Migrating Static Systems to Partially

Reconfigurable Systems on Spartan-6 FPGAs

Christian Beckhoff

Email: christian@recobus.de

Dirk Koch and Jim Torresen

Department of Informatics, University of Oslo

P.O. Box 1080 Blindern, N-0316 Oslo, Norway

Email: {koch, jimtoer} @ifi.uio.no

Web: http://www.matnat.uio.no/forskning/prosjekter/crc/

Abstract—In this paper we present a design flow for migrating
a static only FPGA system into a system featuring partial
runtime reconfiguration. The migration can lower device cost
and benefits future extendibility. The migration flow with our tool
GoAhead is described in detail. In contrast to present EDA tools,
GoAhead is the first tool that allows to build systems with partial
runtime reconfiguration on Spartan-6 FPGAs. A case study will
demonstrate the migration of a static only design into a partially
reconfigurable system.

I. INTRODUCTION

With the Virtex-6 family, Xilinx offers FPGAs with high
logic density targeting high-performance applications. Com-
pared to Virtex-6, the cheaper Spartan-6 FPGAs in turn
provide a lower logic density and consume less power than
Virtex-6 FPGAs.

While there are tools available for partial reconfiguration of
the more expensive Virtex-6 FPGAs, there is no such Xilinx
tool support for partial reconfiguration of the cheaper and
less power consuming Spartan-6 devices. Hence, today a user
aiming to save device costs with partial reconfiguration is
bound to Virtex-6 FPGAs. Although, partial reconfiguration
on Virtex-6 FPGAs lowers the device cost, the reduced power
and money expenses may not reach what is achievable by a
Spartan-6 FPGA with partial reconfiguration. Similarly a static
only implementation on a Spartan-6 FPGA might outperform
a reconfigurable Virtex-6 implementation in both unit cost and
power consumption.

In other words: A user has to start with an expensive
device in order to save money with partial reconfiguration.
This dilemma is caused by the lack of tool support for partial
reconfiguration on Spartan-6.

Concepts for partial reconfiguration on less recent devices
like Spartan-3 and Virtex-2 are subject of various publica-
tions [1], [2], [3], [4]. However, less research on partial
reconfiguration for Spartan-6 FPGAs is available [5]. In this
paper, we present our novel tool GoAhead. GoAhead closes

the tool gap and enables partial reconfiguration for Spartan-
6 FPGAs and thus provides an option to lower device costs.
Hence, using a Spartan-6 FPGA might even be more efficient
than an ASIC solution for certain applications where many
functional blocks are execute mutually exclusive.

Our tool GoAhead will replace our previous tool ReCoBus-
Builder [2] by further improving usability (e.g. by a complete
scripting interfaces and a wizard for building a system with
partial reconfiguration). GoAhead supports the recent Virtex-
6 and Spartan-6 FPGAs. We also include new features into
the tool such as the capability to route static signals through
a partial area using routing resources that will not be used
by partial modules and consequently without interfering any
partial module. Thus, we support module relocation also on
Spartan-6 FPGAs.

The overall flow with GoAhead is presented in Figure 1. The
flow allows to build a reconfigurable systems from scratch or
to migrate an existing static only design to a reconfigurable
design. When following our flow, the static system can be im-
plemented completely independent from the partial modules.
This lowers the total synthesis duration especially for design
spins. In addition, after changes in the static system, none of
the partial module will have to be reimplemented again, as
long as the interface between the static and the partial system
remains unchanged.

The design migration step is outlined in Section II. The
migration step is succeeded by the physical implementation
of both the static part and the partial modules. Both branches
are carried out with the Xilinx tools constrained by special
macros and placement information generated by our tool.
The physical implementation of the static part is presented
in Section III followed by the physical implementation of the
partial modules in Section IV. In Section V we reveal a case
study where we migrate a static system into a partial one.
After this, in Section VI, we summarize the main differences
between GoAhead and the Xilinx vendor tool PlanAhead.

existing
design

[User task] [Identify partial modules and configurations]
Xilinx Tools i i 1

configu-

GoAhead static partial
- system ration,
Xilinx
format

module4
[resource budgeting & interface joining |
standard
HDL
[Floorplanning]

