Parameter Estimation

We have seen how mathematical models can be expressed in terms of differential equations. For example:

- Exponential growth

$$
\begin{align*}
r^{\prime}(t) & =\operatorname{ar}(t) \quad \text { for } t>0, \tag{347}\\
r(0) & =r_{0} . \tag{348}
\end{align*}
$$

Parameter Estimation

- Logistic growth

$$
\begin{align*}
& r^{\prime}(t)=\operatorname{ar}(t)\left(1-\frac{r(t)}{R}\right) \quad \text { for } t>0, \tag{349}\\
& r(0)=r_{0} \tag{350}
\end{align*}
$$

- Heat conduction

$$
\begin{align*}
& u_{t}=\left(k u_{x}\right)_{x} \quad \text { for } x \in(0,1), t>0 \tag{35}\\
& u(0, t)=u(1, t)=0 \quad \text { for } t>0 \tag{352}\\
& u(x, 0)=f(x) \quad \text { for } x \in(0,1) \tag{353}
\end{align*}
$$

Parameter Estimation

In order to use such models we must somehow assign suitable values to the involved parameters;

- r_{0} and a in the model for exponential growth,
- r_{o}, a and R in the model for logistic growth,
- and $f(x)$ and $k(x)$ in the model for heat conduction.

Exponential Growth

- We will consider the estimation of the growth rate a and the initial condition r_{0} in the equations for exponential growth.
- We employ the notation

$$
\begin{equation*}
r\left(t ; a, r_{0}\right)=r_{0} e^{a t} \tag{354}
\end{equation*}
$$

Exponential Growth

- Total world population from 1950 to 1955:

$$
\begin{aligned}
& 1950: r\left(0 ; a, r_{0}\right)=2.555 \cdot 10^{9} \\
& 1951: r\left(1 ; a, r_{0}\right)=2.593 \cdot 10^{9} \\
& 1952: r\left(2 ; a, r_{0}\right)=2.635 \cdot 10^{9} \\
& 1953: r\left(3 ; a, r_{0}\right)=2.680 \cdot 10^{9} \\
& 1954: r\left(4 ; a, r_{0}\right)=2.728 \cdot 10^{9} \\
& 1955: r\left(5 ; a, r_{0}\right)=2.780 \cdot 10^{9}
\end{aligned}
$$

Exponential Growth

$$
\begin{align*}
r_{0} & =2.555 \cdot 10^{9} \tag{355}\\
r_{0} e^{a} & =2.593 \cdot 10^{9} \tag{356}\\
r_{0} e^{2 a} & =2.635 \cdot 10^{9} \tag{357}\\
r_{0} e^{3 a} & =2.680 \cdot 10^{9} \tag{358}\\
r_{0} e^{4 a} & =2.728 \cdot 10^{9} \tag{359}\\
r_{0} e^{5 a} & =2.780 \cdot 10^{9} . \tag{360}
\end{align*}
$$

- Six equations, but only two unknowns; a and r_{0}.

Cost-functional

Consider the function

$$
\begin{aligned}
J\left(a, r_{0}\right) & =\frac{1}{2} \sum_{t=0}^{t=5}\left(r\left(t ; a, r_{0}\right)-d_{t}\right)^{2} \\
& =\frac{1}{2} \sum_{t=0}^{t=5}\left(r_{0} e^{a t}-d_{t}\right)^{2},
\end{aligned}
$$

where

$$
\begin{array}{ll}
d_{0}=2.555 \cdot 10^{9}, & d_{1}=2.593 \cdot 10^{9}, \\
d_{2}=2.635 \cdot 10^{9}, & d_{3}=2.680 \cdot 10^{9}, \\
d_{4}=2.728 \cdot 10^{9}, & d_{5}=2.780 \cdot 10^{9} .
\end{array}
$$

Cost-functional

- $J\left(a, r_{0}\right)$ is a sum of quadratic terms which measure the deviation between the output of the model and the observation data.
- If $J\left(a, r_{0}\right)$ is small, then equations (355)-(360) are approximately satisfied.
- We thus seek to minimize J;

$$
\min _{a, r_{0}} J\left(a, r_{0}\right)
$$

Cost-functional

- The first order necessary conditions for a minimum:

$$
\begin{aligned}
\frac{\partial J}{\partial a} & =0 \\
\frac{\partial J}{\partial r_{0}} & =0
\end{aligned}
$$

Cost-functional

- A nonlinear 2×2 system of algebraic equations for a and r_{0} :

$$
\begin{array}{r}
\sum_{t=0}^{t=5}\left(r_{0} e^{a t}-d_{t}\right) r_{0} t e^{a t}=0 \\
\sum_{t=0}^{t=5}\left(r_{0} e^{a t}-d_{t}\right) e^{a t}=0 \tag{362}
\end{array}
$$

Cost-functional

- Note that the standard output least squares form of the present problem is;

$$
\min _{a, r_{0}}\left[\frac{1}{2} \sum_{t=0}^{t=5}\left(r\left(t ; a, r_{0}\right)-d_{t}\right)^{2}\right]
$$

subject to the constraints

$$
\begin{align*}
& r^{\prime}(t)=a r(t) \quad \text { for } t>0 \tag{363}\\
& r(0)=r_{0} \tag{364}
\end{align*}
$$

- Due to the formula (354) available for the solution of (363)-(364), it can be analyzed in the manner presented above.

