of the

system through the reconfigurable part of the system.

Figure 12: Example of a two dimensional glitch-
free signal distribution scheme for Xilinx Spartan-
3FPGAs. Signals can be laid over the CLB columns
0 - 5 that may be reconfigured at runtime. a) If rout-
ing resources are chosen such that wires involved in
a reconfiguration process will stay stable on a (in
this case) logical ’1’ value, two wires ensure together
with the AND-gate a glitch-free communication dur-
ing reconfiguration. b) Alternatively, the triple wire
redundancy approach may be used to mask recon-
figuration disturbances.

5. CONCLUDING REMARKS
In this paper we demonstrated that complex ReCoBus

structures can be implemented with a reasonable resource
overhead and with low influence on the module routing.
Furthermore we presented that low-cost Spartan-3 FPGAs
are suitable for implementing such ReCoBus structures for
reconfigurable systems that allow runtime reconfiguration
without interferring other parts of a system.

A remaining issue is that the I/O pins are also deleted
during the reconfiguration of a Spartan-3 column. This is
currently solvable with an according pin layout that allows
only uncritical I/O signals to be routed via pins that are
located above or below the reconfigurable area (such as LED
drivers). For this reason, future low-cost FPGAs should
provide a subcolumn-wise reconfiguration scheme as known
from Virtex-IV and Virtex-V devices.

So far, we demonstrated the masking of glitches from a
ReCoBus for smaller hand crafted buses. The current ver-
sion of the ReCoBus-Builder tool (available online under
www.recobus.de) can build ReCoBuses and I/O bars also
for Spartan-3 FPGAs, but not in the glitch-less mode. Fu-
ture versions will support this mode for building large scale
systems with real world examples.

It requires only slightly more logic to implement the glitch-
less reconfiguration mode on Spartan-3 FPGAs as compared
to the much more expensive Virtex-II FPGAs. As the Re-
CuBus architecture occupies only a small fraction of the
available FPGA resources, this logic overhead should not in-
crease system cost, because blockwise reconfigurable FPGAs
are cheaper to manufacture and the monetary benefit holds
true for the complete chip. Furthermore, runtime reconfigu-
ration is used very seldom in commercial applications. As a

consequence, most customers have to pay for a feature they
probably never use. This work demonstrates that low-cost
blockwise reconfiguration does not limit the implementation
of sophisticated runtime reconfigurabel systems.

6. REFERENCES
[1] A. Ahmadinia, C. Bobda, M. Majer, J. Teich, S. Fekete,

and J. van der Veen. DyNoC: A Dynamic Infrastructure for
Communication in Dynamically Reconfigurable Devices. In
Proceedings of the International Conference on
Field-Programmable Logic and Applications (FPL), pages
153–158, Tampere, Finland, Aug. 2005.

[2] Ali Ahmadinia and Christophe Bobda and Ji Ding and
Mateusz Majer and Jürgen Teich and Sándor Fekete and
Jan van der Veen. A Practical Approach for Circuit
Routing on Dynamic Reconfigurable Devices. In
Proceedings of the 16th IEEE International Workshop on
Rapid System Prototyping (RSP), pages 84–90, Montreal,
Canada, jun 2005.

[3] L. Benini and G. D. Micheli. Networks on Chips: A New
SoC Paradigm. Computer, 35(1):70–78, Jan. 2002.

[4] C. Bieser and K.-D. Mueller-Glaser. Rapid Prototyping
Design Acceleration Using a Novel Merging Methodology
for Partial Configuration Streams of Xilinx Virtex-II
FPGAs. In 17th IEEE Int. Workshop on Rapid System
Prototyping, pages 193–199, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

[5] H. A. ElGindy, A. K. Somani, H. Schroeder, H. Schmeck,
and A. Spray. RMB - A Reconfigurable Multiple Bus
Network. In Proceedings of the Second International
Symposium on High-Performance Computer Architecture
(HPCA-2), pages 108–117, Feb. 1996.