GoAhead

Placeholder for partial system
Connect.
(eI) (macros)
Synthesis & Placement

unrouted
netlist

Placeholder for static system
Wrapper Connect.
() (macros)
Synthesis & Placement

unrouted ,
netlist;

Blocker Blocker

physical implementation

routed
netlist

routed
netlist;

Bitstream assembly Bitstream assembly
static partial ,
bitstream bitstream;

Fig. 1. The GoAhead migration flow allows to convert an existing static
design into a partially reconfigurable system. The migration part requires user
interaction. The two branches in the flow are completely independent of each
other. Hence, the static system can be (re)built without rebuilding the partial
system and vice versa.

II. DESIGN MIGRATION

A widely spread platitude tells us, that a running system
should not be touched. However, there are several reasons to
migrate an existing design into a design with partial runtime
configuration.

It could be necessary for example to enhance an existing
design with an additional module. If though, all resources
on the FPGA are allocated already, the enhancement would
require to replace it with a larger device. If the system is
shipped already, the replacement would be very expensive. A
system with partial reconfiguration on the other hand might
prevent the need for a replacement, if existing modules and
the new module can share resources exclusively over time.
Thus the shipped hardware would remain unchanged, while
only the FPGA bitstream and the driver software changes.

Prototyping might also be enhanced by partial reconfigu-
ration. The hardware team could focus on implementing the
static part of a system. If the static system is available, the
software team could start to develop and test firmware for
the static part of the system, while the hardware team then
implements the partial modules. Thus, concurrent development

of hardware and software would be increased, and contributing
speeding up the overall design cycle.

In the following, we will outline how a static system can be
migrated to a system with partial reconfiguration composed of
a static part and a partial area hosting modules over time.

A. Identifying Partial Configurations

For migrating a static design towards a system featuring
partial reconfiguration, we have to examine the existing design
and extract those submodules which can share resources
exclusively on the FPGA fabric and those which remain in
the existing design static only.

Partial modules might be identified by multiplexers that are
used to switch between functional blocks that are possible
candidates to be shared in one reconfigurable area. Thus,
instead of switching the multiplexer for selecting a mutual
exclusion function, partial reconfiguration can be used for this
purpose. However, while in most cases the multiplexer can
be switched within a single clock cycle, the reconfiguration
takes time in the range of many thousands to millions of clock
cycles, depending on the modules size (which correlates with
the bitstream size).

Consequently, reconfiguration is bound to a relatively slow
changing of functional units (e.g. for adapting to different
operation modes). However, by applying techniques for high
speed configuration [6] even complex modules might be
exchanged fast (e.g. a Microblaze softcore CPU below in one
millisecond).

For the following, let us assume a static only system as
depicted in Figure 2 a). There are three possible data paths
from the output of the Camera to the input of the DVI encoder:

1) Camera — Gaussian filter — Segmentation — DVI
2) Camera — Median filter — Segmentation — DVI
3) Testpattern — DVI

While the Camera and the DVI encoder are static only
modules (as they are connecting peripherals), the two filters as
well as the Segmentation and the Testpattern module can share
the same FPGA resources over time. Hence, we identified the
Gaussian filter gf, the Median Filter m f, the Segmentation
module segm and the Testpattern module ¢p as four partial
modules. However, both ¢f and seg as well as mf and seg
always run in parallel (i.e. at the same time). Only ¢p runs
standalone. We will call modules that run at the same time a
partial configuration.

For the three input data paths, we can derive one partial
configuration each:

C = {{gf, seg}, {mf, seg}, {tp}}

a) static only system

| Camera

Gaussian filter

b) partially reconfigurable system

Gaussian filter | Segmentalion<

DVI encoder

(DViencoder

q Median filter | Segmentation <

Testpattern

Fig. 2. a) Static only system consisting of a camera whose input is filtered
and segmented and sent to a DVI encoder. Alternatively, a testpattern can
be applied to the DVI encoder. In total, three input data paths for the DVI
encoder exist within the system. b) The static only system divided into
camera and DVI encoder along with three partial configurations of filters
and testpattern. The Segmentation and the DVI encoder remain static. The
three partial configurations share resources over time.

