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Abstract

Engineering a computing system for a certain environment often requires some
knowledge of said environment; both on the end of the system-creator, as well
as for the computing system in turn. This knowledge will then have to be used
in the environment the computing system is situated in, in all the situations and
possible states the system can be in during its lifetime. However, foreseeing and
predicting, at design-time, all possible future states and scenarios a computing
system will be in during its lifetime is often hard, and sometimes impossible (in
the case of coincidental faults e.g.). Increasingly extreme, complex, dynamic,
and ever-changing environments, simply enlargens this challenge. This calls
for online and continuous learning at run time, where computing systems are
themselves able to observe, learn, adapt, and act on their own, independently
from their creator.

Especially within collectives of multiple robots [18, 28], communication be-
tween individuals—even though they might be autonomous individual robots—is
still a challenge one has to deal with when designing them. Coordination, for
humans and robots alike, often tend to demand a lot of communication. To add
on top of this, when networks or collectives of sub-systems like wireless sensors
are communicating with each other, they often have their own internal clock
which often do not align. Hence, we see that both the magnitude of communi-
cation needed, as well as the inherent challenges with communication, call for
effective approaches to communication with coordination as the goal.

As K. Konishi & H. Kokame [11] points out, one technical problem in e.g.
wireless sensor networks is that each sensor node rely on accurate internal and
synchronized clocks, especially from the perspective of sensor fusion and co-
ordinating communication among nodes. Thus, time synchronization becomes
recognized as one of the crucial problems in distributed and wireless systems
[29]. Various attempts at synchronizing messages and communication, in order
to e.g. align messages exchanged at unsynchronized intervals, have been made
[29]; however, such attempts and protocols often require the computation of
message exchange and processing, which wastes the limited computation capa-
bility of nodes and causes communication delays. To this, Konishi & Kokame
[11] also point out how for synchronized pulse coupled oscillators (PCOs), such
computation is not required. If internal clocks in communicating nodes are in-
stead altered and synchronized to other nodes’s clocks—instead of letting all
clocks stay unsynchronized and constantly trying to compensate for this— it is
rather apparent that getting rid of this need for compensation will considerably
reduce computation needs while synchronized communication is still achieved.
Hence, by achieving time synchronization, both the computational load, in ad-
dition to the need for communication, is considerably reduced.
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Thus, by achieving time synchronization [29] through synchronizing pulse
coupled oscillators, both the computational load, in addition to the need for
communication, is considerably reduced; hence freeing up and saving valuable
resources like e.g. processing power and energy (battery) in networks of indi-
viduals and possibly autonomous nodes, agents, or robots.

Despite its elusive, and at times hard-to-tangibly-define, nature; the psycho-
logical concept of Self-Awareness has relatively recently served as a rich source
of new inspiration and conceptual tools and frameworks, previously unknown
or undiscovered by the computer engineer.

With self awareness, online and continuous learning is achieved to a higher
degree in contrast with other approaches (like ODA and MAPE-K), due to
the limitations and downsides of these older approaches, as well as the ad-
vantages and upsides to considering computational self-awareness in computing
systems. If one wants to achieve continuous adaptation of a system or of system-
components (e.g. in a collective) — some sort of intelligence might be necessary
to endow it with. Endowing computing systems with Self-Awareness can be
beneficial in several respects, including but not limited to a greater capacity to
adapt, to build potential for future adaptation in unknown environments, and
to explain their behaviour to humans and other systems [14].

Taking inspiration from the fascinating natural phenomena of self synchro-
nizing fireflies, a synchronization simulator imitating and modelling this process
for—instead of fireflies—a collective of musical robots, has been designed and
tested. It has been found that e.g. the sensitivity of the robots when it comes to
adjusting themselves on the way to synchronizing to each other does not have
as much a say on the stability nor performance of the synchronization task as
e.g. the robot collective size does. Furthermore, it is also found that the syn-
chronization task can still be achieved despite more relaxed connectivity in the
network of robots.

We found for a synchronization scenario that when robots listen to 40%
of their closest neighbours, they achieve just as good performance as globally
connected robots do.
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Chapter 1

Introduction

Taking inspiration from the fascinating natural phenomena of self synchronizing
fireflies, as e.g. seen in Figure 1.1, a synchronization simulator imitating and
modelling this process for—instead of fireflies—a collective of musical robots,
as e.g. seen in Figure 1.2, has been designed and tested.

The effects, particularly in terms of the ability to and performance of syn-
chronization, is measured and evaluated when experimentally altering the prop-
erties of the musical robot collective as a whole (as e.g. collective size), or
individual musical robots’s hyperparameters (e.g. the number of neighbouring
robots each robot listens to for self synchronization, later referred to as the
robot’s self awareness scope).

Figure 1.1: Synchronous fireflies at Congaree National Park, United States.
Photo1: @columbiasc & @_flashnick.

1https://avltoday.6amcity.com/synchronous-fireflies-congaree-national-park/
(accessed 2022.05.17)
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(a) 0.8 seconds after simulation start. (b) 2.3 seconds after simulation start.

(c) 6.2 seconds after simulation start. (d) 10.1 seconds after simulation start.

Figure 1.2: A typical simulation run of a musical multi robot collective (here
of size 15) entraining to achieve harmonic synchronization in the developed
system. As we can see2, the robots start flashing yellow and blinking with their
eyes asynchronously at first in 1.2a, but end up synchronized in 1.2d. Due to
our special synchronization type being harmonic synchronization (cf. 3.1), as
well as an implementation choice of robots only “flashing” or “firing” every other
phase climax (i.e. ϕ = 1), musical robot collectives do not in fact have to all fire
simultaneously in order to be harmonically synchronized, but all robots firing
simultaneously is also a validly harmonically synchronized robot collective.

1.1 Motivation
Engineering a computing system for a certain environment often requires some
knowledge of said environment; both on the end of the system-creator, as well
as for the computing system in turn. This knowledge will then have to be used
in the environment the computing system is situated in, in all the situations and
possible states the system can be in during its lifetime. However, foreseeing and
predicting, at design-time, all possible future states and scenarios a computing
system will be in during its lifetime is often hard, and sometimes impossible (in
the case of coincidental faults e.g.). Increasingly extreme, complex, dynamic,
and ever-changing environments, simply enlargens this challenge.

Extreme challenges and physical barriers within communication between de-
centralized and mobile robots and its human operator, like too large latencies,
bottlenecks presented by using the same limited bandwidths, short possible
ranges, or the inability to use global satellite systems e.g. in underwater vehi-
cles [24], leads to the necessity of enabling systems to autonomously and online
control themselves and perform missions without communication from remote
operators like humans. This calls for online and continuous learning at run
time, where computing systems are themselves able to observe, learn, adapt,
and act on their own, independently from their creator; autonomic computing

2See video at https://www.uio.no/ritmo/english/projects/modeling-and-robots/
media/phasesyncrecord.mp4 (accessed 2022.05.27)
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that is. Hence, technological development and research has e.g. within under-
water robotics gone from enabling remotely operated vehicles (ROVs) in the
1980s (for e.g. oil and gas exploitation at depths unreachable to human divers),
over to more self adaptive and autonomous underwater vehicles (AUVs) closer
to in the 21st century —the demand of which is expected to grow 37% in the
2018-2022 period [24]. As a result, the underwater robots can in this instance
thus, due to the increased degree of autonomy and consequently implicit re-
duction in communication need, travel on its own on even longer and extensive
missions without the need for a live connection to any human operator—e.g. on
seabed mapping missions, underwater machinery or structure maintenance, as
well as seabed cleaning.

However, and especially within collectives of multiple robots [18, 28], com-
munication between individuals—even though they might be autonomous indi-
vidual robots—is still a challenge one has to deal with when designing them.
Coordination, for humans and robots alike, often tend to demand a lot of com-
munication. To add on top of this, when networks or collectives of sub-systems
like wireless sensors are communicating with each other, they often have their
own internal clock which often do not align. Hence, we see that both the mag-
nitude of communication needed, as well as the inherent challenges with com-
munication, call for effective approaches to communication with coordination as
the goal.

As K. Konishi & H. Kokame [11] points out, one technical problem in e.g.
wireless sensor networks is that each sensor node rely on accurate internal and
synchronized clocks, especially from the perspective of sensor fusion and co-
ordinating communication among nodes. Thus, time synchronization becomes
recognized as one of the crucial problems in distributed and wireless systems
[29]. Various attempts at synchronizing messages and communication, in order
to e.g. align messages exchanged at unsynchronized intervals, have been made
[29]; however, such attempts and protocols often require the computation of
message exchange and processing, which wastes the limited computation capa-
bility of nodes and causes communication delays. To this, Konishi & Kokame
[11] also point out how for synchronized pulse coupled oscillators (PCOs), such
computation is not required. If internal clocks in communicating nodes are in-
stead altered and synchronized to other nodes’s clocks—instead of letting all
clocks stay unsynchronized and constantly trying to compensate for this— it is
rather apparent that getting rid of this need for compensation will considerably
reduce computation needs while synchronized communication is still achieved.

Thus, by achieving time synchronization [29] through synchronizing pulse
coupled oscillators, both the computational load, in addition to the need for
communication, is considerably reduced; hence freeing up and saving valuable
resources like e.g. processing power and energy (battery) in networks of indi-
viduals and possibly autonomous nodes, agents, or robots.

On another hand, self-awareness concepts from psychology have given in-
spiring new approaches for engineering computing systems which operate in
complex dynamic environments [15]. As computer scientists and roboticists
have recently brought more focus on the field of self awareness [14, 15], many
new conceptual tools and frameworks have been developed. As such, it is not
necessarily more intelligence or self awareness capabilities having been brought
into new systems; no, on the contrary, for also older and already existing com-
puting system one now has the ability to describe and discuss said computing
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system’s self awareness capabilities—even if it was not originally designed with
any such capabilities in the first place. E.g. K. Glette et al.’s translated levels of
self awareness, from the man called “the father of cognitive psychology” (Ulrich
Neisser), into computing systems [15], or P. Lewis et al.’s reference framework
for computationally self aware systems [4], give rich descriptive power for both
designing novel computational systems, as well as describing already existing
ones—as one inherently within the system include the aspects and notions of
self awareness, instead of e.g. simply adding a layer of attention on top of the
system as has been custom to do before.

