
RAILCONS
Tools for static railway infrastructure analysis RailCons

See our paper Efficient verification of railway infrastructure designs against standard regulations, In Journal on Formal Methods in System Design, DOI 10.1007/s10703-017-0281-z

Abstract
In designing safety-critical infrastructures s.a. railway
systems, engineers often have to deal with complex and
large-scale designs. Formal methods can play an impor-
tant role in helping automate or check various tasks.

– We focus on static infrastructure models and are in-
terested in checking requirements coming from design
guidelines and regulations.

– Our goal is to automate the manual work of the railway
engineers through software that is fast enough to do ver-
ification on-the-fly, so to include it in the railway design
tools, much like a compiler in an IDE.

– Usability of the verification is achieved through a seam-
less integration of a fast engine and using RailCNL to al-
low engineers to read/write the verified rules.

Tool chain for railway design

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational
scenarios

(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):

RailCons software allows checking rules and
regulations of static infrastructure inside the
CAD environment, while more comprehen-
sive verification and quality assurance can
be performed by special-purpose software for
other design and analysis activities.
– We limit the verification inside the design
environment to static rules and expert knowl-
edge, as these rules require less dynamic in-
formation (timetables, rolling stock, etc.) and
less computational effort, while still offering
valuable insights.
– This situation may be compared to the tool
chain for writing computer programs. Static
analysis can be used at the detailed design
stage (writing the code), but can only verify

a limited set of properties. It cannot fully replace testing, simulation and other types of analysis, and must as such be
seen as a part of a larger tool chain.

Railway signalling design process

Track and signalling component layout

Railway construction projects rely heavily on com-
puter aided design (CAD) tools to map out railway sta-
tion layouts. The various disciplines within a project,
such as civil works, track works, signalling, or cate-
nary power lines, work with coordinated CAD models.

4 C. Johansen, B. Luteberget

Sig. A Sig. C

Sig. E

Sig. B

Sig. D

Sig. F

1
2

3

4 6

5

Switch X Switch Y

(a)

(b)

Fig. 1: (a) Example schematic construction drawing. (b) Cut-out from 2D geographical CAD
model (construction drawing) of preliminary design of the Arna station signalling.

Route Start End Sw. pos Detection sections Conflicts
AC A C X right 1, 2, 4 AE, BF
AE A E X left 1, 2, 3 AC, BD
BF B F Y left 4, 5, 6 AC, BD
BD B D Y right 3, 5, 6 AE, BF

Fig. 2: Example of a tabular interlocking, showing available routes and their conditions.

3 Semantic CAD

Civil engineering construction projects, such as railway projects, make heavy use of computer-
aided design (CAD) tools to model the geometric aspects of the construction project and its
product. The origins of CAD tools are in the computerizing of traditional drafting, which
produces human-readable technical drawings that are used as plans and documentation for
the construction. Mainstream CAD tools are mainly concerned with manipulating databases
of geometrical objects constituting 2D or 3D representations of spatial properties, and the
production of human-readable drawings which depict these geometrical structures.

The DWG file format created for the Autodesk AutoCAD software is a de facto standard
in many engineering disciplines, and this format has also been adopted by several other CAD
software packages.

Interlocking specification

An interlocking is an interconnection of signals and
switches to ensure that train movements are per-
formed in a safe sequence.
The main purpose of the interlocking specification is
to tabulate all possible routes and set conditions for
their use. Typical conditions are:

Switches must be positioned to guide the train to a
specified route exit signal.

Train detectors must show that the route is free of
any other trains.

Conflicting routes , i.e. overlapping routes (or safety
zones), must not be in use.

Route Start End Sw. pos Detection sections Conflicts
AC A C X right 1, 2, 4 AE, BF
AE A E X left 1, 2, 3 AC, BD
BF B F Y left 4, 5, 6 AC, BD
BD B D Y right 3, 5, 6 AE, BF

CAD tool integration of RailCons verification engine

Figure 1: Prototype static verification tool used in AutoCAD

A prototype tool was implemented using
Autodesk AutoCAD, and XSB Prolog as the
Datalog backend.
When rule violations are found, the rail-
way engineer will benefit from information
about the following:

• Which rule was violated (textual mes-
sage containing a reference to the source
of the rule or a justification in the case of
expert knowledge rules).

• Where the rule was violated (identity of
objects involved).

Also, classification of rules based on e.g. discipline and severity may be useful in many cases. In the rule databases, this
may be accomplished through the use of structured comments. Any violations found are associated with the information
in the comments, so that the combination can be used to present a helpful message to the user.

Railway design automation Modules

Basic RailCOMPLETE® Editor

Synthesis Verification RailCNL

V. Fast Certification

RailCONS Tools (Prototyped)

RailAUTOMATOR (Planned)

§

Optimization
Existing, prototyped, and planned modules and
software and their dependency.

• RailCOMPLETEr offers a good basis, being
built on top of CAD, providing various means
for digital engineering of railway infrastruc-
ture designs.

• RailCons modules are prototyped and inte-
grated in RailComplete, offering advanced au-
tomated techniques to the railway engineer.

• The planned modules would be using and en-
hancing the existing RailCons.

RailCNL – a controlled natural language for railway regulations

CNL editor

Proper ties, CNL
representation

(w/refs to marked-
up original text)

User creates
plans in CAD

program

Model, railML
representation

of infrastructure
Datalog
reasoner

Issues presentation
(warnings, errors)

Or iginal text
(w/marked-up

sentences)
Side by side tracing through

CNL to original text.

Figure 2: Verification process overview. Models come directly from the CAD
program, which engineers are already familiar with. Properties come from
paraphrasing the regulations using CNL, which in turn are translated into Dat-
alog. The reasoner outputs issues (warnings and errors) which are presented
to the user in the CAD program by highlighting the objects involved in the vi-
olation. Issues are traced back to the original text (i.e. the regulations) though
identifiers on the marked-up sentences.