B. Resource Budgeting, Interface Joining and Floorplanning

Now, in order to determine the size of the reconfigurable
areas that will host the partial modules, we have to identify
the resource consumption of each partial configuration c;. The
resource consumption for a partial configuration c¢; is a quin-
tuplet ¢; = (#LUT,#BRAM,#DSP,#Input, #Output),
where #LUT is the number of look-up tables'. # BRAM
and #DSP denote the number of required RAM blocks
and DSP blocks, respectively the input and output width of
each module is denoted with #Input and #QOutput and is
specified in terms of single bit signals within the top-level
entity of the different partial configurations ¢; € C. The
parameters #Input and #Output can directly be identified
from the module interfaces. Let us assume, the modules
provide the interfaces given in Listing 1. Then, the resulting
joined wrapper is given as listed in Listing 2.

Listing 1. Module interfaces of the reconfigurable modules in the example
system of Figure 2
entity gaussian_filter is port
(

video_in in std_logic_vector(...);
video_out

filter_ctrl

out std_logic_vector(...);
in std_logic_vector(...)
) i
end entity gaussian_filter;
entity median_filter is port
(

video_in in std_logic_vector(...);
video_out out std_logic_vector(...)
) i
end entity median_filter;

'In practice, when implementing a reconfigurable system on Xilinx FPGAs,
the logic consumption of a module will be specified in terms of slices, as a
slice can neither be shared by two reconfigurable modules nor by a module
and the rest of the system.

entity segmentation is port
(

video_in in std_logic_vector(...);
video_out out std_logic_vector(...);
match out std_logic
) i
end entity segmentation;
entity testpattern is port
(

video_out out std_logic_vector(...)
)i
end entity testpattern;

Listing 2. Joined wrapper of the module interfaces shown in Listing 1.
entity reconfigurable_area is port

(

video_in in std_logic_vector(...);
video_out out std_logic_vector(...);
filter_ctrl in std_logic_vector(...);

match out std_logic

)i
end entity reconfigurable_area;

The logic and memory consumption (#LUT, #BRAM,
#DSP) requires the user to synthesize each partial config-
uration once. After determining the requirement ¢; for each
¢; € C, and for each resource type, we find the maxi-
mal value among all partial configurations and thus derive
the minimal resource consumption of the partial area as
Qi; = (#LUT,#BRAM,#DSP,#Input, #Output). In
case, the system will contain several reconfigurable areas, this

process has to be carried out for each singular set of partial
configurations that corresponds to each reconfigurable area.
As an alternative for manual resource budgeting, our tool
can extract a modules resource consumption out of the existing
design automatically. This is achieved by analyzing the placed
netlist of the existing design. Therefore, the existing design
must be available as a netlist specification (i.e. an XDL-
File [7], NCDs or NMCs can be converted to an XDL-File
with a vendor tool). In the XDL file, the instantiation of slices
(logic consumption), RAM blocks and DSP blocks is given in
a human readable form (the routing is also available, but is
currently not further considered). Each instantiation of a slice,
RAM or DSP block contains the name of the module it belongs
to. Hierarchies within the design are denoted by an arbitrary
delimiter (e.g. a slash in .../Testpattern/rambl6/...). GoA-
head is capable of finding common prefixes in netlist specifica-
tions which are used to automatically build the hierarchy; the
tool then counts the resources used in the different levels of the
hierarchy, which corresponds to the resource requirements of
the modules. Thus, in addition to the manual synthesis of each
partial configuration, we automate the resource budgeting. The
automatic resource budgeting is part of our migration wizard

FP&A Edit Commands Macro Help

Macio Manager Streaming Wizard | Ll Tiles IBInck |

—Flaarplanning

oduleM ame | Slices &

13 iﬁ!_ 32

| test_pattern_generatar_0 257 | E E
MCB_DDRZ 748 H &
Poz koo towe 195 Q) (7)) n c :
acS7_if 0 157 O - i
Salt_TEMAC N ()] g
d_usb_epp_dstm 0 242 3 U):
wps_uart16550_0 144 O -O B
phy_reset_component_0 40 u) 3 |
quad_spi_if 0 174 m Q a E
mdm_0 41 el | i,
mb_plb_S|_addrdclk<5> 1
o_ush_epp_dstm_0_PKTE... |1 B -
4 sk enn dsten 0 GLOF 11

#DL Design File
IE “tmphang_design.xd!

