
Rule-based Consistency Checking

of Railway Infrastructure Designs

Bjørnar Luteberget, Christian Johansen,

and Martin Steffen

12th International Conference on
integrated Formal Methods

June 3, 2016

1 / 31

Talk outline

1. Background and motivation

2. Embedding railML in CAD

3. Verification of regulations using a Datalog language

4. Prototype tool integrating this verification into existing

engineering tools (RailCOMPLETE)

2 / 31

Railway verification and formal methods

I Railway systems:

large-scale, safety-critical

infrastructure

I High safety requirements:

SIL 4 for passenger

transport

I Increasingly computerized

components

I Typical use of formal

methods in railways:

model checking of control

systems

3 / 31

Objective

Given a railway signalling and interlocking design,

verify that it complies with regulations.

Secondary objectives:

I Integrate with engineering/design tools

– On-the-fly verification (“lightweight”)

– Usable for engineers who are not formal methods experts

I Find suitable language for expressing regulations

“Formal methods will never have a significant impact until they can be used

by people that don’t understand them.”

— (attributed to) Tom Melham
4 / 31

Railway designs for signalling and interlocking

Sig. A Sig. C

Sig. E

Sig. B

Sig. D

Sig. F

1
2

3

4 6

5

Switch X Switch Y

(a) Track and signalling component layout

Route Start End Sw. pos Detection sections Conflicts

AC A C X right 1, 2, 4 AE, BF

AE A E X left 1, 2, 3 AC, BD

BF B F Y left 4, 5, 6 AC, BD

BD B D Y right 3, 5, 6 AE, BF

(b) Tabular interlocking specification

5 / 31

CAD tools

Producing design documentation for construction

I Computer-aided design (CAD) tools are widely used for all

types of construction projects

I Originally a software-assisted way of producing paper

drawings (now PDFs), but many extensions add structured

data to integrate with analysis tools

6 / 31

Technical regulations

I In our case study: Norwegian regulations from

infrastructure manager Jernbaneverket

I Static kind of properties, often related to object properties,

topology and geometry (examples later)

7 / 31

Technical regulations

Example from regulations:

I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.

200 m

I Can be classified as follows:

– Object properties
– Topological layout properties
– Geometrical layout properties
– Interlocking properties

8 / 31

Related work

I Safety of interlocking has been extensively studied in the
formal methods literature

– model checking interlocking tables, (Ferrari et al.
FORMS/FORMAT 2010)

– verified code generation, (Borälv & Stålmarck, 1999)

I These works focus on dynamic aspects of railway

operation

I In contrast, we focus on static design properties, less
computationally expensive

– Most close contribution to ours, uses semantic
technologies (Lodemann et al. 2013)

I We are concerned with automating manual tasks

performed by railway engineers, not directly verifying

safety properties

9 / 31

Talk outline

1. Background and motivation

2. Embedding railML in CAD designs

3. Verification of regulations using a Datalog language

4. Prototype tool integrating this verification into existing

engineering tools (RailCOMPLETE)

10 / 31

Embedding railML in CAD

I CAD docs are object databases of geometrical objects

I railML is an XML based language for data exchange of

railway designs, developed by an international

standardization committee

CAD document

Model space

Polyline (geometry
corresponding to
track horizon-
tal geometry)

Block reference
(symbol for sig-
nalling equipment)

...

Extension
dictionary

Extension
dictionary

...

Complete
railML
document

railML
fragment

railML
fragment

...

11 / 31

CAD verification tool and tool chain

I Also, the structured data can be re-used for many other
purposes, notably data exchange with other tools:

– Interlocking code generation and verification

– Capacity simulation

– 3D view, Building Information Modeling

I This leads us to the tool chain overview...

