DOCTORAL CANDIDATE: Bjørnar Steinnes Luteberget

DEGREE: Philosophiae Doctor

FACULTY: The Faculty for Mathematics and Natural

Sciences

DEPARTMENT: Department of Informatics

AREA OF EXPERTISE: Formal methods of computer science

SUPERVISORS: Christian Johansen, Martin Steffen

DATE OF DISPUTATION: 18th of October 2019

DISSERTATION TITLE: Automated Reasoning in Railway Construction

Planning

Engineers working on buildings and infrastructure no longer start projects with pen and paper and blueprints but go straight to the computer and start creating 3D models and databases.

But **railway engineering** is stuck with old software tools, struggling to adopt modern ways of working. We have identified two major causes for this, and have made progress towards more agile railway construction.

Firstly, **diverse**, **complex regulations** are needed for correct and efficient railways, and each country has its own traffic lights, safety principles, control systems, and so on. We have used **incremental Datalog** to make a system where the myriad of rules can be specified and checked efficiently. Using **controlled natural language**, the rules can be written in Norwegian or English, making programming easier.

Secondly, railways need to be constructed carefully to make sure they handle the needed **traffic capacity**. Traffic planning is complex in itself, and doing it alongside construction planning currently takes an effort that many projects cannot afford. We have made a system based on **SAT solvers** which solves traffic puzzles so fast that engineers get immediate feedback to improve their design.