Brawse

Madule Filker

Get Budget

<

tile view

Fig. 3. Automatic resource budgeting in the GUI of our tool GoAhead. After
reading in an existing design (XDL netlist), the used tiles are highlighted red
in the tile view. For each detected module, the resource consumption (only
slice are shown) is listed on the left.

and is depicted in Figure 3.

After budgeting the partial area, we will now define the
partial area on the FPGA fabric. Here, the user can optionally
assist in the definition of physical interfaces, which in particu-
lar comprises the assignment of signals crossing the boundary
between the static part and reconfigurable area on an edge
(left, right, top, bottom) of that area. In which direction a
signal should cross the boundary of the static and the partial
depends on the signals purpose. If, e.g. a memory controller
is located left of the partial area, those signals of the physical
interface that access the memory controller should be located
on the left of the partial area as well. By manually defining
the placement of each physical interface wire, the user can
enhance the routing quality. In the following examples, we
will assume that all signal enter the partial area on the left
and exit the partial area on the right.

All signals of the physical interface use one individual PR
link [8] to cross the boundary between the static part and the
partial area. A PR link comprises a physical wire of the FPGA
routing fabric as depicted in Figure 4. As in our approach,
each partial module provides the same physical interface,
the placement of the PR links is identical for all modules.
However, the Xilinx tools provide no possibility to access
a particular physical wire in HDL. Our tool will therefore
generate blocker macros that block all routing resources in a
given area except those wires we want the router to use as our
PR links.

partial reconfiguration "PR link"

AN
4 A |
] =
— »), <+
—<]_/
NAND OR
Fig. 4. A PR link [8] comprises a physical wire that crosses the boundary

between the static part of the design and the partial area. All partial modules
provide the same placement of PR links, hence we may swap modules over
time.

III. GOAHEAD STATIC SYSTEM IMPLEMENTATION

As introduced in Section I, it is beneficial to implement
the static part of the system completely independent of the
physical implementation of the different partial configurations.
This removes, for example, the need to reroute all partial
configurations if the static design changes.

In order to allow this strict encapsulation of the configurable
modules, it requires the definition of bounding boxes for the
different reconfigurable modules as well as a constraining of
the routing between the static system and the partial modules.
For the latter one, we have to bind each individual bit-
signal of the partial configuration interface to a correspond-
ing wire segment that physically crosses the border of the
reconfigurable area. Unfortunately, the Xilinx vendor tools
provide no corresponding constraints on the routing. However,
as revealed later in this section, our tool is capable to generate
such routing constraints.

When the static system is implemented, we will use a
placeholder for the reconfigurable subsystem in order to ensure
that no logic or routing will be trimmed. This is required
as we want to implement the static system in absence of all
partial modules (which, in some cases, might not even exist at
compile time of the static system). During the implementation
of each partial configuration, a placeholder for the static
system will be used in turn. The placeholder is physically a
set of hardmacros, called connection macros in the following.

As the first step after completing the resource budgeting
and floorplanning, the tool places connection macros into the
partial area. A connection macro is a simple hard macro that
consists of one or more look-up tables without any routing.
With each look-up table in the connection macro, we provide
one input and one output port. The connection macros will
be used to both connect a signal from the static part of the
system with the partial area (module input) and to connect a
signal from the partial area with a signal in the static system

connection macro
\

' \ video out
S LD — g
@

/ ‘static blocker with tunnel

t\unnel

video_in

filter _ctrl

FPGA
unblocked /

Fig. 5. A static blocker with tunnels. The reconfigurable area provides the
joined wrapper for the reconfigurable area given in Listing 2.