To allow the engineers to participate in the
verification process, we use the controlled
natural language RailCNL for representing
properties on a higher level of abstraction,
make them closer to the original text while
still retaining the possibility for automatic
translation into Datalog. This approach has
the following advantages:

• RailCNL is domain-specific, i.e. tai-
lored both to the types of logical state-
ments needed by the verification en-
gine, and to the regulations terminology.
This allows concise and readable expres-
sions, increasing naturalness and main-
tainability.

• The language closely resembles natu-
ral language, and can be read by engi-
neers with the required domain knowl-
edge without learning a programming
language.

• A separate textual explanation (such as comments used in programming) is not needed for presenting violations
textually, as the properties are now directly readable as natural text. Comments could still be used, e.g. to clarify
edge cases or to clarify semantics, as is done in the original texts.

• Statements in RailCNL can be linked to statements in the original text, so that reading them side by side reveals to
domain experts whether the CNL paraphrasing of the natural text is valid. If not, they can edit the CNL text.

Links and Collaborators

RailCons
web page

RailCOMPLETEr

web page
Video

vimeo.com/
221549125

CHALMERS OXFORD

Presenters

Bjørnar S. Claus
Luteberget Feyling
{bjlut,clfey}@railcomplete.no
RailCOMPLETE AS

Christian Martin
Johansen Steffen

{cristi,msteffen}@ifi.uio.no
University of Oslo

RAILCONS
Tools for static railway infrastructure analysis RailCons

Presented at SEFM 2017: Software Engineering and Formal Methods, LNCS 10469, DOI 10.1007/978-3-319-66197-1_6; and at RSSRail 2017.
Co-authors: John J. Camilleri and Gerardo Schneider from Chalmers University of Technology.

Datalog logic programming for static railway verification

Datalog

The Datalog language is a first-order conjunctive
queries logic extended with least fixed points. Data-
log uses the Prolog convention of interpreting identi-
fiers starting with a capital letter as variables, and other
identifiers as constants, e.g., the clause

a(X,Y) :– b(X,Z), c(Z, Y)

has the meaning of

∀x, y : ((∃z : (b(x, z) ∧ c(z, y)))→ a(x, y)) .

We can define railway objects to be connected through
the graph of tracks:

directlyConnected(a, b) :– track(t), belongsTo(a, t),

belongsTo(b, t).

connected(a, b) :– directlyConnected(a, b).

connected(a, b) :– directlyConnected(a, x),

connection(x, c),

connected(c, b).

Here, the connection predicate contains switches and
other connection types. Further details of relevant pred-
icates are given in the sections below.

Railway regulations representation

Interlocking: Track clear on route Each pair of adja-
cent train detectors defines a track detection sec-
tion. For any track detection sections overlapping
the route path, there shall exist a corresponding
condition on the activation of the route.

16 C. Johansen, B. Luteberget

This can be represented as follows:

defaultRoute(a,b,d)← signalType(a,main)∧ signalType(b,main)∧
direction(a,d)∧direction(b,d)∧
following(a,b,d)∧ existsPathWithoutSignal(a,b,d),

ruleViolation4(a,b,d)← defaultRoute(a,b,d)∧
¬(∃r : trainRoute(r)∧ trainRouteStart(r,a)∧ trainRouteEnd(r,b)).

This type of rule is not absolutely required for a railway signalling design to be valid and
safe. Some rules are hard constraints, where violations may be considered to be errors in
the design, while other rules are soft constraints, where violations may suggest that further
investigation is recommended. This is relevant for the counterexample presentation section
below.

Property 5 (Interlocking: Track clear on route) Each pair of adjacent train detectors de-
fines a track detection section. For any track detection sections overlapping the route path,
there shall exist a corresponding condition on the activation of the route.

Section 1 Section 2

Sig. A Sig. B

Detector Detector Detector

Tabular interlocking:
Route Start End Sections must be clear
AB A B 1, 2

Property 5 can be represented as follows:

existsPathWithDetector(a,b)←∃d : following(a,b,d)∧ trainDetector(x)∧
between(a,x,b).

adjacentDetectors(a,b)←trainDetector(a)∧ trainDetector(b)∧
¬existsPathWithDetector(a,b),

detectionSectionOverlapsRoute(r,da,db)← trainRoute(r)∧
start(r,sa)∧ end(r,sb)∧
adjacentDetectors(da,db)∧overlap(sa,sb,da,db),

detectionSectionCondition(r,da,db)← detectionSectionCondition(c)∧
belongsTo(c,r)∧belongsTo(da,c)∧belongsTo(db,c).

ruleViolation5(r,da,db)←
detectionSectionOverlapsRoute(r,da,db)∧
¬detectionSectionCondition(r,da,db).

Property 6 (Interlocking: Flank protection) A train route shall have flank protection.

Tabular interlocking:
Route Start End Sections must be clear

AB A B 1, 2

This property can be represented as follows:

existsPathWithDetector(a, b)←∃d : following(a, b, d)∧
trainDetector(x)∧
between(a, x, b).

ruleViolation(r, da, db)←
detectionSectionOverlapsRoute(r, da, db)∧
¬detectionSectionCondition(r, da, db).

Performance – incremental Datalog
The common use case for running the railway design
CAD tool in general is that one performs a series of
small changes. This requires lowering the running time
of the verification, hopefully to less than one second,
while keeping in mind that our prototype verification
tool should eventually be able to scale up to much larger
stations, projects spanning several stations, and signifi-
cantly larger knowledge bases. Exploiting the fact that
the design work is incremental, also evaluating the Dat-
alog programs incrementally seems to be a promising so-
lution to this challenge.