Provided self awareness, online and continuous learning is achieved to a
higher degree in contrast with other approaches (like ODA and MAPE-K), as
self knowledge and the continual updating of it is intrinsically considered from
the beginning—not simply being an attention “add on”. If one wants to achieve
continuous adaptation of a system or of system-components (e.g. in a collective)
— some sort of intelligence might be necessary to endow it with. Endowing
computing systems with Self-Awareness can be beneficial in several respects,
including but not limited to a greater capacity to adapt, to build potential for
future adaptation in unknown environments, and to explain their behaviour to
humans and other systems [14].

Explainability has with time only become more and more relevant, also
within artificial intelligence (AI) (hence the popularity of the term explainable
AI ), as increasingly autonomous and automatically systems are making real life
decisions with serious consequences increasingly on a day to day basis. L. A.
Dennis and M. Fisher present explaining and verifiable agent-based systems,
where rational agents who possess goals, beliefs, desires, intentions e.g. make
decisions that in their opinion should be able to be questioned and giving an
answer when prompted [5]. Self awareness enables such questioning and answer-
ing by autonomous agents, as the agents themselves, since they are themselves
aware of their knowledge, thoughts, goals, desires etc., can explain what lead to
their actions. Or in other words, questions like “what type of self awareness [15]
(knowledge) lead to a certain self expression [15] (action)” can be answered by
self aware and self expressive agents. Such an example can be read by P. Lewis
et al. [14] (3.3.4) when they summarize their novel computational self awareness
framework by enabling self aware computing systems to produce sentences like
the following: Peter (span) is aware of Ada’s (scope) goal (aspect) to reduce
the power usage (object). Further, Ada (span) is aware of her own reasoning
(meta-self-awareness) about what to do (act) about it.

Endowing computing systems with Self-Awareness can be beneficial in sev-
eral respects, including a greater capacity to adapt, to build potential for future
adaptation in unknown environments, and to explain their behaviour to humans
and other systems. As we can see in various Music Technology Systems, this en-
dowing can also give rise to interesting cooperative and coordinating behaviour.

1.2 Goal of the thesis
In this MSc-thesis, we will explore an exciting and relatively new translation of
the concepts and notions regarding self-awareness — as they pertain to humans
and animals especially — from the domain of Psychology, into the domain of
computation and engineering. The problem to explore will mainly consist of

4



studying the effects differing self-awareness levels, varying collective-sizes, levels
of task difficulty (like more complex behaviours, and limited communication)
- have on usefulness, system dynamics, overall performance, more intelligent
systems, and scalability (in this case specifically within a musical robot system)
when performing a task.

It would be desired to investigate whether increased levels or degrees of self
awareness capabilities will lead to an increased ability in the system at hand to
adapt and handle rapidly dynamic and everchanging enviroments, compared to
with lower levels or degrees of self awareness.

Generally, the aim is to discover the effects of endowing computational
systems/robots with self-awareness capabilities / abilities. More specifically,
the aim of the thesis is to explore and investigate whether—and to which
degrees—increased degree or level of computational self awareness in musical
robots lead to increased performance in a collective musical task to be achieved;
namely, achieving synchronization (harmonic at that, cf. 3.1)—much like and
inspired by fireflies in nature adjusting and synchronizing themselves and their
flashing to each other.

With that, the following research questions is thus introduced, with the hope
of answering them in the thesis:

Research Question 1:
To what extent will increased levels or degrees of computational self aware-

ness in individual musical robots lead to the musical collective at large being able
to achieve its collective musical task—being (harmonic) synchronization—faster
compared to with lower levels or degrees of computational self-awareness?

Research question 2:
To what extent can harmonic synchronization performance in musical robot

collectives be maintained despite lower degrees or levels of computational self
awareness? Are in fact global connections in oscillators neccssary to maintain
harmonic synchronization performance, or can more relaxed and less constrained
connections in oscillator networks still give rise to similar synchronization per-
formance?

Research Question 3:
In what ways do computational systems—specifically a musical robot col-

lective—exhibit and display self awareness (and corresponding self expressive)
capabilities, compared to in humans and animals?

1.3 Outline
The master’s thesis is structured as follows. Firstly, past and related work
relevant for the thesis will be presented in Chapter 2, laying the theoretical and
inspirational foundation this thesis is basing itself upon.

Then, in Chapter 3, a particularly important and foundational approach
to oscillator synchronization is presented in detail, serving as the starting point
and baseline for the synchronization method the musical robots in our developed
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system will utilize in order to achieve the target state also presented and achieved
by the authors of the baseline approach.

After the main specific approach of comparison and inspiration is presented
in Chapter 3, the specifics and details of the newly designed and implemented
synchronization simulator will be expounded in Chapter 4. Here, experimental
setups will also be shown, for which we want to evaluate synchronization per-
formance for in Chapter 5. In this chapter, we will also analyze the experiments
results from the motivated and set up experiments.

Finally, results found in Chapter 5 will be discussed and put into a broader
context, as the thesis is concluded and discussed on a higher level, summarizing
the whole thesis. Before references and eventual appendices are shown, possible
future work as well as the main reasons why they were not possible to explore
in the thesis work will be given.

1.4 Scope and delemitations
No training of any neural networks or AI models was performed to achieve
synchrony in the newly developed synchronization simulator; so far no machine
learning is used.

Even though the evolution of how musical robots progress and evolve towards
a state of synchronization, no evolutionary algorithms or evolutionary searching
algorithms are implemented or tested in this thesis either.

Instead, as is ubiquitous in and very typical for multi agent systems and
swarm robotics applications, the phenomenon of fairly simple rules endowed in
rather simple agents / robots leading to an emergent and collective effect is
observed—also in the newly developed synchronization simulator in this the-
sis. For this thesis’s sake, this emergent and collective effect is musical robot
collectives reaching a state of harmonic synchrony (cf. 3.1).

1.5 Contributions
The main contribution this thesis work has led to is the design, implementation,
and testing of a novel synchronization simulator for musical robots modelled as
oscillators, further explained in 4.1, achieving time synchronization—previously
having been recognized by scientists and roboticists to be one of the crucial
problems in distributed and wireless systems.

In said synchronization simulator, synchronization methods (for both oscil-
lator phases ϕ and frequencies ω), collective properties of the musical robots,
as well as individual properties and hyperparameters in musical robots (hence
enabling heterogenous robots), can all be experimentally altered. The result-
ing synchronization process, including all the musical robots’s interactions and
entrainment towards harmonic synchrony, can then be visually seen and heard
in real-time, as well as thoroughly analyzed using simple plotting scripts after
simulation runs have ended. Hence, a rich exploration space—more than able
to be further expanded and built upon—and testbed for achieving (harmonic)
synchronization is opened up to all that are interested in exploring it and have
a GitHub account. Furthermore, the synchronization results and performance
of said explorations are easily visualized and heard. This then democratically
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enables for the open access to experimentation with creative and novel synchro-
nization methods in oscillators, in order to seamlessly qualitatively and quanti-
tatively assess their efficacy and efficiency at achieving harmonic synchrony.

We found for a synchronization scenario that when robots listen to 40%
of their closest neighbours, they achieve just as good performance as globally
connected robots do.

Thirdly, and differently to earlier approaches synchronizing pulsed coupled
oscillators (harmonically at that [23]), the synchronization system developed in
this thesis in Unity does not limit oscillator frequencies to stay within a certain
range, and oscillator frequencies can both be adjusted to be larger than the max
initial frequency, as well as smaller than the minimum initial frequency. In e.g.
Nymoen et al.’s firefly inspired oscillator system, frequencies ω are limited to
staying within the range of [0.5Hz, 8Hz].
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Chapter 2

Background

In this chapter, pointers to and clusters of recent work in the fields relevant to
the thesis, especially where they intersect, are presented. These give a sense of
where the thesis is coming from, and what lead to the explorations made later
on.

2.1 Taking inspiration from psychology
Self awareness (SA) in psychology:

The notion and idea of self awareness has been of great interest to humans
throughout history. And despite its sometimes abstract and elusive nature,
many thinkers (like e.g. psychologists and philosophers) have previously tried to
give an explanation and description of this phenomenon or capability, primarily
as observed in individual humans and animals. One has also tried to extend
these descriptions and developed concepts to explain collectives consisting of
individuals. A good survey of such descriptions and explanations regarding Self-
Awareness in Psychology is given in some recent books on Self-Aware Computing
Systems [14, 15] by P. R. Lewis et al, and will be used as a basis for this section
and essay.

The notion of self awareness might give associations to other psychological
terms like perception and consciousness, and we will look at some relationships
these have with the main notion here of self awareness, in the psychological and
(briefly) philosophical literature.

What exactly is self awareness? Is it awareness of a self ? If so, this leads
to the question: what constitutes a self ? And also, what does really awareness
mean? Some answers given in psychological literature, and in later time taken
inspiration from into computer science, will now be explored.

2.1.1 Awareness
Before Lewis et al. [15] inclusively and succinctly introduces the concepts and
interpretations relating to Self-Awareness, as they pertain to the psychological
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literature especially, they start off by giving the definition of awareness by The
Oxford English Dictionary, which is "knowledge or perception of a situation or
fact." Hence (by simply adding the prefix self ), "situational or factual knowl-
edge/perception about a self " might seem to be a reasonable first intuition of
the notion of Self-Awareness. We will now discuss further what might constitute
a so-called self.

2.1.2 The Self

Prominent western philosophers, like David Hume and Immanuel Kant, had
some differing views on what constitutes a self — although both might seem
reasonable and relevant.

As Lewis et al. describes it [15], Hume is known for postulating that all
human knowledge is induced from experience. This then means for Hume that
the self is no concrete and physical entity in the world, but rather the bundle
of experiences or perceptions unique to an individual.

On the other hand, for Kant, the scope of the self is significantly extended —
as he argues for the self being an actual entity being the subject of experiences,
which is common through space and time. This subject or self then combines
information from experiences with concepts in the mind, as well as with the
imagination — as well as acting upon this combined knowledge.