(module output). We can connect a module input and a module
output within one connection macro. The physical placement
of the connection macros can be controlled by using Xilinx
user constraints (UCF).

Our tool provides a wrapper for encapsulating the con-
nection macros. Therefore, users can instantiate an auto-
matically generated placeholder module which possesses the
joined interface of the modules without being aware that the
placeholder consists of hardmacros. This is the HDL-view
of the implementation. During the physical implementation,
the vendor placer will instantiate the macros according to the
automatically generated placement constraints while later the
router will perform the entire wire connection.

Note that, we do not connect signals from the static system
with connection macros physically at this stage, but only
connect static signals to connection macros in HDL. The
physical routing will be done by the Xilinx router.

Although, our tool proposes placements for the connection
macros, the user can define each placement in the GUI of the
tool or via the scripting interface. Our tool then generates the
placement constraints (UCF) for the connection macros that
will be used during synthesis and placement.

The intermediate result after synthesis and the physical
placement is an unrouted netlist. We now have to route this
netlist and force the Xilinx router not to use any routing
resource within the partial area. This is achieved by the help
of blocker macros that can be generated with our tool.

The blocker macros occupy all routing resources in the
partial area (static blocker), except the PR links we want the
router explicitly to use to connect the static system and the
placeholder macros. Consequently, the blocker macro blocks
all routing resources, but leaves out a tunnel for each PR link.
A static blocker macro with tunnels is outlined in Figure 5.

The router is then forced to use the tunnel to connect the
assigned signal as this will be the only option within the
blocker to reach the connection macro. By defining a tunnel
in combination with the physical placement of a connection

macro, we are able to bind a HDL signal to wire of the FPGA
routing fabric. Though, not all wires of the Spartan-6 FPGA
routing fabric are suitable for tunnels. A wire has to fulfill the
following prerequisites:

1) Each end point of the wire can be extended to its
corresponding begin point in order to extend the tunnel.

2) There may be no connection from an end point of a wire
to the begin point of another wire that is used for another
tunnel. This prevents the router from hopping between
tunnels which would result in an inhomogeneous and
unpredictable routing scheme.

3) Each end point of the wire can be connected to a look-
up table input to connect the wire with the connection
macro (module input).

4) A look-up table output from the connection macro can
be connected to the begin point of the wire (module
output).

The homogenous routing fabric of Virtex-II and Spartan-
3 FPGAs offered plenty of wires fulfilling the above listed
prerequisites. On Virtex-5 FPGAs, for most wires there are
no direct connections from an end point of a wire to its
corresponding begin point. Hence, stopovers inside and outside
a tile are necessary. In the case of Spartan-6 and Virtex-6
FPGAs, Xilinx returned back to a more homogenous routing
fabric but reduced the total number of wires which has to be
considered if wide data paths have to be routed across the
border of a reconfigurable area.

For Spartan-6 and Virtex-6 devices, the number of wires
that can be interfaced in one CLB is bound to a value of
four in practice. In GoAhead, we solved the problem of
wide interfaces by optionally interleaving multiple wires that
span a distance of multiple CLBs?> and that start displaced
in consecutive CLBs, as depicted in Figure 6. This approach
is similar to the wide bus macros introduced temporarily by
Xilinx for Virtex-4 devices [9].

The reduced number of routing resources in Virtex-5,
Virtex-6 and Spartan-6 FPGAs facilitates blocker macros. For
all three device families, it is possible to block all routing
resource in a switch matrix of any tile by just using a few
on tile look-up table outputs. As a consequence of the higher
offer of routing resources in contrast to this simple blocking
scheme, blocker macros on Virtex-2 and Spartan-3 were more
complex. To block all routing resource within one particular
tile assuming the presence of a communication architecture

2A CLB is a configurable logic block and comprises a cluster of in total
eight 6-input look-up tables and an attached interconnect switch box for
carrying out the FPGA routing. The CLBs are cascaded in a checkered manner
together with dedicated resources such as memories or multiplier blocks

four wires can be accessed on each CLB

each two wires start in two consecutive CLBs

M Bl

NI
C
L
B

I Il Il

static system

WO
m=d

each two out of four possible wires are tapped in two consecutive CLBs

Fig. 6. A system comprising a static part and a partial area with a four bit
interface. In two consecutive CLB in the static part only two wires out of four
possible wires are connected. This results in a four bit interface interleaved
into two disjoint tracks. A partial module needs again two consecutive CLBs
to tap all four bits. A partial module that is only one column wide can only
access two out of four interface bits.

such as a ReCoBus or an I/O-Bar [2] in this tile, one usually
had to take advantage of drivers in other tiles.