24 C. Johansen, B. Luteberget

(a) Edge relation visualized as arrows between ob-
jects (each element is an arrow e(a,b)).

(b) DRed algorithm: removing one edge (thick line)
triggers re-evaluation of many dependent edges
(dashed lines)

(c) FBF algorithm: removing one edge (thick
line) causes re-evaluation of dependent edge (thick
dashed line), but confirmation that this edge is still
valid stops further propagation.

1

1
2−1

2

(d) Counting approach: removing one edge (thick
line) causes re-evaluation of dependent edge (thick
dashed line), but because this edge has multiple
derivations, it is still valid, and propagation can
stop. Note that a pure counting approach is not suf-
ficient in this case because of the recursive reacha-
bility rule.

Fig. 11: Different approaches to incremental evaluation demonstrated on a reachability pro-
gram using an edge relation. Using the edge relation in (a), the reachability from the first
vertex is calculated, and update strategies for (b) DRed, (c) FBF, and (d) a counting approach
are exemplified.

This method is used in the Semantic Web tool RDFox10, which has a high performance
on multicore processors with in-memory databases. We are considering RDFox as an al-
ternative candidates for the back end of our incremental railway infrastructure verification
procedure.

7.2 Tools and performance

This section summarizes a survey of tools first presented in [27], and describes tools that
feature incremental evaluation and Datalog, and which have the maturity required for a fu-
ture in industrial applications. The logic programs for our verification make use of recursive
predicates, stratified negation, and arithmetic. Therefore, we pay particular attention to tools
that at least satisfy these needs. In addition, we are looking for high performance on rela-
tively small (in-memory) data sets, so light-weight library-style logic engines are preferred.
High-performance distributed “big data” type of tools have less value in this context.

XSB Prolog, continuously developed since 1990, has constantly been pushing the state of
the art in high-performance Prolog. XSB is especially known for its tabling support [47],
which allows fast Datalog-like evaluation of logic programs without restricting ISO Pro-
log in any way. The tabling support was extended to allow incremental evaluation [42],
and these features have been under continued development and seem to have reached
a mature state [46]. For some applications, however, the additional memory usage for
incremental tabling can lead to a significant increase in the total memory needed.

10 RDFox: scalable in-memory RDF triple store with share memory parallel Datalog reasoning, http:
//www.cs.ox.ac.uk/isg/tools/RDFox/

Testing
station

Arna
phase A

Arna
phase B

Relevant components 15 152 231
Interlocking routes 2 23 42
Datalog input facts 85 8283 9159
XSB:
Non-incr.: Time: (s) 0.015 2.31 4.59

Memory (MB) 20 104 190
Incr. baseline: Time (s) 0.016 5.87 12.25

Memory (MB) 21 1110 2195
Incr. update: Time (s) 0.014 0.54 0.61

Memory (MB) 22 1165 2267

Predictive text editor

Rule authoring tool with free-form input using the struc-
ture of the grammar to provide:

• Syntax checks – parsing status of phrase.

• Predictive – suggestions for completing a phrase.

• Chunked parsing – identifying partially well-formed
phrases and suggestions for combining chunks.

• Syntax highlighting and structural information – par-
tial structure of parse tree is displayed over the text.

• Language exploration – a menu provides alternative
structures, allowing users to learn more about the
language from modifying examples.

Properties / Regulations
Interlocking: Flank protection. A train route shall have
flank protection, i.e., for each switch in the route path
and its position, the paths starting in the opposite switch
position defines the flank. Each flank path is terminated
by the first flank protection object encountered along the
path. The following objects can give flank protection:

1. Main signals, by showing the stop aspect.
2. Shunting signals, by showing the stop aspect.
3. Switches, controlled and locked in the position

which does not lead into the path to be protected.
4. Derailers, controlled & locked in the derailing state.

While the indicated route is active (A to B), switch X
needs flank protection for its left track. Flank protection
is given by setting switch Y in right position and setting
signal C to stop.

RailCNL details
RailCNL modules

RailCNL has a modular design where domain-specific
constructs are separated from generic ones. However,
CNL modules are not always trivially composable, and
care must be taken to retain naturalness while avoiding
ambiguity when increasing the complexity of the lan-
guage.

〈Statement〉 ::= 〈OntologyAssertion〉
| 〈OntologyRestriction〉
| 〈DistanceRestriction〉
| 〈PathRestriction〉
| 〈PlacementRestriction〉
| (...) // Partial grammar
〈OntologyAssertion〉 ::= 〈Subject〉

〈Condition〉
〈OntologyRestriction〉 ::= 〈Subject〉

〈Modality〉 〈Condition〉
〈DistanceRestriction〉 ::=

‘the distance from’ 〈Subject〉 ‘to’
〈GoalObject〉 〈Modality〉 〈Restriction〉

〈PathRestriction〉 ::= 〈PathQuantifier〉
‘from’ 〈Subject〉 ‘to’ 〈GoalObject〉
〈Modality〉 〈PathCondition〉

〈PlacementRestriction〉 ::= 〈Subject〉
〈Modality〉 ‘be placed in’ 〈Area〉

〈Modality〉 ::= ‘must’ | ‘shall not’
| ‘should’ | ‘should not’
〈PathQuantifier〉 ::= ‘all paths’
| ‘no paths’ | (...)
〈PathCondition〉 ::= ‘pass’

〈DirectionalObject〉
〈GoalObject〉 ::= 〈DirectionalObject〉
| ‘the first’ 〈DirectionalObject〉
〈DirectionalObject〉 ::= 〈SearchSubject〉
| ‘a facing switch’
| ‘a trailing switch’
| 〈SearchSubject〉 〈RelativeDirection〉