2.1.3 Self-Aware Individuals
Given a Humean view of the self (as described above), one might then consider
self awareness to consist of an individual’s knowledge of its experiences. Whereas
the Kantian view of the self yields a self awareness consisting of a distinct and
physical individual subject to experiences, combining information from these
experiences, concepts, and the imagination.

Early appearing terms in the psychology literature, pertaining to Self-Awareness
and notions of self — being reminiscent of these two differing views by Kant and
Hume — are found in the distinction between the objective/explicit self, and the
subjective/implicit self, firstly elucidated by W. James in 1890 [30], and further
expounded in detail by Duval [7]. Here, the implicit self, often referred to as the
self-as-subject, is the "me"-self, subject to experiences. The self awareness in
this "me"-self then, according to Duval, is described as "a state of consciousness
in which attention is focused on events external to the individual’s conscious-
ness, personal history, or body" [7]. The explicit self however, often said to
be the "I"-self, describes a self-as-object which can be discerned, observed, and
reasoned about in the world. This "I"-self then, according to Duval, has an ob-
jective self awareness described as being "focused exclusively upon the self and
consequently the individual attends to his conscious state, his personal history,
his body, or any other personal aspects of himself " [7].

One well-known "self awareness-test", having been used to deem whether
someone or something is self-aware or not, is the so-called mirror test. This
consists of observing an individual’s capability (or lack thereof) of noticing or
self-recognizing, in a mirror, a discreet change in their own appearance (that
was caused by someone else typically, while they were not paying attention e.g.).
The presence of such a capability is argued (e.g. by Asendorpf et al. [1]) to
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demonstrate the presence of a secondary representation (a constructed concep-
tual model if you will) of oneself and the world (the primary representation
being the real world).

Given that the ability to construct such a conceptual model of oneself is re-
quired in explicit self awareness, one could wonder whether passing this "mirror
test" would then be satisfactory for someone or something (like a system) to
be self-aware. Haikonen [9] however demonstrated how easy it was for a not-
too-sophisticated computing system to pass this test — and hence weakened
the validity of this "mirror test" to definitively conclude whether someone or
something was indeed self-aware or not.

As should be more and more apparent, there has been — and still is — a
lot of ongoing discussions about what should be considered self awareness, and
what should not — as well as about all the different variants observed (by e.g.
Morin [19]).

Morin defined self awareness as different from, but building upon the pre-
viously mentioned consciousness (where this in some cases are deemed more
"primitive" aspects of self awareness), in that "self awareness is the capacity to
become the object of one’s own attention." However, he doesn’t deny the subjec-
tive aspect of the self-aware individual, in that he believes a self-aware organism
to be one that "becomes aware that it is awake and actually experiencing specific
mental events."

The importance of including such a subjective (perhaps more underlying and
primitive) level of self awareness, lies in the realization that self-aware agents
(being uniquely situated in the world, collecting unique data from their unique
sensing-apparatus) is subjective in nature. As such, since possibly heterogenous
agents might collect widely different data (due to their situation and sensing
capabilities) from the same exact phenomenon, it is crucial that we know from
which subject the data we have originates from.

Perhaps or perhaps not due to this, others would object to Morin’s def-
inition, and actually include this subjective and implicit (or in other words
"perceptual (or pre-conceptual)", as Lewis et al. [15] put it) experience in their
definition of self awareness — leading to self awareness and consciousness being
overlapping concepts. This would also lead more complex and "full-stack" Self-
Aware systems to being extensions of this simpler and more primitive level of
Self-Awareness.

2.1.4 Public and Private Self-Awareness
The distinction, as discussed above, between the implicit/subjective and the
explicit/objective self and corresponding self awareness has given rise to many
further developments in this notion, as is presented by Lewis et al. [15]. How-
ever, these further developments separate this seeming distinction of private
self awareness (previously described as e.g. personal, historical, and bodily
knowledge regarding the self-as-object) and public self awareness (previously
described as awake, subjective, and unique experiences external to the self) a
bit differently.

Rather than the above notions of public and private self awareness, private
self awareness instead here refers to the obtaining of "knowledge of internal
phenomena, typically externally unobservable and accessible only to the indi-
vidual" [15]. On the other hand, public self awareness now concerns the
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gathering of knowledge based on phenomena external to the self. If we choose
to look at public self awareness in the implicit/subjective form, we have a "min-
imally" self-aware individual who is merely able to perceive (subjectively) the
external environment in which it is situated. Conversely, we could also have a
publicly self-aware individual in the explicit/objective form — which would be
more concerned with public appearance, and how the individual is perceived in
its in environment (e.g. by other individuals, in social settings). These defini-
tions of private and public self awareness will be used from now on.

2.1.5 Levels of Self-Awareness
There is large consensus about, due to the many degrees or variations to which
an individual can be self-aware, that self awareness is not binary or singular
— but rather on a spectrum. As Lewis et al. highlights ([14, 15]), varieties of
an individual’s self awareness capabilities are often associated or characterized
with one or more levels of self awareness. As such, several have attempted at
defining such self awareness levels.

One such definition, being comparatively broad and wide (to other similar
treatments), containing 5 increasingly complex self awareness levels, is given by
Neisser [22]:

1. Ecological self

The ecological self is the most minimal form of self awareness. It per-
mits sufficient knowledge only for basic stimulus-response behaviour, as
the individual has a basic awareness of stimuli. The ecological self can
be thought of as the minimum requirement for the individual to not be
unconscious.

2. Interpersonal self

The interpersonal self enables the individual to possess a simple awareness
of its external interactions, permitting limited adaptation to others in the
performance of tasks.

3. Extended self

The extended self extends the interpersonal self to permit reflection of
interactions over time. The individual is aware of the existence of past
and future interactions.

4. Private self

The private self allows the individual to process more advanced informa-
tion concerning itself, such as thoughts, feelings and intentions.

5. Conceptual self

The conceptual self, or self-concept, is the most advanced form of self
awareness, representing that the individual is capable of constructing and
reasoning about an abstract representation of itself.

This final level, the Conceptual self, is very much connected to the much-
discussed term of meta-self awareness. Meta-self awareness refers to the aware-
ness of someone that they themselves are self-aware. This includes reasoning
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about its own self awareness, and is argued to be necessary (at least in humans)
in order to adapt to changes, and to direct ones attention where it is needed —
and that without it, thoughtlessness would ensue.

We will see later on in Section 2.3 how these levels come into play in a funda-
mental basis and a proposed reference framework, for describing Computational
Self-Awareness.

2.1.6 Self-Aware Collectives
In her comparison of three distributed and collective biological systems (the
brain, the immune system, and ant colonies), Mitchell [17] elucidates how —
not only individuals, as has been the case until now, but — also collectives
(consisting of individuals) can exhibit apparent global self awareness proper-
ties/capabilities. As she goes on to explain and make her case, she further
elucidates how these apparent self awareness properties are only seen globally
— but not in individuals (which in this case are neurons, ants, or lymphocytes
- also known as white blood cells). The explanation for this, she proposes,
is due to the distributed and statistical nature of this apparent self awareness.
Through the many individual interactions in the collective — self awareness gets
built up bottom-up, and then gets fed back down to the lower-level components
in a top-down-fashion.

Given that this apparent self awareness then was not present in the collec-
tive’s individual components, but in the global collective, as a result of the many
interactions of the lower-level components — we might say that the collectives
exhibit emergent self awareness.

Hence, we can both analyse and describe Self-Awareness capabilities in in-
dividuals, as well as collectives of individuals.

2.1.7 Self-Expression
Lewis et al. [15] argues that self awareness properties alone (i.e. the ability to
continuously acquire, update, and synthesise the self’s models and knowledge
about itself and its experiences) is of limited value, unless it is accompanied
by associated behaviour. As Chandra et al. [4] argue, later on in the same
book — if the self only takes data in, but does not use that data to do any-
thing, then it is essentially a "data-sink". Hence, the accompanying notion
of self-expression is introduced as "behaviour based on self awareness" [15].
This behaviour could be highly dynamic (e.g. enabling self-adaptation, self-
reconfiguration, self-explanation), as well as constituting a more "standard"
system behaviour, where self awareness is not considered at all.

2.2 Self-Awareness in already-existing Comput-
ing Systems

2.2.1 SA-related Computing Systems
2.2.1.1 Self adaptive systems

Run-time adaptation in Computing and Engineering systems is not a new thing,
and this has been of interest across a range of research communities for quite
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some time [4]. The reason for this becomes apparent when one considers the
problem of tackle unforeseen (at least at design-time) operational changes that
can occur during run-time (like e.g. faults).

An agent — in the context of computing systems — can be said to be a
computing system situated in an environment (which it can perceive), having
some goals, and possible actions it can perform (through actuators) to reach its
goals. It can also be informed by some knowledge, and/or directly the signals
it gets from its sensors.

Especially within the engineering of Self-adaptive Systems and Intelligent
Agents, such agents are often designed with properties which can be called Self-
Awareness and -Expression properties — even though these specific terms are
not used.

Notable examples in accordance with the autonomic computing paradigm
([4]) comprise for example ODA (Observe-Decide-Act) loops, originally stem-
ming from the OODA (Observe-Orient-Decide-Act) loop in the military domain.
As the acronym suggests, systems implementing the ODA-loop continually Ob-
serve (their environment and potentially themselves through sensors), Decide
(planned future actions based on current or future states), as well as Act (on
one of those previously planned actions). A schematic of such an ODA-loop can
be seen in Figure 2.1.

ODA MAPE-K

Plan

AnalyseMonitor

Execute

Knowledge
Managed
computing 

system

externally
added on

externally
added on

Observe

Decide

Act

Figure 2.1: Figure of the Self-adaptive Systems ODA (left) and MAPE-K
(right). We also see the externality of the attempts at implementing meta-self
awareness in these systems, in that they simply add on an external Managed
computing system (which is monitoring the rest of the system). Figure reused
from Chandra et al. [4].

Another notable Self-adaptive System we can see in Figure 2.1, is the MAPE-
K architecture (an acronym for Monitor, Analyse, Plan, Execute, and Knowl-
edge). The great and groundbreaking benefits of implementing e.g. ODA-loops
and the MAPE-K architecture, performing online observation and knowledge-
gathering (hence having endowed their systems with some sort of self-knowledge/self
awareness) allowing for online self-adaptation — have been greatly reaped. How-
ever, these architectures have not explicitly considered the psychological origins
of self awareness, and lack some benefits compared to the introduced frameworks
and architecture in Section 2.3.