A simpler problem

- Instead of seeking to compute both the growth rate a and the initial condition r_{0} we might consider a somewhat simpler, but less sophisticated, approach.
- Choose

$$
r_{0}=2.555 \cdot 10^{9}
$$

- Estimate a by defining an objective function only involving the observation data from 1951 to 1955;

$$
\begin{equation*}
G(a)=\frac{1}{2} \sum_{t=1}^{t=5}\left(2.555 \cdot 10^{9} e^{a t}-d_{t}\right)^{2} \tag{365}
\end{equation*}
$$

A simpler problem

- The necessary condition for a minimum is

$$
G^{\prime}(a)=0 .
$$

- This leads to the equation

$$
\begin{equation*}
\sum_{t=1}^{t=5}\left(2.555 \cdot 10^{9} e^{a t}-d_{t}\right) 2.555 \cdot 10^{9} t e^{a t}=0 \tag{366}
\end{equation*}
$$

which must be solved to determine an optimal value for a.

A simpler problem

- In this case, the standard output least squares form is;

$$
\min _{a}\left[\frac{1}{2} \sum_{t=1}^{t=5}\left(r(t ; a)-d_{t}\right)^{2}\right]
$$

subject to the constraints

$$
\begin{aligned}
r^{\prime}(t) & =\operatorname{ar}(t) \quad \text { for } t>0 \\
r(0) & =2.555 \cdot 10^{9}
\end{aligned}
$$

Backwards heat equation

- Assume that a substance in an industrial process must have a prescribed temperature distribution, say $g(x)$, at time T in the future.
- The substance must be introduced/implanted to the process at time $t=0$. (This could typically be the case in various molding process or in steel casting).
- What should the temperature distribution $f(x)$ at time $t=0$ be in order to assure that the temperature is $g(x)$ at time T ?

Backwards heat equation

- Consider a medium with constant heat conductivity $k(x)=1$ for all x, occupying the unit interval.
- Determine the initial condition $f=f(x)$ such that the solution $u=u(x, t ; f)$ of

$$
\begin{align*}
& u_{t}=u_{x x} \quad \text { for } x \in(0,1), t>0 \tag{367}\\
& u(0, t)=u(1, t)=0 \text { for } t>0 \tag{368}\\
& u(x, 0)=f(x) \text { for } x \in(0,1) \tag{369}
\end{align*}
$$

is such that

$$
u(x, T ; f)=g(x) \quad \text { for all } x \in(0,1)
$$

Backwards heat equation

- $g(x)$ is our observation data, and the output least squares formulation of the problem becomes;

$$
\begin{equation*}
\min _{f}\left[\int_{0}^{1}(u(x, T ; f)-g(x))^{2} d x\right] \tag{370}
\end{equation*}
$$

subject to $u=u(x, t ; f)$ satisfying (367)-(369).

Fourier Analysis

- The solution $u(x, t ; f)$ of (367)-(369) can be written

$$
u(x, t, f)=\sum_{k=1}^{\infty} c_{k} e^{-k^{2} \pi^{2} t} \sin (k \pi x)
$$

where

$$
f(x)=\sum_{k=1}^{\infty} c_{k} \sin (k \pi x) \quad \text { for } x \in(0,1)
$$

- Equation (370) can be expressed in terms of the Fourier coefficients;

$$
\begin{equation*}
\min _{c_{1}, c_{2}, \ldots}\left[\int_{0}^{1}\left(\sum_{k=1}^{\infty} c_{k} e^{-k^{2} \pi^{2} T} \sin (k \pi x)-g(x)\right)^{2} d x\right] \tag{371}
\end{equation*}
$$

Fourier Analysis

- Next, we insert the Fourier sine expansion

$$
g(x)=\sum_{k=1}^{\infty} d_{k} \sin (k \pi x) \quad \text { for } x \in(0,1)
$$

of g into (371) and obtain the following form of our problem

$$
\begin{equation*}
\min _{c_{1}, c_{2}, \ldots}\left[\int_{0}^{1}\left(\sum_{k=1}^{\infty} c_{k} e^{-k^{2} \pi^{2} T} \sin (k \pi x)-\sum_{k=1}^{\infty} d_{k} \sin (k \pi x)\right)^{2} d x\right] \tag{32}
\end{equation*}
$$