〈RelativeDirection〉 ::= ‘same dir.’
| ‘opposite dir.’
〈SearchSubject〉 ::= ‘a’ 〈Subject〉
| ‘another’
〈Area〉 ::= 〈BaseArea〉
| 〈BaseArea〉 ‘which has’
〈PropertyRestriction〉

| 〈Area〉 ‘or’ 〈Area〉
| 〈Area〉 ‘and’ 〈Area〉
〈BaseArea〉 ::= ‘tunnel’ | ‘bridge’
| ‘local release area’ | 〈Identifier〉
〈Subject〉 ::= ‘a’ 〈Class〉
| ‘a’ 〈Class〉 ‘which’ 〈Condition〉
〈Condition〉 ::= ‘is a’ 〈ClassRestriction〉
| ‘has’ 〈PropertyRestriction〉
| ‘is a’ 〈ClassRestriction〉 ‘which has’
〈PropertyRestriction〉

〈PropertyRestriction〉 ::= 〈Property〉
〈ValueRestriction〉

| (...) // and/or
〈ClassRestriction〉 ::= 〈Class〉
| (...) // and/or
〈ValueRestriction〉 ::= 〈Value〉
| ‘not equal to’ 〈Value〉
| ‘less than’ 〈Value〉
| (...) // ≤, >, ≥
| (...) // and/or
〈Value〉 ::= 〈Identifier〉 | 〈Number〉 〈Unit〉
〈Property〉 ::= 〈Identifier〉
〈Class〉 ::= 〈Identifier〉

Fig. 3: English version of RailCNL’s core grammar in BNF. Some linguistic complexity
such as subject-verb agreement is ignored here; the actual grammar is fully specified as
GF code, which is ideally suited for handling such cases.

Top-level statement types:
assertions, restrictions

Generic ontology
language Graph language:

paths, distances Areas

Railway classes
and properties

based on railML

Railway layout
constraints

Generic
Domain-specific

Module
Dependency

Fig. 4: Modules of the RailCNL (boxes) and their dependencies (arrows). The generic
modules could be reused when building CNLs for verification in other domains. The
specific modules are, however, tailored to railway regulations.

6

RailCNL examples

Tooling for RailCNL integrated in RailCOMPLETE

Paraphrasing view

Requirements tracing – informal text and formal-
ized paraphrases are linked together, so that expe-
rienced engineers can examine the correctness of
corresponding formulations, and inspect the cov-
erage of regulations.

• Defintion (gray), not a normative phrase, but
still formalized by using it as a definition for a
new predicate.

• Uncovered (red), normative phrase which is not
covered by RailCNL.

• Partially covered (yellow), normative phrase
which is represented by RailCNL but not cov-
ered by automatic verification.

• Covered (green), normative phrases for which
CAD models are automatically checked.

Tracing view

Requirements tracing – regulations violations
detected in the CAD model can be traced
back to RailCNL phases and their corre-
sponding original informal texts. Each rule
violation in the CAD program has a corre-
sponding menu which can open a RailCNL
debug view or the paraphrasing view.

– Experienced engineers can trace back from
errors to check the correctness of each step of
process from original text to CAD program
warnings and debug the verification itself.

– Inexperienced engineers can trace back
from errors in their design to the regulations,
which give context and justification for re-
quirements.

2

RAILCONS
Design-time capacity – SAT modulo Discrete Event Simulation

Presented at FMCAD 2018: Formal Methods in Computer-Aided Design in Austin, Texas, DOI 10.23919/FMCAD.2018.8603003. Co-author: Koen Claessen from Chalmers.

Capacity
This work addresses a central problem that occurs when
designing the layout and control systems for railway sta-
tions: Does the station infrastructure have the capacity
to handle the amount of trains and the desired traveling
times?

We consider the low-level railway infrastructure capac-
ity verification problem, defined as follows:

Given a railway station track plan including
signaling components, rolling stock dynamic
characteristics, and a performance/capacity
specification, verify whether the specification
can be satisfied and find a dispatch plan as a
witness to prove it.

Solving this problem subsumes the following railway in-
frastructure design activities:

• Low-level running time analysis – verify the time
required for getting from point A to point B.

• Low-level schedulability analysis – verify fre-
quency of trains arriving at a station, and simulta-
neous opportunities for crossing, parking, loading,
etc.

• Combinations – verify running time requirements
on schedulable operations.

Solver architecture

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational
scenarios

(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):

The planner part of the tool chain is implemented in a
CEGAR loop:

Pre-processor:
convert model representation for

each solver component

Planner (SAT):
generate route

activation sequence

Simulator (DES):
execute planned

sequence up to time limit

Input

Route/conflict
abstraction

Infrastructure graph
representationCandidate plan

Eliminate plan prefixUNSAT SAT

Fig. 4: Conceptual diagram of CEGAR architecture. Infras-
tructure, routes, train types, and movement specifications are
transformed into (1) the planner’s abstract representation, con-
taining only elementary routes and train lengths, and (2) the
detailed graph representation used in the simulator component.

verification in railway construction projects is outlined in
Fig. 5. The manual, source code and test cases are available
online2. The tool uses the MiniSAT v2.2.0 solver.

The tool is complementary to other verification techniques
in railway design, such as static layout verification [23], [24],
[25], static interlocking verification [26], [24], interlocking
program verification [27], and timetable analysis [17].

The following input documents are used:
• Operational scenarios defining the performance proper-

ties to verify. Examples are given in Sec. II-B.
• Infrastructure given in the railML format [28], [29]. In

our case studies we used the RailCOMPLETE software,
a plugin for the widely used AutoCAD drafting software.
Using a model taken directly from the drafting program
means that no additional model preparation is needed.

• Elementary routes (optional), given in a custom format
which is compatible with the upcoming railML interlock-
ing format. Although subject to design, a decent guess
of the content can be straight-forwardly derived from
the infrastructure by listing resources in paths between
adjacent signals, so this input is optional.