2.2.1.2 Music technology systems and musical robots

As particularly relevant to the thesis project, endowing Music Technology Sys-
tems with Self-Awareness is of great interest. There have been several such
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approaches, particularly within Interactive and Active Music Systems. One
example includes:

SoloJam: Achieving de-centralized participation (by co-ordinating
and co-operating agents) in a coherent and interactive music system

Historically, the creation and production together with the listening and per-
ception of music has been (and still is) relatively "one-way’ed"; in that the
musicians/artists produce the music, and the fans/listeners consumes the mu-
sic. A growing interest in interactive music (like Guitar Hero etc.) has been
seen the last decades. The authors of the music system SoloJam [3] want par-
ticipants with little or no musical experience and training to be able to play
independently and decentralized (from say an expert) music as a whole, by each
playing solos made from their own devices. Here each of their solos will be slight
variations of the previous participant’s solo. See illustration in Figure 2.2.
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...
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...
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Node 1:
0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0

Node 2:
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

Node 3:
1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 0

1 2 3 4

Figure 2.2: Illustrations: two individual SoloJam example scenarios illustrated
differently.

The solution to how this decentralized, coherent and interactive music system
consist of elements inspired by the Economical Sciences. Namely:

1. Auctions (specifically the Vickrey auction)

2. Utility (profitability/deservedness measure)

The function for utility is given by the expression:

ui =
c

(1 + aDl)(1 + bTl)
(2.1)

It is essential with a properly designed utility function for the system to be-
have coherently e.g. This utility-function is inversely proportional with a) differ-
ences between bidder and auctioneer’s/leader’s rhythm patterns Dl, and b) the
time/#bars the leader has played its rhythm pattern Tl - as well as constrained
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by and applied to a couple of other clauses (to ensure some wanted/avoid some
unwanted effects).

"Shaking"-/"moving"-patterns (as registered/sensed by the devices’ inertial
units) are translated into rhythm patterns - which then are calculated a utility
score (by the function as mentioned above and outlined in more detail in the
paper) for, used as bid in an auction.

The winner of the auction will (when considering knowledge of the leader-
rhythm-pattern, as we do when a = 1.0 instead of 0.0) be those rhythm patterns
which are the closest rhythm-patterns (i.e. not completely equal) to the leader’s
rhythm-pattern (in terms of the Hammings-distance) - assuming e.g. that the
participant didn’t just play before another participant, nor that it had played
its rhythm-pattern for a very long time. In the paper, we then notice how the
authors study how varying degrees of self awareness (a=1.0 versus a=0.0)
affect the overall system dynamics — then in the form of musical coherence, as
well as decentralized circulation.

Musical robots: the Dr. Squiggles
The Dr. Squiggles robots, which are M. J. Krzyzaniak and RITMO’s musical

robots, as e.g. can be seen in Figure 2.3 as they synchronize to each other, have
been used in several music technology systems and projects1 previously.

Figure 2.3: Three Dr. Squiggles robots synchronizing to each other. Photo:
from M. J. Krzyzaniak’s video Squiggles Equilibrium2

SoloJam Island
Combining the two musical systems presented above, Pierre Potel imple-

mented islands of Dr. Squiggles robots in a SoloJam scenario, and hence naming
the novel musical robot system SoloJam-Island3. Corresponding 3D-models of
the Dr. Squiggle robots, for said simulation, were designed by Pierre Potel.

1https://www.uio.no/ritmo/english/news-and-events/news/2021/drsquiggles.html
(accessed 2022.05.17)

2https://www.youtube.com/watch?v=yN711HXPfuY (accessed 2022.05.27)
3https://github.com/67K-You/SoloJam-Island (accessed 2022.05.17)
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2.2.2 Explicit self awareness in computing systems
The extensive interest of studying self awareness in natural fields like psychol-
ogy, sociology, and philosophy might not come as a surprise, as self awareness
primarily is found and exhibited in humans and animals. However, there has
recently been an uptake in interest for explicitly studying self awareness in com-
puting systems.

Recently, (often collaborative) efforts within the computer science & engi-
neering community [12, 14, 15] have lead to a greater systematic understanding
of self awareness, and how it can be used and evaluated within Computing
Systems.

Some of these fields, now explicitly interacting with the notion of self aware-
ness — as they were presented in overviews given by P. R. Lewis et al. [14] and S.
Kounev et al. [12] — include autonomic computing, machine learning and arti-
ficial intelligence, multi-agent systems, self-organizing and self-adaptive systems,
situation-and context-aware systems, reflective computing, model-predictive con-
trol, as well as work from the models@run-time community. But also, fields like
Robotics, complex IT systems, computer engineering, and reflective architec-
turing [14].

Some quite notable research projects and initiatives within computer sci-
ence and engineering, explicitly engaged with the notion of self awareness in
computing has been performed (like the SEEC project at MIT and University
of Chicago, the ASCENS and EAssets/pics FP7 EU Projects, as well as the
SEAMS Dagstuhl Seminars and workshop series) [12].

2.2.2.1 Specific Examples

Cognitive Radios
A — perhaps simpler or minimal — specific instance of a computing system

where Self-awareness have been interpreted and applied, is the so-called cogni-
tive radio. The devices in this system control their own capabilities and moni-
tor other devices’ capabilities through communication with these other devices.
This "enables them to improve the efficiency of communication by negotiating
changes in parameter settings" [14]

CoCoRo: the self aware underwater AUV swarm
More complex self-aware computing systems have also been explored. As

demonstrated by Mitchell [17], also T. Schmickl et al. considers self awareness in
a collective system — an underwater swarm robotic system [28] in this case (see
Figure 2.4). This robot collective shall in this scenario search the sea-bottom
for specific objects of interest (like toxic waste, but also sunken objects e.g.).
Here, the collective/swarm is supposed to e.g. be self-aware of its own state
(of whether it still is searching, or if it has found a target at the bottom of the
sea) — in order to either stay together searching, or communicate to a second
(surface level) swarm that an object of interest is found. Like in Mitchell’s
case, these autonomous underwater vehicles (AUVs) does have emergent self
awareness properties that the individuals themselves do not possess. Therefore,
as the authors say in [28], "Finding such targets will only be efficient if the AUVs
work together."

16



Figure 2.4: CoCoRo: the self aware underwater robotic swarm consisting of
AUVs alternating between completing missions at the seabed and returning to
the surface level basestation. Figure reused from T. Schmickl et al.’s paper [28].

Self-Aware and Self-Expressive Camera Networks
Lukas Esterle et al. [27] has demonstrated how the fundamental concepts

and building blocks of Computational Self-Awareness and Self-Expression can
handle resource-critical- as well as communication- and utility-tradeoffs, main-
taining network topologies, performing distributed object detection, performing
tracking handover, as well as achieving more Pareto-efficient outcomes. They
also believe these capabilities are not exclusive to camera networks — but are
in fact confident these technologies (of computational SA and SE) can enable
"other types of systems and networks to meet a multitude of requirements with
respect to functionality, flexibility, performance, resource usage, costs, reliabil-
ity, and safety" [27].

Increased local neighbourhood self awareness J. Cao et al. [2] found
that as they increased agents’s degree of local neighbour awareness in a multi-
agent reinforcement learning (MARL) scenario, they obtained higher collective
performance and cooperation playing a challenging video game (StarCraft II).

2.3 Designing and Describing Self-Aware Com-
puting Systems

Psychology has served as the basis & main source of inspiration. Here we will
look at a translation of Self-Awareness, from Psychology to Computing. We
will hence look at an introduction of the new notion of Computational Self-
Awareness.
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Translating concepts from the Psychological field into the Computational
field gives rise to rich sources of inspirations (for engineers and researchers who
might not have thought psychologically about designing and describing comput-
ing systems), as well as hopefully clear, structured, principled conceptual tools
to in a consistent manner describe and design so-called Self-Aware Computing
Systems.

2.3.1 Basis and Fundament
Lewis et al. [15] have introduced a basis and fundament for Computational Self-
awareness and Self-expression, that is founded in the psychological literature on
Self-Awareness, as presented in Section 2.1.

More specifically, they base their new notion of computational self aware-
ness on computationally translated versions of the key self awareness concepts
discussed in Subsections 2.1.4, 2.1.5, and 2.1.6, as well as 2.1.7.

First off, public and private self awareness now considers computational
systems, instead of human selves — but these definitions are still the same
(only that now the self is the computational system).

Secondly, Neisser’s five levels of self awareness is now translated by P. Lewis
et al. [15] into five corresponding levels, as shown in Figure 2.5 below.

Private Public

Stimulus awareness

Interaction awareness

Time awareness

Goal awareness

Meta-self-
awareness

Figure 2.5: Translated levels of self awareness from psychology to computer
engineering and robotics. Figure credits: Lewis et al. [15].

Thirdly, computational self awareness can both be considered in individual
agents/computing systems, or in arbitrary agent-collectives (consisting of several
sub-collectives) — as seen in 2.6 below.

Lastly, Computational Self-Expression is similarly defined as (only now for
a computing system as the self ) behaviour based on computational self
awareness.

Kounev & Lewis et al. also gives a definition of Self-aware Computing [12]:
Definition 1.1 Self-aware computing systems are computing systems that:
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Figure 2.6: Collective self awareness schema, as entities can be seen as consisting
of many sub-entities. Figure credits: Lewis et al. [15].

1. learn models capturing knowledge about themselves and their environ-
ment (such as their structure, design, state, possible actions, and runtime be-
havior) on an ongoing basis and

2. reason using the models (e.g., predict, analyze, consider, and plan) en-
abling them to act based on their knowledge and reasoning (e.g., explore, ex-
plain, report, suggest, self-adapt, or impact their environment)

— in accordance with higher-level goals, which may also be subject to change.
The last part of point 1. in Kounev & Lewis et al.’s above definition of self

aware computing systems, mentioning “ongoing basis”, is key. It is not enough
for a computing system to simply possess data or pre-programmed knowledge
to be considered self aware; the computing system needs to be able to collect,
analyze, and learn knowledge from subjective data continually on an ongoing
basis to be considered self aware.