12 / 31

Tool chain overview

Rules,
regulations,
and expert
knowledge
(Datalog
represen-
tation)

CAD program (design stage)

CAD document
(station layout)

Verification
issues GUI

Shapes and
symbols w/
attached
railML

fragments

Interlocking
specification

Complete
railML

document

Verification
program

User decision

Is
s
u
e
d
e
s
c
ri
p
ti
o
n
(r
u
le
,

o
b
je
c
ts
,
lo
c
a
ti
o
n
s
)

Human-
readable

reports and
drawings

Machine-
readable
layout and

specifications

Interlocking
code

generation
(Prover)

Code
verification

Capacity
analysis

(OpenTrack,
LUKS,
Treno)

Drawing/
report

generators

Building
Information
Modeling
(BIM)

(Autodesk,
Bentley,
etc.)

Export

I Dotted boxes indicate

external programs

I Static verification can

discover violations of

technical regulations

early, as the user is

building the model

I More heavy-weight

verification, simulation,

testing, etc. benefits

from machine-readable

data exhcange

13 / 31

Talk outline

1. Background and motivation

2. Embedding railML in CAD

3. Verification of regulations using a Datalog language

4. Prototype tool integrating this verification into existing

engineering tools (RailCOMPLETE)

14 / 31

Formalization of rule checking

I Formalize the following information

– The CAD design (extensional information, or facts)

– The regulations (intensional information, or rules)

I Use a solver which:

– Is capable of verifying the rules

– Runs fast enough for on-the-fly verification

15 / 31

Datalog

I Basic Datalog: conjunctive queries with fixed-point
operators (“SQL with recursion”)

– Guaranteed termination

– Polynomial running time (in the number of facts)

I Expressed as logic programs in a Prolog-like syntax:

a(X,Y) :– b(X,Z), c(Z, Y)

m

∀x, y : ((∃z : (b(x, z) ∧ c(z, y))) → a(x, y))

I We also use:

– Stratified negation (negation-as-failure semantics)

– Arithmetic (which is “unsafe”)

16 / 31

Encoding facts and rules in Datalog

I The process of formalizing the railway data and rules to
Datalog format is divided into three stages:

1. Railway designs (station data) – facts

2. Derived concepts (used in several rules) – rules

3. Technical regulations to be verified – rules

I Now, more details about each stage...

17 / 31

Input documents representation

I Translate the railML XML format into Datalog facts using

the ID attribute as key:

track(a)← elementa is of type track,

signal(a)← elementa is of type signal,

...

pos(a, p)← (elementa.pos = p), a ∈ Atoms, p ∈ R,
...

signalType(a, t)← (elementa.type= t),

t∈{main, distant, shunting, combined} .

18 / 31

Input documents representation

I To encode the hierarchical structure of the railML

document, a separate predicate encoding the parent/child

relationship is added:

belongsTo(a, b)← b is the closest XML ancestor of a

whose element type inherits from

tElementWithIDAndName.

19 / 31

Derived concepts

I Derived concepts are defined through intermediate rules

I Railway concepts defined independently of the design

I Example:

directlyConnected(a, b)← ∃t : track(t) ∧ belongsTo(a, t) ∧ belongsTo(b, t),

connected(a, b)← directlyConnected(a, b) ∨ (∃c1, c2 : connection(c1, c2)∧
directlyConnected(a, c1) ∧ connected(c2, b)).

I A library of concepts allows concise expression of

technical regulations

20 / 31

Technical regulations as Datalog rules

I Detecting errors in the design corresponds to finding

objects involved in a regulation violation

I To validate the rules in a given design, we show that there

are no satisfiable instances of the negation of the rule

I Some examples:

– Example 1, home signal placement: topological and
geometrical layout property for placement of a home signal

– Example 2, train detector conditions: relates interlocking to
topology

– Example 3, flank protection conditions: relates interlocking
to topology

I These are Jernbaneverket regulations which are relevant

for automatic verification

21 / 31

Rule: example 1

I A home main signal shall be placed at least 200 m in front

of the first controlled, facing switch in the entry train path.
I Uses arithmetic and negation

200 m

isFirstFacingSwitch(b, s)← stationBoundary(b) ∧ facingSwitch(s)∧
¬(∃x : facingSwitch(x) ∧ between(b, x, s)),

ruleViolation(b, s)← isFirstFacingSwitch(b, s)∧
(¬(∃x : signalFunction(x, home) ∧ between(b, x, s))∨
(∃x, d, l : signalFunction(x, home)∧
∧ distance(x, s, d, l) ∧ l < 200).