• Dispatch plans (optional) corresponding to each opera-
tional scenario. The verification tool can produce dispatch
plans fulfilling the performance specification, so this input
is optional.

An advantage of the separation of planner and simulator
is that each component can be used separately. The planner
alone may be used to enumerate different possibilities for train
movements, which might be used in an operational testing
situation. The simulator alone may be used to debug the
execution of a specific dispatch plan to examine performance
deficiencies, and educationally for demonstrating the workings
of the railway system. Put together, the components provide
automated verification, which is the main goal of our efforts.

2https://luteberget.github.io/rollingdocs and https://github.com/koengit/
trainspotting

Routes:
control tables

w/ safety

User creates
design in

CAD program

Infrastr.:
tracks and

components

Simulator

Planner
Operational
scenarios

(verification
properties)

Dispatch:
train and

route events

History of
events as

performance
witness

railML

Derive
routes

Fig. 5: Verification tool chain overview. Yellow boxes rep-
resent input documents. Note that only infrastructure and
operational scenarios are strictly required – interlocking tables
can be derived, and dispatch plans can be synthesized. Blue
boxes represent programs. The green box represents the output
document from the simulator, which is a history of events
which is the witness that proves the performance requirement.

It would also, in principle, be possible to use one of the com-
mercial simulation packages, such as OpenTrack or RailSys,
provided that all input and simulation control can be given
though a programmable interface (API).

A. Timing Evaluation using Simulation

Given a specific dispatch plan, we evaluate the time needed
for executing it using discrete event simulation (DES), where a
set of concurrent processes operate on a shared system state.
Processes execute by reading or writing to the shared state,
firing events, and then going to sleep until a specific event fires
or a given amount of time has passed. When all processes are
sleeping, the simulation timer is advanced to the earliest time
when a process is scheduled to wake up.

Our DES for railway simulation has the following processes:
1) Elementary route activation (corr. Sec. II-A2): waits for

resources, allocates them, sets switches to given positions and
starts the following sub-processes:
• Release trigger: listens to a trigger detection section

which is designated as the release trigger for a partial
route. After the detection section has first been occupied,
and later freed, resources are released for use in other
elementary routes.

• Signal catcher: sets the route entry signal to the ’pro-
ceed’ aspect, then waits for a given trigger section to
become occupied before setting the signal to back ’stop’.

2) Train (corr. Sec. II-A3 and Sec. II-A4): evaluates move-
ment authority using information from signals currently in
sight, and takes one of the following actions: accelerate, brake,
or coast/wait. Braking curves from velocity limitations are
calculated, representing the train driver’s plan for when to start
braking. A guaranteed minimum time until further action is
required from the driver is calculated by taking the minimum
time until one of the following happen (see also Fig. 6):

Synthesis / optimization
1. Redundancy: The planner can be used to detect

whether some equipment in the design is redun-
dant. If a plan can be found which does require any
use of certain pieces of signalling equipment, these
pieces can be considered for removal from the de-
sign.

2. Maximal design: we can find all relevant locations
to place signals (maximum schedulability) by plac-
ing signals near every switch/branch, turning the
signal placement synthesis problem into optimiza-
tion.

3. Running time optimization: starting from a de-
sign schedulable which satisfies schedulability re-
quirements, signals placement can be adjusted lo-
cally to achieve timing constraints.

Design-Time Railway Capacity Verification using
SAT modulo Discrete Event Simulation

Bjørnar Luteberget
Railcomplete AS

Sandvika, Norway
Email: bjornar.luteberget@railcomplete.no

Koen Claessen
Chalmers University of Technology

Gothenburg, Sweden
Email: koen@chalmers.se

Christian Johansen
University of Oslo

Oslo, Norway
Email: cristi@ifi.uio.no

Abstract—Railway capacity is complex to define and analyze,
and existing tools and methods used in practice require com-
prehensive models of the railway network and its timetables.
Design engineers working within the limited scope of construction
projects report that only ad-hoc, experience-based methods of ca-
pacity analysis are available to them. Designs have subtle capacity
pitfalls which are discovered too late, only when network-wide
timetables are made – there is a mismatch between the scope
of construction projects and the scope of capacity analysis, as
currently practiced.

We suggest a language for capacity specifications suited for
construction projects, expressing properties such as running
time, train frequency, overtaking and crossing. Verifying these
properties amounts to solving a planning problem constrained by
discrete control system logic, network topology, laws of motion,
and sparse communication. To describe train dynamics one uses
second-order linear differential equations which when solved
analytically give rise to non-linear equations over real variables.

We argue that reasoning over the whole discrete/continuous
solution space is not efficient with current state-of-the-art solvers.
Instead, we have solved the problem by building a special-purpose
solver which splits the problem into two: an abstracted SAT-based
dispatch planning, and continuous-domain dynamics and timing
constraints evaluated using discrete event simulation. The two
components communicate in a CEGAR-loop (counterexample-
guided abstraction refinement). We show that our method is fast
enough at relevant scales to provide agile verification in a design
setting, and we present case studies based on data from existing
infrastructure and ongoing construction projects.

I. INTRODUCTION

This paper addresses a central problem that occurs when
designing the layout and control systems for railway stations:
Does the station infrastructure have the capacity to handle the
amount of trains and the desired traveling times to provide
adequate service in transportation of goods and passengers?

As an example, consider the question of crossing trains on
a railway station. Fig. 1 shows two sequences of movements
which result in such a crossing. There are a number of details
of the railway design which can cause this scenario to become
infeasible (or take an unacceptably long time), such as signal
placement, detector placement, correct allocation and freeing
of resources, track lengths, train lengths, etc.