After routing the static design with the help of connection
macros and a corresponding blocker, we can finally generate
a full bitstream with the Xilinx vendor tools. However, this
static configuration will then not include any of the partial
modules, but (after accomplishing the partial implementation)
it is possible to generate an initial bitstream that includes
partial modules directly after the initial reconfiguration [2].

IV. GOAHEAD PARTIAL MODULE IMPLEMENTATION

While the placeholder for the partial system was used to
generate a bitstream for the static system, the placeholder for
the static system in turn will be used to generate a bitstream
for each module or for each partial configuration.

From the partial areas point of view the joined wrapper from
Listing 2 will now appear as a reversed interface with each
input becoming an output and vice versa. The partial module
may not use any routing resources outside the partial area.
Hence, a blocker macro (partial blocker) is surrounding the
partial area (the macro will be generated by our tool). The
partial blocker will spare out the same wire resources as the
static blocker did building its tunnel.

To connect a static signal with an input of the partial area a
connection macro will be placed inside the partial blocker that
surrounds the partial area. The router now can only connect the
connection macro with the module interface when using the
before spared out tunnels. A partial blocker with connections
macros is depicted in Figure 7). In addition, Xilinx placement
constraints also generated by our tool will force the placer to
place all module logic inside the partial area.

V. CASE STUDY

For demonstrating our migration flow, we implemented a
static only system following the example shown in Figure 2a).

connection macro tunnel

\

video out

unblocked
FPGA \
\ partial blocker with tunnel
Fig. 7. Placeholder for the static system to implement the partial modules.

The currently shown module is the Gaussian filter. A logical zero is driven
to the unused output. The Median filter in turn would not access the input
filter_ctrl but drive the output match. The testpattern module would access
video_in and video_out. All wires running into or out of the partial area
run through tunnels (i.e. a set of unblocked wires).

| Median
1 Gauss
Segmentation

Fig. 8. FPGA-Editor screenshot of the initial static only system.

In addition to the depicted data path, the system has been
equipped with a baseline Microblaze softcore processor for
controlling the system. An FPGA-Editor screenshot of the
static system is shown in Figure 8. The static only system
occupies 94% of the available logic resources (slices) of the

TABLE I
RESOUCE REQUIREMENTS OF THE STATIC ONLY SYSTEM. THE TOTAL
AMOUNT INCLUDES FURTHER MODULES AND GLUE LOGIC.

Module # Slices #BRAM #DSP #Input #Output
Microblaze 814 (57%) 12 (37.5%) 3 (18%)
Median_3x3 152 (10.6%) 4 (12.5%) 0 28 28
Gauss_5x5 161 (11.3%) 8 (25%) 0 29 28
Segmentation 64 (4.5%) 0 0 28 28
Background 110 (7.7%) 0 0 0 28
Total 1350 (94%) 24 (75%) 3 (18%)

selected Xilinx Spartan-6 XC6SLX-9 device. We used the
design analysis function provided by GoAhead to determine
the exact resource requirements of the different modules in
this system. The requirements are summarized in Table I.

It must be mentioned that the listed values for slices are
not exact because a slice provides multiple look-up tables
(like four in the case of Spartan-6) that might not by all
used (different slice packing) or that might be shared among
multiple different modules. However, the determined values
have been found sufficient precise.

