
Railway Infrastructure Verification and RDFox

Bjørnar Luteberget / Christian Johansen

July 4, 2016

1 / 19



Railway verification and formal methods

I Railway systems:

large-scale, safety-critical

infrastructure

I High safety requirements:

SIL 4 for passenger

transport

I Increasingly computerized

components

I Typical use of formal

methods in railways:

model checking of control

systems

2 / 19



Objective

Given a railway signalling and interlocking design,

verify that it complies with regulations.

Secondary objectives:

I Integrate with engineering/design tools

– On-the-fly verification (“lightweight”)

– Usable for engineers who are not formal methods experts

I Find suitable language for expressing regulations

“Formal methods will never have a significant impact until they can be used

by people that don’t understand them.”

— (attributed to) Tom Melham
3 / 19



Railway designs for signalling and interlocking

Sig. A Sig. C

Sig. E

Sig. B

Sig. D

Sig. F

1
2

3

4 6

5

Switch X Switch Y

(a) Track and signalling component layout

Route Start End Sw. pos Detection sections Conflicts

AC A C X right 1, 2, 4 AE, BF

AE A E X left 1, 2, 3 AC, BD

BF B F Y left 4, 5, 6 AC, BD

BD B D Y right 3, 5, 6 AE, BF

(b) Tabular interlocking specification

4 / 19



The railML XML standard data exchange format

I Thoroughly modelled infrastructure schema
I XML schema development by international standard

committee

5 / 19



Technical regulations

I In our case study: Norwegian regulations from

infrastructure manager Jernbaneverket

I Static kind of properties, often related to object properties,

topology and geometry (examples later)

6 / 19



Technical regulations

Example from regulations:

I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.

200 m

I Can be classified as follows:

– Object properties
– Topological layout properties
– Geometrical layout properties
– Interlocking properties

7 / 19



Formalization of rule checking

I Formalize the following information

– The CAD design (extensional information, or facts)

– The regulations (intensional information, or rules)

I Use a solver which:

– Is capable of verifying the rules

– Runs fast enough for on-the-fly verification

8 / 19



Datalog

I Basic Datalog: conjunctive queries with fixed-point
operators (“SQL with recursion”)

– Guaranteed termination

– Polynomial running time (in the number of facts)

I Expressed as logic programs in a Prolog-like syntax:

a(X,Y ) :– b(X,Z), c(Z, Y )

m

∀x, y : ((∃z : (b(x, z) ∧ c(z, y))) → a(x, y))

I We also use:

– Stratified negation (negation-as-failure semantics)

– Arithmetic (which is “unsafe”)

9 / 19



Encoding facts and rules in Datalog

I The process of formalizing the railway data and rules to
Datalog format is divided into three stages:

1. Railway designs (station data) – facts

2. Derived concepts (used in several rules) – rules

3. Technical regulations to be verified – rules

I Now, more details about each stage...

10 / 19



Input documents representation

I Translate the railML XML format into Datalog facts using

the ID attribute as key:

track(a)← elementa is of type track,

signal(a)← elementa is of type signal,

...

pos(a, p)← (elementa.pos = p), a ∈ Atoms, p ∈ R,
...

signalType(a, t)← (elementa.type= t),

t∈{main, distant, shunting, combined} .

11 / 19



Input documents representation

I To encode the hierarchical structure of the railML

document, a separate predicate encoding the parent/child

relationship is added:

belongsTo(a, b)← b is the closest XML ancestor of a

whose element type inherits from

tElementWithIDAndName.

12 / 19



Derived concepts

I Derived concepts are defined through intermediate rules

I Railway concepts defined independently of the design

I Example:

directlyConnected(a, b)← ∃t : track(t) ∧ belongsTo(a, t) ∧ belongsTo(b, t),

connected(a, b)← directlyConnected(a, b) ∨ (∃c1, c2 : connection(c1, c2)∧
directlyConnected(a, c1) ∧ connected(c2, b)).

I A library of concepts allows concise expression of

technical regulations

13 / 19



Technical regulations as Datalog rules

I Detecting errors in the design corresponds to finding

objects involved in a regulation violation

I To validate the rules in a given design, we show that there

are no satisfiable instances of the negation of the rule

I Some examples:

– Example 1, home signal placement: topological and
geometrical layout property for placement of a home signal

– Example 2, train detector conditions: relates interlocking to
topology

I These are Jernbaneverket regulations which are relevant

for automatic verification

14 / 19



Rule: example 1

I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.
I Uses arithmetic and negation

200 m

isFirstFacingSwitch(b, s)← stationBoundary(b) ∧ facingSwitch(s)∧
¬(∃x : facingSwitch(x) ∧ between(b, x, s)),

ruleViolation(b, s)← isFirstFacingSwitch(b, s)∧
(¬(∃x : signalFunction(x, home) ∧ between(b, x, s))∨
(∃x, d, l : signalFunction(x, home)∧
∧ distance(x, s, d, l) ∧ l < 200).

15 / 19



Rule: example 2

I Each pair of adjacent train detectors defines a track

detection section. For any track detection sections

overlapping the route path, there shall exist a

corresponding condition on the activation of the route.

Section 1 Section 2

Sig. A Sig. B

Tabular interlocking:

Route Start End Sections must be clear

AB A B 1, 2

16 / 19



Rule: example 2

adjacentDetectors(a, b)←trainDetector(a) ∧ trainDetector(b)∧
¬existsPathWithDetector(a, b),

detectionSectionOverlapsRoute(r, da, db)← trainRoute(r)∧
start(r, sa) ∧ end(r, sb)∧
adjacentDetectors(da, db) ∧ overlap(sa, sb, da, db),

detectionSectionCondition(r, da, db)← detectionSectionCondition(c)∧
belongsTo(c, r) ∧ belongsTo(da, c) ∧ belongsTo(db, c).

ruleViolation(r, da, db)←
detectionSectionOverlapsRoute(r, da, db)∧
¬detectionSectionCondition(r, da, db).

17 / 19



Prototype tool implementation

I Prototype using XSB Prolog tabled predicates, front-end is

the RailCOMPLETE tool based on Autodesk AutoCAD
I Rule base in Prolog syntax with structured comments

giving information about rules

26 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

%| rule: Home signal too close to first facing switch.
%| type: technical
%| severity: error
homeSignalBeforeFacingSwitchError(S,SW) :-

firstFacingSwitch(B,SW,DIR),
homeSignalBetween(S,B,SW),
distance(S,SW,DIR,L), L < 200.

Fig. 6. Structured comments on rule violation expression

Fig. 7. Counterexample presentation within an interactive CAD environment.

Path 1

Path 2

Switch A

Switch B

Fig. 8. Switches give rise to branching paths

18 / 19



Current work

I Incremental updates (view maintenance)

– Changes in the CAD design causes the whole verification to
start over

– More efficient: recompute only the parts that are affected
by the changes

I B/F algorithm and RDFox might be suitable

I Semantic web standards and railway ontology

– Translate railML XSD into OWL?
– Translate Datalog rules into OWL/SWRL?
– Closed-world assumption
– Higher-arity predicates (distance(X,Y, L,D))

19 / 19