Fourier Analysis

$$
\left[\int_{0}^{1}\left(\sum_{k=1}^{\infty} c_{k} e^{-k^{2} \pi^{2} T} \sin (k \pi x)-\sum_{k=1}^{\infty} d_{k} \sin (k \pi x)\right)^{2} d x\right] \geq 0
$$

for all choices of c_{1}, c_{2}, \ldots.
We can solve (372) by determining c_{1}, c_{2}, \ldots such that

$$
c_{k} e^{-k^{2} \pi^{2} T} \sin (k \pi x)=d_{k} \sin (k \pi x) \quad \text { for } k=1,2, \ldots,
$$

which is satisfied if

$$
c_{k}=e^{k^{2} \pi^{2} T} d_{k} \quad \text { for } k=1,2, \ldots
$$

Fourier Analysis

- The solution $f(x)$ of (370) is

$$
f(x)=\sum_{k=1}^{\infty} e^{k^{2} \pi^{2} T} d_{k} \sin (k \pi x) \quad \text { for } x \in(0,1)
$$

where

$$
g(x)=\sum_{k=1}^{\infty} d_{k} \sin (k \pi x) \quad \text { for } x \in(0,1)
$$

Stability

- From a mathematical point of view, one might argue that the backwards heat equation is a simple problem since an analytical solution is obtainable.
- On the other hand, the problem itself has an undesirable property.
- The heat distribution $f(x)$ at time $t=0$ is determined by multiplying the Fourier coefficients of $g(x)$ by factors on the form $e^{k^{2} \pi^{2} T}$.

Stability

- These factors are very large, even for moderate k, e.g. with $T=1$;

$$
\begin{aligned}
& e^{\pi^{2}} \approx 1.93 \cdot 10^{4} \\
& e^{2^{2} \pi^{2}} \approx 1.40 \cdot 10^{17}, \\
& e^{3^{2} \pi^{2}} \approx 3.77 \cdot 10^{38}
\end{aligned}
$$

- If $T=1$ and $g(x)=\sin (3 \pi x)$, then the solution of the backwards heat equation is

$$
f(x)=e^{3^{2} \pi^{2}} \sin (3 \pi x) \approx 3.77 \cdot 10^{38} \sin (3 \pi x)
$$

Stability

- If a very small amount of noise is added to g, say

$$
\widehat{g}(x)=g(x)+10^{-20} \sin (3 \pi x)=\left(1+10^{-20}\right) \sin (3 \pi x),
$$

then the corresponding solution \hat{f} of (370) changes dramatically, i.e.

$$
\widehat{f}(x)=\left(1+10^{-20}\right) e^{32 \pi^{2}} \sin (3 \pi x) \approx f(x)+3.77 \cdot 10^{18} \sin (3 \pi x)
$$

Stability

- The problem is extremely unstable; very small changes in the observation data g can cause huge changes in the solution f of the problem:

$$
\begin{gathered}
\widehat{g}(x)-g(x)=10^{-20} \sin (3 \pi x) \\
\widehat{f}(x)-f(x)=3.77 \cdot 10^{18} \sin (3 \pi x)
\end{gathered}
$$

Stability

- One can argue that it is almost impossible to estimate the temperature distribution backwards in time, only using the present temperature and the heat equation.
- Further information is needed.
- This has lead mathematicians to develop various techniques for incorporating a priori data, for example that $f(x)$ should be almost constant.
- More precisely, a number of methods for approximating unstable problems with stable equations have been proposed, commonly referred to as regularization techniques.

Stability

- Do the mathematical considerations presented above agree with our practical experiences with heat conduction?
- Is it possible to track the temperature distribution backwards in time in the room you are sitting?
- What kind of information do you need to do so?

Estimating the heat conductivity

- The examples discussed above are rather simple since explicit formulas for the solutions of the involved differential equations are known.
- This is not always the case, and we will now briefly consider such a problem.
- Assume that one wants to use surface measurements of the temperature to compute a possibly non-constant heat conductivity $k=k(x)$ inside a medium.

Estimating the heat conductivity

- With our notation, the output least squares formulation of this task is;

$$
\min _{k}\left[\int_{0}^{T}\left(u(0, t ; k)-h_{1}(t)\right)^{2} d t+\int_{0}^{T}\left(u(1, t ; k)-h_{2}(t)\right)^{2} d t\right]
$$

subject to $u=u(x, t ; k)$ satisfying

$$
\begin{aligned}
& u_{t}=\left(k u_{x}\right)_{x} \quad \text { for } x \in(0,1), t>0 \\
& k(0) u_{x}(0, t)=0 \quad \text { for } t>0 \\
& k(1) u_{x}(1, t)=0 \quad \text { for } t>0 \\
& u(x, 0)=f(x) \quad \text { for } x \in(0,1) .
\end{aligned}
$$

Estimating the heat conductivity

- This is a very difficult problem.
- To solve it, a number of mathematical and computational techniques developed throughout the last decades must be employed.
- This exceeds the ambitions of the present text, but we encourage the reader to carefully evaluate their understanding of the output least squares method by formulating such an approach for a problem involving, e.g., a system of ordinary differential equations.