Systematic capacity analysis for railways is typically per-
formed on the scale of national railway networks, using
comprehensive input on infrastructure and timetables, and
only after the complete design is finished. Moreover, the
widely used methods and tools for capacity analysis are

Plan 1: Plan 2:
S1

S2

S1

S2

Fig. 1: Two alternative plans for achieving a crossing of two
trains on a two-track station. The green areas show track
segments which are currently occupied by a train going from
left to right, while the pink areas show track segments which
are currently occupied by a train going from right to left.

heavy-duty methods, consisting of complicated simulations,
and require specialized knowledge, thus not being suitable
for agile design-time verification of railway stations. As a
consequence, railway construction projects usually rely on
informal, vague, or even non-existent capacity specifications,
and engineers need to make ad-hoc/manual analyses of how
the control system can provide this capacity.

Our goal is to develop a verification technique and tool
to help engineers specify capacity properties at design time
and to check these automatically. To be agile, the tool needs
to (1) have reasonable running times so that the verification
can be run on the fly as the design is being updated by an
engineer working in a drafting CAD application, and (2) keep
the required input to the minimum of information needed
to verify relevant properties. This style of verification gives
engineers immediate feedback on their design decisions while
requiring small amounts of specification and verification work.

The problem: We consider the low-level railway infras-
tructure capacity verification problem, which we define as
follows:

Given a railway station track plan including signal-
ing components, rolling stock dynamic characteris-
tics, and a performance/capacity specification, verify
whether the specification can be satisfied and find a
dispatch plan as a witness to prove it.

Solving this problem subsumes the following railway in-
frastructure design activities:
• Low-level running time analysis – verify the time re-

quired for getting from point A to point B.

Constraints
Physical infrastructure

Trains travel on a network of railway tracks which
have (1) physical properties such as length, gradient,
curvature, etc., (2) topology determined by the loca-
tion of switches (branches), (3) equipment such as sig-
nals and detectors, and (4) sight information showing
from which parts of tracks a signal is visible.

(a)
Elementary
route

Start
signal

End
signal

Switch
position

Track
segments

Conflicts

AC A C X right 1, 2, 4 AE, BF
AE A E X left 1, 2, 3 AC, BD
BF B F Y left 4, 5, 6 AC, BD
BD B D Y right 3, 5, 6 AE, BF

(b)

Fig. 2: Railway design artifacts: (a) Cut-out from 2D geo-
graphical CAD model (construction drawing) of preliminary
design of the Arna station signalling. (b) Simplified example
of tabular interlocking (control system) specifications.

correctness constraints (described in Sec. II-A below), demon-
strate the properties described in the performance requirements
(detailed in Sec. II-B below).

A. Safety and correctness of train movements

Low-level analysis of train movements covers a wide range
of constraints given by the track layout, the control system, and
operational procedures, to be certain that the analysis produces
detailed, realistic results. The following subsections give an
overview of these constraints, divided into four classes.

1) Physical infrastructure: Trains travel on a network of
railway tracks which have physical properties such as length,
gradient, curvature, etc. Tracks branch off using switches,
whose setting determines where the train goes. Detectors on
the track are used by the control system to determine whether
track segments are occupied. The physical infrastructure also
determines the sight areas: the set of locations where a train
receives information from a given signal.

2) Allocation of resources: Avoiding collisions by exclu-
sive use of resources is the responsibility of the interlocking,
which takes requests from the dispatcher for activating ele-
mentary routes. An elementary route is the smallest unit of
resources that can be allocated to a train, see Fig. 3. Route
activation is a process which proceeds as follows:

1) Wait for all required resources, such as track segments
and switches, to be free. Resources required by a route
are typically any resource in the train path (or sometimes
outside of it), which ensure that all movements are
performed at a safe distance from each other.

2) Movable elements (e.g. switches) must be set to correct
positions. If they are not, start a sub-process which moves
the element into place, and wait for this process to finish
before proceeding.

3) Signals are then set to show the ’proceed’ aspect to the
train when the above steps are finished. When the front

Signal A Signal C

Fig. 3: Elementary route AC from signal A to the adjacent
signal C. The thick line indicates track segments on the train’s
path which are reserved for this movement, and the dashed
lines indicate reserved track segments outside the path.

of the train has passed the signal, it is immediately reset
to show the ’stop’ aspect.

4) A release process is started, which waits for the train
to finish using the allocated resources (i.e. to travel over
them) and frees them when this has happened.

3) Communication constraints: After movement has been
allowed by the control system, the driver must be informed
of this fact. When a route is activated, a train inside the sight
area of the route’s entry signal reads the signal’s message that
movement authority is given. The train driver may then drive
the train forward until the next signal. The following types of
signalling systems are common in railways:

• Traditional signaling with trackside lamps. Communica-
tion is limited by how many different aspects the lamps
can show. To avoid high-speed trains slowing down at
every signal, several consecutive elementary routes can
be signaled in advance using so-called distant signals.

• Automatic train protection systems (ATP) work similarly
to signals, but may give more information. Many ATP
systems communicate information through magnets or
short-range radio at specific locations on the track, cor-
responding to a signal sight area of zero length.

• The European Rail Traffic Management System
(ERTMS) currently being implemented in many European
countries replaces lamp signals with trackside marker
boards, and uses long-range radio for communication.
This effectively removes the communication constraint,
as the radio can be used to update any train’s movement
authority at any time.

4) Laws of motion: Trains move within the limits of given
maximum acceleration and braking power. Train drivers need
to plan ahead for braking so that the train respects its given
movement authority and speed restrictions at all times.

The speed increase from v0 to v over a time interval ∆t is
limited by the train’s maximum acceleration a:

v − v0 ≤ a∆t.