[6] J. Hagemeyer, B. Kettelhoit, M. Koester, and
M. Porrmann. Design of Homogeneous Communication
Infrastructures for Partially Reconfigurable FPGAs. In
Proceedings of the International Conference on
Engineering of Reconfigurable Systems and Algorithms
(ERSA’07), Las Vegas, USA, June 2007.

[7] J. Hagemeyer, B. Kettelhoit, and M. Porrmann. Dedicated
Module Access in Dynamically Reconfigurable Systems. In
Proceedings of the 20th International Parallel and
Distributed Processing Symposium (IPDPS), Rhodes
Island, Greece 2006, 2006.

[8] M. Huebner, T. Becker, and J. Becker. Real-time
LUT-based Network Topologies for Dynamic and Partial
FPGA Self-Reconfiguration. In SBCCI ’04: Proc. of the
17th Symp. on Integrated Circuits and System Design,
pages 28–32, New York, NY, USA, 2004.

[9] H. Kalte, M. Porrmann, and U. Rückert. Study on column
wise design compaction for reconfigurable systems. In
Proceedings of the IEEE International Conference on Field
Programmable Technology (FPT’04), Brisbane, Australia,
6 - 8 Dec. 2004.

[10] H. Kalte, M. Porrmann, and U. Rückert.
System-on-Programmable-Chip Approach Enabling Online
Fine-Grained 1D-Placement. In 11th Reconfigurable
Architectures Workshop (RAW 2004), page 141, New
Mexico, USA, 2004.

[11] D. Koch, C. Beckhoff, and J. Teich. ReCoBus-Builder a
Novel Tool and Technique to Build Statically and
Dynamically Reconfigurable Systems for FPGAs. In
Proceedings of International Conference on
Field-Programmable Logic and Applications (FPL 08),
pages 119–224, Heidelberg, Germany, Sept. 2008.

[12] D. Koch, C. Haubelt, and J. Teich. Efficient Reconfigurable
On-Chip Buses for FPGAs. In 16th Annual IEEE
Symposium on Field-Programmable Custom Computing
Machines (FCCM 2008), Palo Alto, CA, USA, Apr. 2008.

[13] S. Koh and O. Diessel. COMMA: A Communications
Methodology for Dynamic Module Reconfiguration in
FPGAs. In 14th IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM 2006), pages
273–274, Los Alamitos, CA, USA, 2006.

[14] Y. E. Krasteva, A. B. Jimeno, E. de la Torre, and
T. Riesgo. Straight Method for Reallocation of Complex
Cores by Dynamic Reconfiguration in Virtex II FPGAs. In
Proc. of the 16th IEEE Int. Workshop on Rapid System
Prototyping (RSP’05), pages 77–83, Washington, DC,
USA, 2005.

[15] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault,
D. Cashman, D. Galloway, M. Hutton, C. Lane, A. Lee,
P. Leventis, S. Marquardt, C. McClintock, K. Padalia,
B. Pedersen, G. Powell, B. Ratchev, S. Reddy,
J. Schleicher, K. Stevens, R. Yuan, R. Cliff, and J. Rose.
The Stratix II logic and routing architecture. In FPGA
2005: Proceedings of the ACM/SIGDA 13th international
symposium on Field-programmable gate arrays, pages
14–20, 2005.

[16] J. C. Palma, A. V. de Mello, L. Möller, F. Moraes, and
N. Calazans. Core Communication Interface for FPGAs. In
SBCCI ’02: Proc. of the 15th Symp. on Integrated Circuits
and Systems Design, page 183, Washington, DC, USA,
2002.

[17] M. Ullmann, M. Hübner, and J. Becker. An FPGA
Run-Time System for Dynamical On-Demand
Reconfiguration. In Proceedings of 18th International
Parallel and Distributed Processing Symposium
(IPDPS’04), Santa Fe, New Mexico, Apr. 2004.

[18] H. Walder and M. Platzner. A Runtime Environment for
Reconfigurable Operating Systems. In Proc. of the 14th
Int. Conf. on Field Programmable Logic and Application
(FPL’04), pages 831–835, 2004.

