
The Modeling of 
Programming Languages

Daniel Einarson

Kristianstad University

Sweden 

ASU Conference 2017



On programming

• As stated by Kristen Nygaard
• ”To program is to describe” A program/textual

description:
- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - -



On descriptions, don’t we all describe? 

A physicist
A chemist

A social scientist



The Computer Science contribution



The world is full of descriptions,
and there will be more



The Scandinavian School – On Modeling

”has the real world in mind”

Objects, classes represent real world concepts
(Nygard & Dahl)

Executing program is a physical model
simulating the real world behavior
(Madsen & Moller-Pedersen)



Languages for modeling

• Scandinavian School Modeling Languages
• Simula

• Beta

• Modeling language support, with meta-concepts of language to 
support real world modeling
• Classes & Objects

• Generalized vs. Specialized statements

• Coroutines to simulate parallell actions

• Nested classes (models in models)



A further elaboration on meta-concepts of 
modeling languages
• The model-oriented approach, discussed in late 1990 and early 2000

• Refining concepts of autonomous self-contained components
• The active entity, in contrast to classes/objects that represent passive entities

• The activity is central - Communication between the active entities are
asynchronous (no method/procedure invocations)

• Abstracted to represent both simulations and real-time

• Hierarchical modeling, models in models, e.g., simulation models within real-
time models



The Active Entity

• The activity runs much like the Simula coroutine

Active Entity 1 Active Entity 2



What about the methods then?

• Methods are practicle modeling tools to structure behavior of active
entities

• Passive entities/objects, do not do things be themeselves, their
methods are, at the end, always invoked be an active entity. Active 
entities may share similar behavior.

Active Entity 1 Active Entity 2



The abstraction of time
• The active entity may act on a real-time or simulated time base

• Timebase is a general concept, specialized into real-time or simulated
time timebase

Active Entity



The abstraction of time – real world modeling

• Clocks at different levels

• is a basis for hierarchical modeling with different time bases



A machine park of robots

• One robot simulates itself and another robot 



Or further elaborated

• A third robot simulates one that is simulting another



On the model-oriented (MO)approach

• An extension to the OO paradigm, in the direction of real-world
modeling, which is in line with the Scandinavian School.

• A modeling language was developed (not implemented) to meet the 
MO approach, including meta-concepts for
• Autonomous active entities

• Asynchronous communication

• Abstracted time concepts (as well as specialized)

• Hierarchical modeling

• …and more



Finally

• The Scandinavian school has obviously had impact on programming, 
and OO A&D, for instance UML-based processes addresses that in 
much

• Still, what about the development of the meta-concepts?
• Is there a need for new exhaustively developed modeling languages (such as 

Simula and Beta)?
• Or a we finished? Do we have all that is desired for?
• When complexity keeps scaling up, will development keep up with that, or 

do we have to basically rethink?

• THANX! 