2.3.2 Reference architecture
Chandra et al. introduces their own new Reference Architecture for design-
ing and describing Computational Self-Awareness and Self-Expression [4]. This
abstract and conceptual framework has several advantages. Firstly, it pro-
vides a detailed and fine-grained separation of different self awareness and self-
expression processes — and hence makes design- and engineering-questions eas-
ier and more methodical. Secondly, being a common language, it paves the way
for identifying common architectural patterns used to design Comp. SA- & SE-
systems. Compared to other Self-Adaptive systems, it also includes the notions
of Self-Awareness from the beginning (as the psychology literature suggests SA
capabilities is more innate than simply an add-on). And due to the general and
implementation-agnostic framework, it can be used on a wide variety of agents
systems, or agent-collectives systems.

A schematic of this reference architecture is given below:
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Figure 2.7: Chandra et al.’s [4] rererence architecture for a self aware, and self
expressive, computing system. Figure credits: Lewis et al. [4].

2.3.3 Conceptual framework
Lewis et al. [14] introduces an inclusive and extensive Conceptual Framework,
built and based on the psychological foundation and basis (as well as expanding
on the Reference Architecture), as introduced earlier in this section.

This conceptual framework is based on the following three high-level concepts
and tenets:

1. Levels of self awareness

• Pre-Reflective self awareness — ability to subjectively and uniquely
perceive and experience phenomena in the physical-/social-environment
as well as within itself. A pre-requisite for all other and more ad-
vanced forms of computational self awareness, also implicitly intro-
ducing the notion of subjectivity.

• Reflective self awareness — modelling and conceptualizing vari-
ous knowledge-/awareness-aspects about an object, where the object
is what is modelled, or the sensory observation of it at least.

• Meta-Reflective self awareness — Reflective self awareness
processes about its own self awareness processes. Reasoning and
modelling of the oneself’s own (as well as potentially other systems’)
self awareness properties and processes. Typically its objects are
1) the self awareness (modelling) processes themselves, and 2) the
output of these processes, i.e. the models themselves. And often
the combination (e.g. the memory usage of the learning of an AI
model, versus the accuracy of the model — hence potentially calling
for a change in architecture or algorithm-choice in a self awareness
process) are useful.
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2. Aspects of Reflective and Meta-reflective Self-awareness

• All the different aspects and facets of models being learnt and re-
flected with (like temporal aspects, interactive/causing, identity and
state aspects, behavior awareness, appearance awareness, goal aware-
ness, belief awareness capturing uncertainty and trust-levels, expec-
tation awareness combining belief- and time-awareness).

• Not a comprehensive and large list of requirements a system has to
check off in order to be considered Self-Aware (due to specific context
or system design situations calling for different needs) — but rather a
good starting point for considering the aspects captured in reflective
and meta-reflective self awareness.

3. Domain of Self-awareness, being the combination of the two;

• Span (subject(s) of reflective self awareness, comprising all entities
that contribute to the formation of self awareness)

• Scope (object(s) of self awareness, comprising all the entities observed
by the subject’s self awareness). E.g., in the case of robotics, the
number or amount of neighbouring robots they are aware of and
communicate with.

From [14]:
"Using the intersection of all three tenets, we may produce descriptions of the

specific self awareness of a system. For example, we might construct a sentence
as follows: Peter (span) is aware of Ada’s (scope) goal (aspect) to reduce the
power usage (object). Further, Ada (span) is aware of her own reasoning (meta-
self awareness) about what to do (act) about it."

2.3.4 Challenges & Limitations
Physical constraints like computational processing power, as well as time, lim-
ited attention e.g. are all significant constraints which designers of Self-Aware
and Self-Expressive Computing Systems have to keep in mind.

2.4 Taking inspiration from natural phenomena
The intriguing, diverse, and complex phenomena of nature have for long served
as exciting inspirations to human engineers and researchers [ant-colonies, boids,
swarms, beeclust].

Often times, scientists have drawn inspiration from various scientific fields
— particularly different fields from ones own — into their own field, for various
reasons. Indeed, the translated concepts (from the one domain to the other)
will most likely be accompanied with brand new ways to think about ones own
domain, as well as other domains again interacting with it (hence having a
real opportunity to start a "domino"-like chain-reaction of new ways to think
about things emerging). These new ways to think about things (often in ones
own domain) — apart from being interesting and intriguing — might be useful,
both for ones own field but also for other fields again (especially if thinking
long term). For example in the Multi-Agent Systems (MAS) field, it has been
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a common practice to study complex biological systems in nature, in order to
translate these mechanisms into the technology- and engineering-domain. Such
bio-inspired algorithms have been some of the most widely used optimization
algorithms throughout history, with e.g. the original paper by M. Dorigo et al.
for the ant colony optimization algorithm [6], as of May 2022, having 14 743
citations on Google Scholar. Another example is how D. Goldman et al. [8]
took inspiration from e.g. zebra-tailed lizards able to run up to 5 meters per
second (normally in desert sand) when designing a robot traversing one of the
most challenging terrains to traverse through, granular surfaces like sand that
is. Natural phenomena have then been subject to considerable study and mod-
elling—and have in fact created entire scientific fields in which principles from
various science- & engineering-dicipline are applied to the physical systems and
machines having functions that mimic biological processes, as well as biologi-
cal processes serving as great sources of inspiration for the engineered systems;
Biomimetics4 and Bionics, that is.

One branch of these types of natural phenomena observed and studied are
the biological networks of pulse-coupled oscillators [21, 25]. An example of such
biological pulse-coupled oscillators as found in nature, particularly of interest
for this thesis, is the synchronously flashing fireflies, as e.g. can be seen in a
dark forest in Figure 1.1 in Chapter 1. This phenomenon has inspired scien-
tists like e.g. Mirollo & Strogatz [16] and in later time Kristian Nymoen et
al. [23], to model and replicate this natural phenomenon in human-engineered
systems. Given the periodic and repeating nature of the flashing/firing of the
fireflies, modelling a firefly has been done by looking at each firefly as a peri-
odic signal or oscillator. This work [16, 23] then ties into the broader work on
synchronizing oscillators which has been subject to study for some time now.
What separates Mirollo-Strogatz and K. Nymoen’s approaches from these other
and previous oscillator-synchronizing methods, is mainly that here the oscilla-
tors are pulse-coupled (which the fireflies also can be said to be), as opposed
to the more “standard” and constraining phase-coupled oscillators. Addition-
ally, K. Nymoen’s approach accounts for synchronizing initially heterogenous
frequencies as well.

2.5 Oscillators and oscillatorsynchronization
Oscillators have been used to implement and model a plethora of systems, also
biological ones, ranging from designing the locomotion-patterns of swimming
robot-amphibia through central pattern generators [10], to as we have already
established, modelling synchronously flashing or firing fireflies.

Most importantly for this thesis, an oscillator mainly consists of phase value
ϕ and a frequency value ω, much like in a periodical signal like e.g. sin(ω · t+ϕ).
These particular aspects of oscillators will be explained further now.

2.5.1 Phase and frequency
Much of the terminology from [23] is used here. An oscillator i is characterized
by its phase ϕi(t), which is—at the start of its periodic signal period—initialized

4Nature, https://www.nature.com/subjects/biomimetics (accessed 2022.05.17)
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to 0 and evolves towards 1 at a rate which is called the frequency of the oscillator.
So, in mathematical terms, the frequency ωi(t) is then given by:

ωi(t) =
dϕi(t)

dt
. (2.2)

When oscillator i’s phase is equal to 1 (i.e. when ϕi(t) = 1, or when the
periodic signal period is over), we say oscillator i has phase-climaxed.

An oscillator-period T is defined as the inverse of the oscillator-frequency ω.
In mathematical terms:

T = 1/ω. (2.3)

2.5.2 Phase synchronization
2.5.2.1 Mirollo-Strogatz’s “standard” phase adjustment

One approach having been used to achieve this in the past is Mirollo-Strogatz’s
“Standard” phase adjustment in oscillators [16], as seen a sketch of in Figure
2.8.
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Figure 2.8: A sketch of Mirollo & Strogatz’s “standard” phase adjustment. Fig-
ure credits: K. Nymoen et al. [23].

Each oscillator gets a new phase, ϕ(t+) = P (ϕ(t)), accoring to the phase
update function (2.4) upon perceiving a “fire”-event from one of the other
musical nodes:

ϕ(t+) = P (ϕ(t)) = (1 + α)ϕ(t), (2.4)

where α is the pulse coupling constant, denoting the strength between nodes
[23], t+ denotes the time-step immediately after a “fire”-event is heard, and ϕ(t)
is the old frequency of the oscillator at time t.

So, if e.g. α = 0.1, then a musical oscillator’s new and updated phase,
immediately after hearing a “fire”-signal from another oscillator, will be equal to
ϕ(t+) = P (ϕ(t)) = (1 + 0.1)ϕ(t) = 1.1ϕ(t). 110% of its old phase ϕ(t), that is.

23



Hence, and in this way, the oscillator would be “pushed” to fire sooner than it
would otherwise (as nodes fire once they have reached phase-climax ϕ(t) = 1).
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Chapter 3

Baseline

In this chapter, a particularly important and already existing approach for the
synchronizing oscillators phases ϕ and frequencies ω in oscillator networks is
presented. The type of synchronization, harmonic that is, will be continued to
be used in this thesis and used as the goal state also for the Dr. Squiggle system
at hand. Furthermore, the baseline authors’s synchronization methods will also
serve as a foundation for synchronization experimentation later on, as these are
implemented in the novel Dr. Squiggle synchronization simulator.

In this Active Music System, as shown in Figure 3.1, decentralized harmonic
synchronization of a dynamic and arbitrary number of musical nodes (modelled
as pulse-coupled oscillators) — involving indirect coordination through stig-
mergy, as well as self-awareness through knowledge regarding itself internally
and in publicly in the context of other nodes — is achieved.