Table I lists three candidates (the median filter, the Gaussian
filter, and the background module) that are suitable for partial
reconfiguration, because only one of these modules is used at a
point in time (depending on the present operation mode of the
system). With the Gaussian filter being the largest module in
terms of both logic resources and memory blocks, the partial
area must be at least sufficient to host this module. Then,
the maximal theoretical area saving would be the resources
of the Median filter plus the resources of the background
module, which is 216 slices (15%) and 4 BRAMs (12.5%).
However, this assumes that the bounding box is defined as
tight as possible, which might in some cases result in a
poor routing. Furthermore, we have to add an interface for
partial reconfiguration. In our case study, we used a simple
PIO for this purpose that is directly connected to the 16-
bit wide internal configuration access port (ICAP) of the
Spartan-6 FPGA. Consequently, the CPU is capable to write
configuration data for self-reconfiguring the device. Note that
this is a slow but resource efficient option to interface a
configuration port to a CPU.

The smallest reconfigurable unit of Spartan-6 FPGAs is a
frame that contains a piece of configuration data for in total 16
CLBs or 32 slices. In the case of dedicated memory, one frame
contains data for four BRAMs. When defining the reconfig-
urable region with two frames in height and 5 CLB columns
in width, the reconfigurable region would provide sufficient
resources for the Gaussian filter and the segmentation module
(320 slices and 8 BRAMs). This is 49 slices more than the
resource requirements of these two modules and the saving in
logic resources would then be 216-49 =167 slices or 11.7%

o
: ! \3 1 : _r--"‘ i N
jE - ae=d N
g2 A ! g

Fig. 9. FPGA-Editor screenshot of the modified static system providing a
reconfigurable region.

of the total device resources. However, in the test system
implementation, we maximized the reconfigurable region to 6
CLB columns in width which results in a reconfigurable region
that provides 384 slices or 26.9% of the device, which is more
appropriate for experiments on partial reconfiguration. The
modified system which provides now a reconfigurable region
to host the different video filters, the segmentation module and
the background module is shown in Figure 9. Note that there
are a few wires of the static system that cross the partial region.
However, this is allowed and is in most systems required as
Spartan-6 lack long lines that span the full height or width of a
device. These routing resources are provided on older FPGAs,
such as Xilinx Virtex-II devices, and are highly suitable to
cross a partial region. GoAhead will generate constraints for
the physical implementation of the modules such that the static
routing will not interfere with the module routing.

The reconfigurable modules have been implemented follow-
ing the same interface specification that has been used for the
static system. Instead of a prohibit region, we used a bounding
box definition for the physical implementation of the modules.

VI. COMPARISON OF GOAHEAD AND PLANAHEAD

In this section, we will compare our tool GoAhead with the
competing Xilinx tool PlanAhead.

While our tool with Virtex-6 and Spartan-6 supports the
most recent Xilinx FPGAs, PlanAhead does not support
Spartan-6 so far. However, the low cost Spartan-6 family is a
very adequate target for building systems with partial runtime
reconfiguration. Our tool is the first to support Spartan-6.

In both tools, the floorplanning is carried out manually
via the GUI, however scripting interfaces are available in
PlanAhead and GoAhead.

To let wires cross the boundary between the static part
of the system and the partial area, GoAhead uses the above
mentioned connection macros. In PlanAhead on the other
hand, this is accomplished with proxy logic. The proxy logic
comprises one look-up table for each wire and is instantiated
in the partial area. The module then taps the proxy logic.
However, in the final module implementation, the proxy logic
will still be present. In contrast, the connection macros in
modules built following our flow are removed imposing zero
overhead [8]. The placement of the proxy logic in PlanAhead
is done automatically. In GoAhead, the placement can be done
automatically, the user may in addition also manually place the
connection macros.

Module relocation in PlanAhead is not supported. For each
partial area the user wants to run a module in, a bitstream is
required for each module. Integrating n partial areas into a
design that each can host all of the m partial modules results
in m x n different bitstream. Following our flow however, only
one bitstream per partial module is required as partial modules
can be freely relocated within the partial area as well as among
different partial areas. Relocation in our systems is carried out
by a driver that will be released together with GoAhead.

In contrast to PlanAhead, our flow allows to instantiate a
module multiple times within the same partial area (e.g. for
connecting modules in a streamlined manner) or within several
partial areas. Following the PlanAhead flow, again the multiple
instantiation of modules at different positions requires one
bitstream for each permutation of a module and its position.