However, when there is a more restrictive speed restriction
ahead, the driver must start braking in time to meet the
restriction. A signal showing the ’stop’ aspect can be treated
as a speed restriction of zero. Since speed restrictions change

Communication constraints

After movement has been allowed by the control sys-
tem, the driver must be informed of this fact.

• Communication is limited by how many differ-
ent aspects the lamps can show. To avoid high-
speed trains slowing down at every signal, sev-
eral consecutive elementary routes can be sig-
naled in advance using so-called distant signals.

• Automatic train protection systems (ATP)

• European Rail Traffic Management System
(ERTMS) uses long-range radio for communi-
cation, effectively removing the communication
constraint.

Allocation of resources

Avoiding collisions by exclusive use of resources is the
responsibility of the interlocking, which takes requests
from the dispatcher for activating elementary routes.

1. Wait for resources: track segments and switches in
the route path must be free.

2. Movable elements: set switches into position.

3. Signals: show proceed aspect until train has passed.

4. Release: wait for the train to leave, then deallocate.

Laws of motion

Trains move according to the laws of motion, acceler-
ating towards the current maximum speed, while also
braking in time to meet all speed restrictions ahead vi:

v − v0 ≤ a∆t v2 − v2i ≤ 2bsi

Distance

Velocity

Velocity restriction Braking
curve
targets

Critical time

Accelerate

Brake

Fig. 6: The train driver’s decision about when to acceler-
ate/brake/coast happens at intersections between acceleration
curves, braking curves and velocity restriction curves. In this
example, the train can accelerate until the critical time where
the acceleration intersects with the braking curve towards the
second velocity restriction ahead (the first one is not critical).

• train arrives at a new node
• train reaches maximum velocity
• train enters the area of a new velocity restriction
• acceleration/coasting curve intersects braking curve

After this minimum time has passed, or any signals currently
in sight have changed state, the train updates its position and
velocity according to the chosen driver action and the laws
of motion. Note that since we assume a constant maximum
acceleration and braking, the equations of motion can be
solved analytically, and there is no need for discretizing the
time or space domains, except for the re-evaluation of the
equations of motion at discrete events. This ensures that the
train starts braking in time using only the information available
to the driver at any given time.

B. Dispatch Planning using SAT

The planner solves the abstracted discrete planning problem
of finding a dispatch plan, i.e. determining a sequence of trains
and elementary routes which make the trains end up visiting
locations according to the movements specification.

We encode an instance of the abstracted planning problem
into an instance of the Boolean satisfiability problem (SAT).
We consider the problem a model checking problem, and use
the technique of bounded model checking (BMC) to unroll
the transition relation of the system for a number of steps k,
expressing state and transitions using propositional logic.

Using BMC for planning works by asserting the existence of
a plan, so that when the corresponding SAT instance is satisfi-
able, it proves the fulfillment of the performance requirements
and gives an example plan for it. When unsatisfiable, we are
ensured that there is no plan within the number of steps k. In
practice plans with higher number of steps are not of interest;
i.e., the bound k is chosen based on practical considerations
(twice the number of trains was sufficient in our case study).
The SAT instance is built incrementally by solving with k−1
steps and then adding the kth step if necessary.

Fig. 7: The planner component takes an abstracted view of the
railway infrastructure. Lines represent elementary routes with
traveling direction given by the arrows. Boxes indicate routes
in conflict, i.e. only one of them can be in use at a time.

The abstracted planning problem is encoded as a SAT
instance by representing states, constraints on each state, and
constraints on consecutive states. State i of the system in the
planner component is represented as:
• Each route rj has an occupancy status oirj : it can be

free (oirj = Free) or it can be occupied by a specific
train tk (ojri = tk). Each combination of route and train
is represented by a Boolean variable, but we will write
constraints with oirj as a variable from the set of trains.

• Each train tk has a Boolean representing appearance
status bik, used to propagate to future states that a train
has started (used in constraint C2).

• Each visit l has a Boolean representing required visits vil ,
which is used to propagate to future states that a visitation
requirement has been fulfilled (used in constraint C5).

• Each combination of route rj and train tk has a Boolean
representing deferred progress pij,k, used to propagate
to future states that a train is not progressing, and must
resolve the conflict in the future (used in constraint C8).

A dispatch plan is produced directly from the occupancy
status oirj of states by taking the difference between consec-
utive states and then dispatching any trains and routes which
become active from one state to the next.

Constraints on states ensure the following:
• The plan is viable for execution (i.e., correctness):

(C1) Conflicting routes are not activated simultaneously.
(C2) Each train can only take one continuous path.
(C3) An elementary route must be allocated as a unit,

but its parts may be deallocated separately.
(C4) (Partial) routes are deallocated only after a train has

fully passed over them.
• The plan fulfills performance specifications:

(C5) Trains perform their specified visits.
(C6) Visits happen in specified order.

• Equivalent solutions are eliminated (for performance):
(C7) Routes are deallocated immediately after the train

has fully passed over them.
(C8) A train’s path is extended as far as possible in the

current time step, unless hindered by a conflicting train.
Equivalent plans, which result in the same trains traversing
the same paths and conflicting in the same locations, should
have the same representation so that enumeration of different
plans produces meaningful alternatives. This equivalence is

Specifications

Operational scenario

To capture typical performance and capacity require-
ments in construction projects, we define an opera-
tional scenario S = (V,M,C) as follows:

1. A set of vehicle types V , each defined by a length
l, a maximum velocity vmax, a maximum accelera-
tion a, and a maximum braking retardation b.

2. A set of movements M , each defined by a vehi-
cle type and an ordered sequence of visits. Each
visit q is a set of alternative locations {li} and an
optional minimum dwelling time td.

3. A set of timing constraints C, which are two visits
qa, qb, and an optional numerical constraint tc on
the minimum time between visit qa and qb. The
two visits can come from different movements. If
the time constraint tc is omitted, the visits are only
required to be ordered, so that tqa < tqb .