This is done by endowing oscillators with self awareness capabilities amongst
other measures, and is achieved by nodes communicating solely through audio
signals. The platform Nymoen et al. achieved this on is shown in Figure 3.1,
as each firefly on their iOS devices initially start flashing unsynchronized and
randomly, but then eventually manage to start firing synchronously1.

Figure 3.1: Decentralized oscillators modelled as fireflies achieving harmonic
synchrony on iOS devices, after starting flashing unsynchronously. Image: K.
Nymoen et al. [23].

As Nymoen designed update functions for synchronizing both phases and
frequencies, not only were their firefly-inspired oscillators endowed with self
awareness capabilities; they were also designed to adjust their phases and fre-
quencies with (close to) 0 change half-way through the oscillator cycle. These

1See video at https://vimeo.com/67205605 (accessed 2022.05.17)
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(close to) 0 changes half-way through oscillators’s cycles enable individual musi-
cal agents to play with different measures (e.g. half or 1/4th as fast) compared
to other individuals—being characteristic for musical interaction with several
musical individuals—as well as enabling the possibility of achieving the target
state of harmonic synchrony (cf. 3.1). Their contribution also differs from pre-
vious approaches in that Nymoen et al.’s fireflies only need to transmit “fire”
signals every other phase climax, not every single phase climax; in other words,
synchronization is achieved despite less communication.

First, the relatively new system target state of harmonic synchrony will be
expounded and explained in 3.1. Then, the aforementioned update functions
for both phase (ϕ) and frequency (ω), explaining the incorporated level of self
awareness as well as how a decentralized collective of pulse copuled oscillators
can achieve harmonic synchrony, are thus presented in 3.2 and 3.3.

3.1 System target state: harmonic synchrony
The state of harmonic synchrony is defined [23] as the state in which all agents in
the musical collective “fire” or “flash”, as described in Subsection 4.1.3, at an even
and underlying interval or pulse, a certain number of times in a row. This is not
to say all agents will have to “fire”/“flash” simultaneously, as has traditionally
been the case for strict synchronization in pulse-coupled oscillators. How legal
and harmonically synchronized oscillator frequencies and phases look like will
be described in this Section.

As one is designing and creating an interactive music technology system, one
might want to encourage and allow for the playing of various musical instru-
ments at various rhythms/paces, as it might be quite boring if all instruments
were played at the exact same measure or pulse. As K. Nymoen et al. [23]
reason while discussing their own interactive “Firefly” music-system as well as
coining the term of harmonic synchrony :

Temporal components in music tend to appear in an integer-ratio relation to
each other (e.g., beats, measures, phrases, or quarter notes, 8ths, 16ths).

and

Being an interactive music system, people may want their device to synchro-
nize with different subdivisions of a measure (e.g. some play quarter notes while
others play 8ths).

Accomodating for these aspects then, K. Nymoen et al. took inspiration
for coining a novel state of synchronization for a decentralized system. This
novel state arose from the concept of harmonics in the frequency spectrum
of a waveform; in that each harmonic wave or overtone has a frequency with
an integer relationship to the fundamental (smallest) frequency in a waveform.
Such a phenomenon, used as inspiration by Nymoen et al. but not as the basis
for any definitions directly, can e.g. be seen in the frequency spectrogram of a
humanly hummed G3-tone, depicted in Figure 3.2b. In said example, one can
observe the presence of harmonics and overtones having frequencies with integer
relationships to the fundamental (smallest) frequency at around 196 Hz, as we
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see the overtones e.g. has frequencies of around 400Hz, 800Hz, and 1600Hz.
We will soon see how such relationships in frequency are used as inpiration for
a new definition of a synchronous state; however, the example in Figure 3.2 is
only meant to give an idea of where this new state of synchronization stems
from, and not as a visual representation of said novel synchrony state.
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audible waveform being a more-or-
less monotone but non-pure G3-tone,
hummed and recorded3by me, as I
tried to repeat the tone in 3.2a with
my voice.

Figure 3.2: Frequency spectrograms of two different-sounding waveforms of
the same G3-tone at 195.99 Hz. Note the absence and presence of harmonics
and overtones in waveform 3.2a and 3.2b respectively, as well as the integer-
relationships between the fundamental (lowest) frequency and the harmonics in
3.2b. Frequencies in a harmonically synchronized oscillator collective will for the
first phase synchronization problem resemble the frequencies in 3.2a, where all
frequencies are equal and constant. Conversely, when frequencies can initially
be heterogenous and unequal, as in the phase and frequency synchronization
problem, the frequencies in a harmonically synchronized oscillator collective
will rather resemble, although not completely correspond to, the frequencies in
3.2b, where higher frequencies with integer relationships to the fundamental and
lowest frequency can be present at the same time.

More accurately then and inspired by integer relationships in waveforms,
although not exactly analogus to the example above in Figure 3.2, Nymoen et
al. describe legal frequencies the oscillator frequencies has to lie within to be
considered harmonically synchronized. Frequencies have to lie within

ω0 · 2N0 , (3.1)
2https://www.szynalski.com/tone-generator/ (accessed 2022.05.17)
3https://github.com/theRealSherapat/CompSA/blob/main/CollectedData/Audio/G3_

196Hz_humming.wav (accessed 2022.05.22)
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where ω0 represents the smallest oscillator frequency in the oscillator collec-
tive, and N0 are the natural numbers including the number zero.

Note that the only difference between Nymoen’s definition of legal oscillator
frequencies and the spectrogram example depicted in Figure 3.2 lies in that
for the legal frequencies as defined in (3.1), higher frequencies can only have
doubling integer relationships with the lowest fundamendal frequency (e.g. twice
or four times as high), whereas the frequencies of the harmonics seen in the
humanly hummed G3 tone (3.2b) additionally had all other positive integer
relationships (e.g. three or five times as high) with the fundamental frequency.

3.1.1 Detecting harmonic synchrony
In order to test and evaluate synchronization performance in their firefly-inspired
oscillator-system, K. Nymoen et al. [23] develop a measurement used to detect
when the system has reached a state of synchrony. Using the firings of the
fireflies, some key and well-defined conditions have to be met in order for the
fireflies to be deemed harmonically synchronized :

Harmonic synchronizaton conditions:

Condition 5): Firing may only happen within a short time period tf .

Condition 6): Between each tf , a period tq without fire events must be
equally long k times in a row.

Condition 7): All nodes must have fired at least once during the evalu-
ation period.

Visually, these requirements are shown in Nymoen’s sketch for detecting
harmonic synchrony in Figure 3.3.
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Figure 3.3: Requirements needing to be fulfilled in order to have achieved the
target state of harmonic synchrony in an oscillator (here meant by “node”) col-
lective. Image: K. Nymoen et al. [23].

Steps 1) - 4) are means to achieve 5) - 7).
In summary, by utilizing transmitted firings or pulses from the robots in

our robot collective, the aforementioned harmonic synchrony conditions can be
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enforced and checked throughout the synchronization process, in order to detect
if, and in that case when, the oscillator network becomes harmonically synchro-
nized. The time having passed from the start of the synchronization-process
until the detection of harmonic synchrony will then be defined as the perfor-
mance score, indicating how fast or slow the oscillators are at synchronizing.

These harmonic synchrony requirements, as well as Nymoen’s schema in Fig-
ure 3.3, thus constitutes a blueprint for the design of a performance or synchrony
measure able to detect the achievement of harmonic synchrony in a decentral-
ized network of pulse coupled oscillators “firing” pulses in order to synchronize to
each other; which is exactly what’s implemented in this thesis’s synchronization
system to be explained further in Chapter 4.

3.2 Phase synchronization
In their firefly system, synchronization of the phase values ϕ, representing where
the oscillator are in their cycles (e.g. in the start or end of its period), is achieved.
By utilizing bi-directional phase shifts, oscillators depending on being in the first
or second half of its phase cycle, i.e. ϕ < 0.5 or ϕ > 0.5, adjust their phases by
either subtracting from the phase, or adding to it. This they do based on their
phase update function, P (ϕ), as shown in (3.2).

3.2.1 Problem statement
In this first and more simple synchronization problem, which we call the phase
(ϕ) synchronization problem, we assume homogenous and already-synchronized
frequencies ωi = 1Hz for all oscillators i. The oscillator collective hence only
has to synchronize phases ϕi for all oscillators i, which are initially uniformly
random phase values ∈ [0, 1]. Hence, phase adjustments are needed in order to
synchronize phases in the pulse coupled oscillator collective.

3.2.2 Synchronizing phases via phase adjustment
K. Nymoen’s bi-directional phase adjustment

Apart from altering a similar phase adjustment function to the likes of
Mirollo-Strogatz’s phase adjustment function (2.4) sketched in Figure 2.8, K.
Nymoen et al. [23] introduces an example of a bi directional phase adjustment
method. This they do mainly so that their phase adjustment (Adjϕ) method
would cooperate well with their system’s frequency adjustment, in order to
achieving their target goal of harmonic synchrony. The difference between a
bi directional method of phase synchronization and a one directional one is
that using bi directional phase adjustment, oscillators are simply adjusting each
other’s phases in an excitatory way; they only “push” other ocillators’s phases
further or higher (positive updates) when firing themselves, never “holding” or
“dragging” them back (negative updates).

Hence, this newer approach to phase adjustment works very similarly to
the phase adjustment performed in the “standard” Mirollo-Strogatz approach
presented earlier; the only difference being that now, oscillators update their
phases with the slightly more complex phase update function (3.2) when
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hearing a “fire”-event from one of the other musical nodes — allowing for both
larger, but also smaller, updated phases compared to the old phases:

ϕ(t+) = P (ϕ(t)) = ϕ(t)− α · sin(2πϕ(t)) · |sin(2πϕ(t))|, (3.2)

where t+ denotes the time-step immediately after a “fire”-event is heard, and
ϕ(t) is the old frequency of the oscillator at time t.

The fact that new and updated phases can both be larger, but also smaller,
compared to the old phases, is exactly what’s meant by the phase-adjustment
being bi-directional , or as the authors call it in the paper as using both exci-
tatory and inhibitory phase couplings between oscillators [23].