As outlined in Section II, it is beneficial to completely
encapsulate the static design and the partial modules. This
encapsulation is achieved in the GoAhead flow. The Plan-
Ahead flow however, requires the user to reroute all partial
modules after any change in the static system. In addition
our flow allows a user, to implement a partial module and
later to integrate this module into a already running system.
The complete encapsulation of the static system and the
partial modules in our flow however favors synthesis and
place & route time for modules.

The present GoAhead flow can also be used to implement
an island style system. For an island style system each configu-
ration is considered as a module. If two configurations contain
the same module, the resulting partial bitstreams however will
contain redundancies as both bitstream share the implementa-
tion of the common module. Both PlanAhead and GoAhead
support building island style systems (as demonstrated in
the case study, see also Section V). While PlanAhead only

supports island style, in GoAhead a partial area may also
host several modules at the same time (slot style system).
Within one partial area, we allow to freely place a module
with respect to then underlying resource layout (1D slot style).
By cascading several partial areas on top of each other, a 2D
slot style can be achieved [8].

Neither our placeholder scheme nor the presented migration
flow is bound to a particular device. Hence, our tool will also
support future devices.

VII. CONCLUSION

In this paper we outlined how to migrate an existing static
only design into a system with partial runtime reconfiguration.
The therefore required steps with our tool GoAhead were pre-
sented in detail. With our tool, partial runtime reconfiguration
becomes available for the low cost Spartan-6 family. GoAhead
allows to build sophisticated systems with partial runtime
reconfiguration. The tool will be released in the near future
and will then also support Xilinx Virtex-5 FPGAs.

ACKNOWLEDGMENT

This work is supported in part by the Norwegian Research
Council under grant 191156V30

REFERENCES

[1] D. Koch, C. Beckhoff, and J. Teich, “A communication architecture
for complex runtime reconfigurable systems and its implementation
on spartan-3 fpgas,” in Proceeding of the ACM/SIGDA international
symposium on Field programmable gate arrays, ser. FPGA 09. New
York, NY, USA: ACM, 2009, pp. 253-256.

[2] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder a Novel Tool
and Technique to Build Statically and Dynamically Reconfigurable Sys-
tems for FPGAs,” in Proceedings of International Conference on Field-
Programmable Logic and Applications (FPL 08), Heidelberg, Germany,
Sep. 2008, pp. 119-124.

[3] M. Ullmann, M. Hbner, B. Grimm, and J. Becker, “On-demand fpga run-
time system for dynamical reconfiguration with adaptive priorities,” in
Field Programmable Logic and Application, 2004, vol. 3203, pp. 454—
463.

[4] Christopher Claus, Bin Zhang, Michael Hiibner, Christoph Schmutzler,
Jiirgen Becker and Walter Stechle, “An XDL-Based Busmacro Generator
For Customizable Communication Interfaces For Dynamically And Par-
tially Reconfigurable Systems,” Workshop on Reconfigurable Computing
Education at ISVLSI 2007, Mai 2007.

[5] D. Koch, C. Beckhoff, and J. Torresen, “Demo Paper: Advanced Partial
Run-time Reconfiguration on Spartan-6 FPGAs,” in Proceedings of In-
ternational Conference on Field-Programmable Technology (ICFPTI0).
Beijing, China: IEEE, 2010, to apear.

[6] C. Claus, R. Ahmed, F. Altenried, and W. Stechele, “Towards rapid
dynamic partial reconfiguration in video-based driver assistance systems,”
in Reconfigurable Computing: Architectures, Tools and Applications,
2010, vol. 5992, pp. 55-67.

[7] Xilinx Inc., The Xilinx Design Language, July 2000.

[8] D. Koch, C. Beckhoff, and J. Torresen, “Zero Logic Overhead Integration
of Partially Reconfigurable Modules,” in SBCCI’10, Sao Paulo, Brazil,
Sep. 2010.

[9] Xilinx Inc., Early Access Reconfiguration User Guide, March 2006.