Running time

An expectation of how long it should take for a train to
travel between two locations.

movement passengertrain {
visit #a [b1]; visit #b [b2] }

timing a <90.0 b

Crossing

Trains traveling in opposite directions can visit a station
simultaneously.

movement passengertrain {
visit #p_in [b1]; visit #p_out [b2] }

movement goodstrain {
visit #g_in [b2]; visit #g_out [b1] }

timing p_in < g_out
timing g_in < p_out

Case studies
Infrastructure

Source: Bane NOR SF, Norway.

Case studies were performed using:

1. an infrastructure model from the Arna construc-
tion project made using the RailCOMPLETEr

railway signalling CAD software.

2. the Norwegian railway infrastructure manager
Bane NOR supplies a railML infrastructure model
of the whole national railway network from
which we have extracted examples.

Performance table

Fig. 8: Stations Kolbotn, Eidsvoll, and Asker from Bane
NOR’s model of the Norwegian national network [31].

Infrastructure Property Result nDES tSAT tDES ttotal

Two track
(14 elem.)

Run.time Sat. 1 0.01 0.00 0.01
Frequency Sat. 1 0.01 0.00 0.01
Overtaking 2 Sat. 1 0.00 0.00 0.01
Overtaking 3 Unsat. 0 0.01 0.00 0.01
Crossing 3 Unsat. 0 0.01 0.00 0.01

Kolbotn (BN)
(56 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 4 Sat. 1 0.05 0.00 0.06
Overtake 3 Unsat. 0 0.05 0.00 0.06

Eidsvoll (BN)
(64 elem.)

Run. time Sat. 2 0.01 0.00 0.02
Overtake 2 Sat. 1 0.08 0.00 0.08
Crossing 3 Sat. 1 0.04 0.00 0.04
Crossing 4 Unsat. 0 0.21 0.00 0.21

Asker (BN)
(170 elem.)

Overtaking 2 Sat. 1 0.20 0.00 0.21
Overtaking 3 Unsat. 1 0.73 0.00 0.74
Crossing 4 Sat. 0 0.75 0.00 0.77

Arna (CAD)
(258 elem.)

Run. time Sat. 1 0.02 0.00 0.04
Overtaking 2 Sat. 1 0.50 0.00 0.51
Overtaking 3 Sat. 1 1.43 0.00 1.45
Crossing 4 Sat. 1 1.73 0.00 1.74

Gen. 3x3
(74 elem.)

High time Sat. 1 0.01 0.00 0.01
Low time Unsat. 27 0.18 0.01 0.19

Gen. 4x4
(196 elem.)

High time Sat. 1 0.01 0.00 0.03
Low time Unsat. 256 2.08 0.26 2.34

Gen. 5x5
(437 elem.)

High time Sat. 1 0.06 0.00 0.09
Low time Unsat. 3125 38.89 4.35 43.24

TABLE I: Verification performance on test cases, including
Bane NOR (BN) and RailCOMPLETE (CAD) infrastructure
models. The number of elementary routes (elem.) indicates the
model’s size. nDES is the number simulator runs, tSAT the time
in seconds spent in SAT solver, tDES the time in seconds spent
in DES, and ttotal the total calculation time in seconds.

visual representation of these models, i.e., the stations Kolbotn,
Eidsvoll, and Asker were converted from the railML models.

We have also tested against an infrastructure model from the
Arna construction project that uses the RailCOMPLETE CAD
design software, a realistic use case for agile verification.

Finally, to test the limitations of scalability in our method,
we construct a set of examples where m stations each with n
parallel tracks each are serially connected by a single track.
In this case, when a timing bound is slightly too small to be
satisfiable, the planner will have to come up with nm plans
for timing evaluation. This scenario is outside the intended use
case for our method: path selection can on this scale instead
be based on static speed profiles. Capacity over many stations
is better suited for the established timetabling tooling.

We attempted an alternative implementation using the
PDDL+ solver SMTPlan+, but found that even for greatly
simplified models, the required number of steps and numerical
constraints put all our case studies out of reach for sub-second
verification times.

V. RELATED WORK

Railway timetabling and capacity analysis has often been
posed as a planning problem and solved using mixed integer
programming and similar approaches. Zwaneveld et al. [32]
use integer programming on a problem closely related to our
low-level railway infrastructure capacity verification problem.
Isobe et al. [33] formulate a similar model in timed CSP,
representing train locations, velocities, and control logic. Our
definition of the problem in this paper includes non-linear
constraints on train dynamics (acceleration/braking power) and
communication constraints (trains must slow down if they have
not been informed of movement authority), which are relevant
in construction projects but less relevant in timetabling.

Many variations on discrete event simulation are used in
railway dynamic analysis, see e.g. [34], [35], [36].

In the planning literature, the PDDL+ language [4] has
been introduced to capture mixed discrete/continuous planning
problems such as the one studied in this paper. General-
purpose solvers have recently been developed, using time
domain discretization (DiNo [37]) or the SMT theory of non-
linear real arithmetic (SMTPlan+ [38]).

VI. CONCLUSIONS AND FURTHER WORK

The goal of our suggested tool chain for railway engineering
is (1) to allow fully automated performance verification and (2)
use minimal input documentation for the verification. Both of
these aspects encourage bringing in performance verification
into frequently changing early-stage design projects, avoiding
the costly and time-consuming backtracking required when
later-stage analysis reveals unacceptable performance.

As future work we plan to integrate the current prototype
in the RailCOMPLETE tool and test the usability with the
engineers using this tool in their design work.

Acknowledgments: We thank the engineers at Railcomplete
AS, especially senior engineer Claus Feyling, for guidance on
railway operations and design methodology.

3