The effects then of adjusting phases—upon hearing “fire”-events, according to
this newest update-function (3.2)—are that the nodes’s updated phases ϕ(t+),
compared to their old phases ϕ(t), now get decreased if ϕ(t) is lower than 0.5,
increased if ϕ(t) is higher than 0.5, and neither—at least almost—if the phases
are close to 0.5. This is due to the negative and positive sign of the sinewave-
component in Equation (3.2), as well as the last attenuating factor in it of

|sin(2πϕ)| ≈ |sin(2π 1
2
)| = |sin(π)| = |0| = 0, then if we have ϕ(t) ≈ 0.5 =

1

2
.

3.3 Phase and frequency synchronization
Nymoen also achieved synchronizing the frequency values ω of oscillators, being
the speed at which the oscillator cycles through its cycle or oscillator period at
(cf. (2.2)).

This they managed to do by as mentioned and amongst other measures
implementing an aspect of self awareness in terms of a synchrony self assessment
s(n) given “fire” event n, representing how much or out of sync an individual
robot is.

It will then, having taken into account some middle steps as explained below,
use this self assessed sync score s(n) to obtain a frequency adjustment contribu-
tion H(n) for “fire” event n, which will tell in what direction and how much the
frequency should be adjusted. As many such H(n) values will be calculated and
accumulated in a firefly as said firefly hears fire events throughout its oscillator
period / cycle—before they are used for frequency updating at the end of the
cycle. This way of performing frequency updates are inspired by Werner-Allen’s
reachback firefly algorithm (RFA), simply meaning updates are postponed until
the end of the cycle instead of happening immediately as a fire event is received.

Now the system used for comparison later on in the synchronization simu-
lator is explained further in detail.

3.3.1 Problem statement
In this second and more challenging synchronization problem, which we call
the phase and frequency (ϕ&ω) synchronization problem, we no longer
assume homogenous and already-synchronized oscillator frequencies like in the
first phase (ϕ) synchronization problem when all frequencies were fixed to 1Hz.
Now, the oscillators’s frequencies are initialized to uniformly random frequencies
ωi within a certain minimum initial frequency ωinit

min (e.g. 0.5Hz) and maximum
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initial frequency ωinit
max (e.g. 4Hz). Hence, the problem is now more complex;

the oscillator collective not only has to synchronize all initially random phases
ϕi as above, but simultaneously, also all initially random frequencies ωi for all
oscillators i as well. Hence, both phase and frequency adjustments are needed in
order to synchronize both phases ϕ and frequencies ω in the oscillator collective.

3.3.2 Synchronizing frequencies via frequency adjustment
Only one frequency adjustment / update function was used as a starting point
for this thesis and eventually implemented in the Unity synchrony simulator.
This one frequency synchronization method, as invented by Nymoen et al. [23],
is now presented.

K. Nymoen’s frequency adjustment
This approach to frequency adjustment in pulse coupled oscillators, in order to
achieve synchronized frequencies, stands in contrast to previous approaches of
synchronization where oscillators frequencies are either equal and fixed, oscilla-
tors have to send out a pulse every oscillator cycle, or they do not include any
explicit self awareness capabilities. This is not the case for Nymoen’s frequency
adjustment.

In order to achieve harmonically synchronized and “legal” oscillator frequen-
cies (cf. 3.1) in the oscillator collective, not only the phases (ϕ) have to be
adjusted and eventually synchronized; frequencies (ω) also have to be synchro-
nized through frequency adjustment.
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Figure 3.4: An illustration of how frequencies are adjusted after each phase cli-
max (i.e. ϕ = 1) using Nymoen et al.’s frequency update function. Reproduced
from [23].

When it comes to the temporality and timing of when these update functions
are used and applied; Musical agents’s phases get updated/adjusted immediately
as “fire” events are perceived, whereas agents’s frequencies do not get updated
until the end of their oscillator-cycle (i.e. when having a phase-climax ϕ(t) = 1).
This is also the reason why frequencies are updated discretely, not continuously.
So-called H-values however, being “contributions” with which the frequencies
are to be updated according to, are immediately calculated and accumulated
when agents are perceiving a “fire” event — and then finally used for frequency-
adjustment/-updating at phase-climaxes.

Each oscillator i updates their frequency, on their own phase-climax (i.e.
when ϕi(t) = 1), according to the frequency-update function ωi(t

+):

ωi(t
+) = ωi(t) · 2F (n), (3.3)
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where t+ denotes the time-step immediately after phase-climax, ωi(t) is the
old frequency of the oscillator at time t, and F (n) ∈ [−1, 1] is a quantity denoting
how much and in which direction an oscillator should update its frequency after
having received its nth “fire”-signal.

The following steps is how the aforementioned F (n) value is found:

Step 1: the “in/out-of synch” error measurement / score, ϵ(ϕ(t)) De-
scribing the error measurements at the n-th “fire”-event, we introduce an error
measurement function.

The error measurement function value (3.4) is calculated immediately by
each oscillator i, having phase ϕi(t), when a “fire” event signal from another
oscillator j, j ̸= i is detected by oscillator i at time t.

ϵ(ϕi(t)) = sin2(πϕi(t)) (3.4)

As we can see from this error-function, the error-score is close to 0 when
the oscillator phase ϕi(t) is itself close to 0 or 1 (i.e. the oscillator either just
fired/flashed, or is about to fire/flash very soon). This implies that if it was
only short time ago since we just fired, or conversely if there is only short time
left until we will fire, we are not much in error or out-of-synch.

The error-score is the largest when an oscillator perceives a “fire”-signal while
being half-way through its own phase (i.e. having phase ϕ(t) = 0.5). We
could also then ask ourselves, does not this go against the main/target goal of
the system, being harmonic synchrony — if agents are allowed to be “half as
fast” as each other? We could imagine a completely “legal” and harmonically
synchronous scenario where two agents have half and double the frequency of
each other. The oscillator with half the frequency of the faster oscillator would
then have phase ϕ(t) = 0.5 when it would hear the faster oscillator “fire”/“flash”
— leading to its Error-score ϵ(0.5) = sin2(π/2) = 1, which then makes it seem
like the slower oscillator is maximally out of synch, when it is actually perfectly
and harmonically synchronized. This calls out for an attenuating mechanism
in our frequency update function, in order to “cancel out” this contribution so
that perfectly harmonically synchronized agents will not be adjusted further
despite their high Error-measurement. As we will see below, exactly such an
attenuating mechanism is utilized in our frequency-adjustment method.

This error-measurement/-score forms the basis and fundament for the first
component of self-awareness, being the self-assessed synchrony-score s(n).

Step 2: The first self-awareness component, s(n) This aforementioned
self-assessed synchrony-score, s(n), is in fact simply the median of error-scores
ϵ.

If we then have a high s(n)-score, it tells us that the median of the k last
error-scores is high, or in other words that we have mainly high error-scores
— indicating that this oscillator is out of synch. Conversely, if we have a low
s(n)-score, indicating mainly low error-scores for the oscillator — then we have
an indication that the oscillator is in synch, hence leading to low error scores,
and in turn low s(n)-scores.
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In other words, each oscillator hence has a way to assess themselves in how
much in- or out-of-synch they believe they are compared to the rest of the agents.
This is then the first level of self-awareness in the design.

Step 3: frequency update amplitude- & sign-factor, ρ(n) Describing
the amplitude and sign of the frequency-modification of the n-th “fire-event”
received. It is used to say something about in which direction, and in how
much, the frequency should be adjusted.

ρ(ϕ) = −sin(2πϕ(t)) ∈ [−1, 1] (3.5)

For example, if an oscillator i has phase ϕi(t) = 1/4, it gets a value ρ(1/4) =
−sin(π/2) = −1; meaning, the oscillator’s frequency should be decreased (with
the highest amplitude actually) in order to "slow down" to wait for the other
nodes. Conversely, if an oscillator j has phase ϕj(t) = 3/4, it gets a value
ρ(3/4) = −sin(3/2π) = −(−1) = 1; meaning, the oscillator’s frequency should
be increased (with the highest amplitude) in order to getting "pushed forward"
to catch up with the other nodes.

Acts as an attenuating factor, when ϕ(t) ≈ 0.5, in the making of the H-value
— supporting the goal of harmonic synchrony.

Step 4: the H-value, and the H(n)-list The following value, acting as
“frequency update contributions”, is then as previously mentioned calculated
immediately after the oscillator perceives another oscillator’s “flashing” signal:

H = ρ · s (3.6)

Here we then multiply the factor ρ(n) representing how much, as well as in
which direction, the oscillator should adjust its frequency, together with a factor
s ∈ [0, 1] of the adjusting oscillator’s self-assessed synch-score. This implies that
H ∈ [0, ρ(n)]. We hence see that the smallest value H(n) can take for the nth
“fire”-event is -1, which it does when ϕ = 0.25 and s = 1. The highest value
it can take is 1, which it does when ϕ = 0.75 and s = 1. We can also see
that even though the self-assessed synch-score s(n) (i.e. the median of error-
scores) is high and even the maximum value of 1, thus indicating consistent
high error-scores (judging by error-function (3.4)) — the “frequency-update-
contribution” H(n) can in the end be cancelled out, as alluded to before, if in
fact the amplitude- & sign-factor ρ(n) is equal to 0. Hence, if we have two agents
then where the one is twice as fast as the other, and we accept the H(n)-value as
the “frequency-update-contribution”, the slower oscillator which will hear “fire”-
events consistently when it has its phase ϕ ≈ 0.5 (if the agents are synchronized)
will, even though it gets a high out-of-synch score s ≈ 1, not “be told” to adjust
its frequency more by getting a large “frequency-update-contribution”, but in
fact “be told” not to adjust its frequency more due to the small or cancelled-out
“frequency-update-contribution.”

To recall, the self-assessed synch-score s(n) tells an adjusting oscillator how
in- or out-of-synch it was during the last m perceived “fire” events — where
s(n) = 0 signifies a mean of 0 in error-scores, and s(n) = 1 signifies a mean of
1 in error-scores. So then if this H-value is to be used to adjust the nodes’s
frequencies with, the frequency will then be adjusted in a certain direction
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and amount (specified by ρ(n)) — given that the oscillator is enough “out of
synch”/“unsynchronized” (in the case s(n) is considerably larger than 0).