22 / 31

Rule: example 2

I Each pair of adjacent train detectors defines a track

detection section. For any track detection sections

overlapping the route path, there shall exist a

corresponding condition on the activation of the route.

Section 1 Section 2

Sig. A Sig. B

Tabular interlocking:

Route Start End Sections must be clear

AB A B 1, 2

23 / 31

Rule: example 2

adjacentDetectors(a, b)←trainDetector(a) ∧ trainDetector(b)∧
¬existsPathWithDetector(a, b),

detectionSectionOverlapsRoute(r, da, db)← trainRoute(r)∧
start(r, sa) ∧ end(r, sb)∧
adjacentDetectors(da, db) ∧ overlap(sa, sb, da, db),

detectionSectionCondition(r, da, db)← detectionSectionCondition(c)∧
belongsTo(c, r) ∧ belongsTo(da, c) ∧ belongsTo(db, c).

ruleViolation(r, da, db)←
detectionSectionOverlapsRoute(r, da, db)∧
¬detectionSectionCondition(r, da, db).

I Rule needs negation

24 / 31

Rule: example 3

I For each switch in the route path and its associated

position, the paths starting in the opposite switch position

defines the flank. Each flank path is terminated by the first

flank protection object encountered along the path.

Route

Signal A Signal B

Signal C

Switch X

Switch Y

Fl
an
k

I Declarative program helps conceptual clarity, good for

maintenance and understanding

I Simple language encourages definition of auxiliary

concepts

25 / 31

Talk outline

1. Background and motivation

2. Embedding railML in CAD

3. Verification of regulations using a Datalog language

4. Prototype tool integrating this verification into existing

engineering tools (RailCOMPLETE)

26 / 31

Prototype tool implementation

I Prototype tool implemented in XSB Prolog, which has

tabled predicates

I Interfaces with the RailCOMPLETE tool which is based on

Autodesk AutoCAD

I Rule base in Prolog syntax with structured comments

giving information about rules

I Our example regulation (1) has the following code:

26 Bjørnar Luteberget, Christian Johansen, and Martin Steffen

%| rule: Home signal too close to first facing switch.
%| type: technical
%| severity: error
homeSignalBeforeFacingSwitchError(S,SW) :-

firstFacingSwitch(B,SW,DIR),
homeSignalBetween(S,B,SW),
distance(S,SW,DIR,L), L < 200.

Fig. 6. Structured comments on rule violation expression

Fig. 7. Counterexample presentation within an interactive CAD environment.

Path 1

Path 2

Switch A

Switch B

Fig. 8. Switches give rise to branching paths

27 / 31

Case study

I Railway engineers working on CAD model of Arna station,

have thoroughly modeled using railML attributes

I After initial design phase, smaller changes are often made

in response to changing requirements, etc. Fast and easy

verification ensures consistency after such changes

28 / 31

Running time

Testing

station

Arna

phase A
Arna

phase B

Relevant components 15 152 231

Interlocking routes 2 23 42

Datalog facts 85 8283 9159

Running time (s) 0.1 4.4 9.4

I Running time for verification of a few properties: ≈1 – 10 s

– More optimization needed for truly on-the-fly verification

29 / 31

Summary

I We have demonstrated a way to automate checking of

regulations compliance for railway signalling and

interlocking designs

I Our tools have been integrated in an existing CAD design

environment

I Datalog allowed us to express technical regulations

concisely and perform efficient verification

I Advantages:

– eliminate tedious tasks, like filling out check-lists

– get instant feedback on design quality while editing

– make use of railML, a standard for describing railway
designs

30 / 31

Future work

I Incremental updates (view maintenance)

– Changes in the CAD design causes the whole verification to
start over

– More efficient: recompute only the parts that are affected
by the changes

I Not much progress has happened since the DRed

algorithm (Gupta et al. ’93), recent development (Boris

Motik et al. ’15)

I RDFox tool (from Oxford) used in semantic web for

OWL/SWRL has a recent implementation of updates

31 / 31

