
DOCTORAL CANDIDATE: Xiaorui Zhang

DEGREE: Philosophiae Doctor

FACULTY: Faculty of Mathematics and Natural Sciences

DEPARTMENT: Department of Informatics

AREA OF EXPERTISE: Model-Driven Software Engineering, Software

Product Lines

SUPERVISORS: Øystein Haugen, Birger Møller-Pedersen

DATE OF DISPUTATION: 14th of March 2014

DISSERTATION TITLE: Developing Model-Driven Software Product Lines

This thesis presents a set of methodologies and automatic tool support for generating code
for a family of similar softwares from software descriptions (models), in another word,
model-driven software product lines, which is combination of Software Product Lines and
Model-Driven Software Engineering.

What is Software Product Lines? As we know, product lines are widely used in
manufacturing industry for optimized productivity: For a specific car manufacturer, all car
parts are standardized, and the difference between a basic and upgraded car model might be
just seat heating and built-in GPS. Software Product Lines borrow the idea: instead for
producing code for individual softwares, a software family (just like a car family) is defined
based on how similar and how different each family member is, and how they can be
produced by assembling reusable and standardized code parts.

What is Model-Driven Software Engineering? Think about car industry again. Imagine that
you are a car designer who knows all about how a perfect car should look like and function,
but naturally nothing about programming. However, for the software embedded in a car, you
have to tell a programmer what functionalities you need and leave the coding work to them.
You can probably imagine the pain of communication and collaboration when you know
nothing about programming and the programmer knows little about car specifics. With the
paradigm of model-driven software engineering, a domain-specific modeling language will
be developed for you beforehand, with only car-specific terms that you are familiar with.
With this language, you describe how you want your car to be in great details, and then the
software code for the car can be automatically generated from your description.

In particular, this thesis provides methods and tools for the complete life cycle of model-
driven software development, from how to define a language for a specific domain, and how
to define common and unique parts (described using the domain-specific language) among
all software product members, to how to produce similar softwares by assembling reusable
parts, and how to evolve a software product line over time when needed, e.g. introducing
new software products into the family.

