
Automated verification of rules and

regulations in CAD models of railway

signalling and interlocking

Bjørnar Luteberget and Claus Feyling

15th International Conference on
Railway Engineering Design and Operation

July 21, 2016

1 / 24

Talk outline

1. Background and motivation

2. Semantic CAD using railML

3. Knowledge base design for verification

4. Prototype tool integrating this verification into existing

engineering tools (RailCOMPLETE)

2 / 24

Designing signalling and interlocking

I Constructing new railway lines or improving existing ones

requires through planning to meet quality demands

I Computer-aided design (CAD) tools are widely used for

producing documentation

I Creating a good design takes much skill and effort

3 / 24

Technical regulations

I In our case study: Norwegian regulations from

infrastructure manager Jernbaneverket

4 / 24

Technical regulations

Example from regulations:

I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.

200 m

I Many regulations fall into one or more of the following
categories:

– Object properties
– Topological layout properties
– Geometrical layout properties
– Interlocking specification properties

5 / 24

Objective

Given a railway signalling and interlocking design,

verify that it complies with regulations.

Secondary objectives:

I Integrate with engineering/design tools

– On-the-fly verification (“lightweight”)

– Usable for engineers who are not formal methods experts

I Find suitable language for expressing regulations

6 / 24

Talk outline

1. Background and motivation

2. Semantic CAD using railML

3. Knowledge base design for verification

4. Prototype tool integrating this verification into existing

engineering tools (RailCOMPLETE)

7 / 24

The railML XML standard data exchange format

I Thoroughly modelled infrastructure schema
I First presented by Nash et al. at COMPRAIL 2004
I Development by international standard committee

8 / 24

Embedding railML in CAD: “semantic CAD”

I Extending CAD objects with additional information gives

railway-technical meaning to the symbols

CAD document

Model space

Polyline (geometry
corresponding to
track horizon-
tal geometry)

Block reference
(symbol for sig-
nalling equipment)

...

Extension
dictionary

Extension
dictionary

...

Complete
railML
document

railML
fragment

railML
fragment

...

9 / 24

CAD verification tool and tool chain

I Also, the structured data can be re-used for many other
purposes, notably data exchange with other tools:

– Interlocking code generation and verification

– Capacity simulation

– 3D view, Building Information Modeling

I This leads us to the tool chain overview...

10 / 24

Tool chain overview

CAD program (design stage)

CAD document
(station layout)

Verification
issues GUI

Shapes and
symbols w/

attached
railML

fragments

Interlocking
specification

Complete
railML

document

Verification
program

User decision

Is
su

e
de

sc
rip

tio
n

(r
ul

e,
ob

je
ct

s,
lo

ca
tio

ns
)

Machine-
readable

layout and
specifications

Interlocking
code

generation
(Prover)

Code
verification

Capacity
analysis

(OpenTrack,
LUKS,
Treno)

Building
Information

Modeling
(BIM)

(Autodesk,
Bentley,

etc.)

 ExportrailML

I Static verification can

discover violations of

technical regulations early, as

the user is building the model

I Dotted boxes indicate external

programs

I More heavy-weight

verification, simulation,

testing, etc. benefits from

machine-readable data

exhcange

11 / 24

Talk outline

1. Background and motivation

2. Semantic CAD using railML

3. Knowledge base design for verification

4. Prototype tool integrating this verification into existing

engineering tools (RailCOMPLETE)

12 / 24

Formalization of regulations

I Formalize the following information

– The CAD design (extensional information, or facts)

– The regulations (intensional information, or rules)

I Use a solver which:

– Is capable of expressing and verifying the regulations

– Runs fast enough for on-the-fly verification

13 / 24

Datalog

I Basic Datalog: conjunctive queries with fixed-point
operators (“SQL with recursion”)

– Guaranteed termination

– Polynomial running time (in the number of facts)

I Expressed as logic programs in a Prolog-like syntax:

a(X,Y) :– b(X,Z), c(Z, Y)

m

∀x, y : ((∃z : (b(x, z) ∧ c(z, y))) → a(x, y))

I We also use:

– Stratified negation (negation-as-failure semantics)

– Arithmetic (which is “unsafe”)

14 / 24

Encoding facts and rules in Datalog

I The process of formalizing the railway data and rules to
Datalog format is divided into three stages:

1. Railway designs (station data) – facts

2. Derived concepts (used in several rules) – rules

3. Technical regulations to be verified – rules

I Now, more details about each stage...

15 / 24

Derived concepts

I Derived concepts are defined through intermediate rules

I Railway concepts defined independently of the design

I Example:

directlyConnected(a, b)← ∃t : track(t) ∧ belongsTo(a, t) ∧ belongsTo(b, t),

connected(a, b)← directlyConnected(a, b) ∨ (∃c1, c2 : connection(c1, c2)∧
directlyConnected(a, c1) ∧ connected(c2, b)).

I A library of concepts allows concise expression of

technical regulations

16 / 24

Technical regulations as Datalog rules

I Detecting errors in the design corresponds to finding

objects involved in a regulation violation

I To validate the rules in a given design, we show that there

are no satisfiable instances of the negation of the rule

I An example:

– Home signal placement: topological and geometrical
layout property for placement of a home signal

17 / 24

Rule example

I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.
I Uses arithmetic and negation

200 m

isFirstFacingSwitch(b, s)← stationBoundary(b) ∧ facingSwitch(s)∧
¬(∃x : facingSwitch(x) ∧ between(b, x, s)),

ruleViolation(b, s)← isFirstFacingSwitch(b, s)∧
(¬(∃x : signalFunction(x, home) ∧ between(b, x, s))∨
(∃x, d, l : signalFunction(x, home)∧
∧ distance(x, s, d, l) ∧ l < 200).

18 / 24

Talk outline

1. Background and motivation

2. Semantic CAD using railML

3. Knowledge base design for verification

4. Prototype tool integrating this verification into existing

engineering tools (RailCOMPLETE)

19 / 24

Prototype tool implementation

I Verification integrated in the RailCOMPLETE tool, based on

Autodesk AutoCAD and XSB Prolog

20 / 24

Case study

I Railway engineers working on CAD model of Arna station

(Norconsult AS / RailComplete AS), have thoroughly

modeled using railML attributes

I Challenge: engineers want to understand and modify rules

to better cover regulations, add edge cases, etc.

Programming in Datalog is still outside railway engineer’s

competence.

21 / 24

Running time

Testing

station

Arna

phase A
Arna

phase B

Relevant components 15 152 231

Interlocking routes 2 23 42

Datalog facts 85 8283 9159

Running time (s) 0.1 4.4 9.4

I Running time for verification of a few properties: ≈1 – 10 s

– More optimization needed for truly on-the-fly verification

I Challenge: Compute the verification so fast that the

engineering/design process benefits from immediate

feedback on changes.

22 / 24

Summary

I We have demonstrated a way to automate checking of

regulations compliance for railway signalling and

interlocking designs

I Our tools have been integrated in an existing CAD design

environment

I Datalog allowed us to express technical regulations

concisely and perform efficient verification

I Advantages:

– eliminate tedious tasks, like filling out check-lists

– get instant feedback on design quality while editing

– make use of railML, a standard for describing railway
designs

23 / 24

Future work

I Immediate feedback: use incremental evalulation of
Datalog programs for efficiency

– DRed algorithm, FBF algorithm

– Tools such as XSB Prolog and RDFox support incr. eval.

I Involve engineers in knowledge base design: find
user-friendly input language

– DSL for expressing railway regulations

– Controlled Natural Language, à la Attempto.

24 / 24