The H-value says something about how much out of phase the oscillator
was at the time the oscillator’s nth “flashing”-signal was perceived (and then
followingly how much it should be adjusted, as well as in which direction after
having been multiplied together with a sign-factor ρ(n)), given then that this
H-value also consists of the self-assessed synch score s(n) — which again simply
was the median of error-scores.

We could look at this H-value as representing the direction and amplitude
of the frequency adjustment weighted by the need to adjust (due to being out
of synch) at the time of hearing “fire” event n. Or in other words, this H-value
is then the n-th contribution with which we want to adjust our frequency with.

Especially interesting cases are when we have ϕ(n) ≈ 0.5 =⇒ ρ(n) ≈ ±0, as
well as the last m Error-scores ϵ(n) being close to 0, also leading to s(n) ≈ 0. In
both of these two cases the entire frequency-adjustment contribution H would
be cancelled out, due to harmonic synchronization (legally hearing a “fire” event
half-way through ones own phase) in the first case, and due to not being out
of synch in the latter (having low Error-Measurements). Cancelling out the
frequency adjustment contribution in these cases is then not something bad,
but something wanted and something that makes sense. If these H-values then
are cancelled out or very small, it is indicative of that nodes are already in
harmonic synchrony, and hence should not be “adjusted away” from this goal
state. On the other side, if these H-values then are different (e.g. closer to -1
and 1), it is indicative of that nodes are not yet in harmonic synchrony, and
that they hence should be “adjusted closer” to the goal state.

The final step: the frequency update function, ωi(t
+) Now, we can pull

it all together, for Nymoen et al.’s Frequency Adjustment approach for achieving
harmonic synchrony with initially randomized and heterogenous frequencies.

When an oscillator i has a phase-climax (ϕi(t) = 1), it will update/adjust
its frequency to the new ωi(t

+) accordingly:

ωi(t
+) = ωi(t) · 2F (n), (3.7)

where t+ denotes the time-step immediately after phase-climax, and F (n) is
found by:

F (n) = β

y−1∑
x=0

H(n− x)

y
, (3.8)

where β is the frequency coupling constant, y is the number of heard/received
“fire-event”s from the start of the last oscillator period to the end (i.e. the phase-
climax, or now) — and the rest of the values are as described above.

This F (n)-value then, as we see in Equation (3.8), is a weighted average
of all the oscillators’s H(n)-values accumulated throughout the oscillator’s last
cycle.
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Chapter 4

Implementation and
experimental setup
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Figure 4.1: Schema: the musical robot collective entraining to synchronize to
each other, or more specifically to achieve harmonic synchronization, through
performing phase & frequency adjustments. Robots that are not firing at the
moment will adjust themselves after hearing a transmitted “fire” / adjustment
signal from a neighbouring firing robot.

Envision a decentralized (i.e. no central control) multi-agent collective sce-
nario consisting of musical robots modelled as oscillators. These are solely
communicating through brief “fire”-like audio-signals—greatly inspired by Ny-
moen’s synchronizing “fireflies”. They are not initially synchronized in their
firing of audio-signals; but as time goes, they are entraining to synchronize to
each other by adjusting their phases and frequencies when/after hearing each
other’s audio-/fire signals. If they then, after some time of listening to each
other and adjusting themselves accordingly, succeed in becoming synchronized
— we then will eventually see “fire”-events/-signals line up at an even underlying
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pulse or rhythm. Examples and demonstrations of this process are depicted in
Figure 4.1 as well as in Figure 1.2 in Chapter 1.

This chapter gives an overview of the developed musical multi-robot sys-
tem1, already existing methods implemented for it, as well as the performance
measurement used to evaluate these methods with. The main goal of the im-
plemented system is to allow for individual musical agents in a musical multi-
agent collective to interact with each other, in order to achieve emergent and
co-ordinating behaviour—in our case synchronization—with varying degrees of
self-awareness, collective-sizes, and of difficulty and certainty in the environment
and communication. More specifically, the goal with the design is to enable the
robot collective to achieve so-called harmonic synchronization (cf. 3.1) within a
relatively short time. Exactly what is meant by harmonic synchronization will
be expounded in Section 3.1.

These goals firstly require of the agents the modelling of oscillators with their
properties, like phase and frequency, as explained further in Subsection 4.1.2.
To allow for interaction and communication between the agents, mechanisms so
that the agents can transmit “fire” signals, as well as listen for other agents’s
“fire” signals, is necessary as well, and is presented in Subsection 4.1.3.

Firstly, the newly developed synchrony simulator and its components will
be presented and expounded in detail. Then, already existing methods imple-
mented in the novel synchronization simulator for achieving the system target
goal of harmonic synchrony will be described. How the system target state of
harmonic synchrony is detected in the synchronization simulator will then be
described in Section 4.4.

4.1 Simulator setup: the musical multi-robot col-
lective

Unity2 is originally a game development platform, but can also be used to create
complex and interactive simulations. Apart from enabling the design, imple-
mentation, and testing of various synchronization paradigms and methods—the
results of this synchronization can also be clearly and visibly be seen and heard,
as showcased in the introductory Figure 1.2 as well as in the video link seen in
the corresponding Figure caption.

4.1.1 The simulator environment and its hyperparameters
Hyperparameters further explained

tdynref : Roboticists like e.g. K. Konishi and H. Kokame [11] suggest that by
reducing the time oscillators in wireless sensor networks are active (i.e. increas-
ing inactive time), power usage can also be reduced—something which makes
oscillator systems last longer as well as being better for the environment in the
end. Hence, a as large tref or tdynref as possible, seems to have some real benefits
in real systems.

1https://github.com/theRealSherapat/CompSA (accessed 2022.05.29)
2Unity Version 2021.2.0f1 is used in the developed simulator.
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Notation Definition
ri Individual musical robot i.
R Musical robot collective consisting of all robots ri.
ϕi Phase of ri’s oscillator component.
ωi Frequency of ri’s oscillator component.
sim s Simulation seconds. The unit of measurement, w.r.t. to time,

used in the thesis and simulation. Simulation time does not
always correspond to real / physical time, depending on how
fast the hardware is able to run the simulations.

Table 4.1: Notation and terminology used throughout the thesis for system
components.

4.1.2 The individual agent: a musical robot
As introduced and presented earlier in 2.2.1.2, our musical robot collective will
then consist of models of M. J. Krzyzaniak and RITMO’s Dr. Squiggles.

The aforementioned (cf. 2.2.1.2) 3D-models of these Dr. Squiggles robots
for simulation are reused, with permission, for the simulation system designed
in this thesis project. They can e.g. be seen in the introductory Figure 1.2.

Every musical robot or node have certain components, attributes, and char-
acteristics that make it what it is. Such include an oscillator-component, con-
sisting of the agent’s oscillator-phase ϕ and oscillator-frequency ω. Notions like
“agent”, “robot”, “firefly”, and “oscillator” will be used interchangeably through-
out the thesis. The agents have an input-mechanism for hearing/detecting trans-
mitted “fire”-event signals from other agents, as well as an output-mechanism
for transmitting or playing such “fire”-/adjust-signals or tones, as is illustrated
with the microphone and megaphone respectively in Figure 4.1.

In order to be able to analyse the musical scenario within which they are
situated (self-assessment), as well as for adapting their musical output accord-
ingly (self-adaptation), the agents are to some extent endowed with artificial
intelligence and self-awareness capabilities. The robots are self-aware of their
own phase and frequency, but are unaware of other agents’s true phases and
frequencies. They also possess the self-assessment capability of evaluating how
much in- or out-of-synch they are, as seen in the greater context of the entire
robot collective. When the agents hear the transmitted “fire”-/adjust-signals,
the agents are intelligent enough to adjust themselves in the direction of the
system goal/target state.

Unless otherwise is stated, the heterogenous visual looks of the Dr. Squiggles
robots in Unity have no real difference in the simulator and is only that (for
visual looks), not implying other values or methods used.

4.1.3 Robot communication: the “fire”-signal
Signals, in various forms, are omnipresent in our world, whether we notice it
or not. They are used for guidance: e.g. traffic-lights send visual light-signals
to drivers to ensure traffic-flow and collision-avoidance; sirens and alarms fire
away with the loudest of audio-signals (sounds) so that its listeners will get out
of harms way; our nerves send pain-signals through our nervous-system if we
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Hyperparameter Meaning
|R| Musical robot collective size, where R (as defined above)

is the set of all musical robots ri , i = 1, 2, ... , |R|.
Adjϕ The adjustment method, or update function if you will,

used for synchronizing phases ϕ.
Adjω The adjustment method, or update function if you will,

used for synchronizing frequencies ω.
tref The time (sim s) robots are unresponsive to adjusting

themselves (as a consequence of hearing other robots
firing) directly after firing themselves.

tdynref Dynamic refractory period. Same as tref , only that now
the refractory period is given as the percentage of robot
ri’s oscillator period (e.g. 10% of 1/4Hz = 0.25s, i.e.
0.1∗0.25s = 25ms, if the oscillator frequency ωi = 4Hz).

tf Legal firing time during which robots ri are allowed to
fire when being detected harmonic synchrony for. Con-
dition 5) harmonic synchrony detection requirement (cf.
3.1.1 in Chapter 3).

k Condition 6) harmonic synchrony detection requirement
(cf. 3.1.1 in Chapter 3).

tmax Maximum time limit given to musical robot collectives
during which the collective might achieve the target
state of harmonic synchrony during, unless they are ter-
minated and deemed “synchronization fails.”

ωinit
min Minimum initial oscillator frequency a robot’s frequency

can be assigned at the start of simulations.
ωinit
max Maximum initial oscillator frequency a robot’s fre-

quency can be assigned at the start of simulations.

Table 4.2: The environmental and collective hyperparameters present and used
for the synchronization simulator in Unity.

touch something burning hot to ensure we do not damage our hand severely.
If you have ever tried to make a scary sound to scare away an animal—like a
cat or crow—they might in fact flee from you if they think your audible signal
was scary enough for them. In this specific case, for our musical robots in the
musical synchronization simulator, signals will signify calls for adjustment (of
oscillator phases ϕ and frequencies ω to be specific).

These aforementioned audio-signals, also referred to as “fire” signals, “flash”-
signals, or adjust-signals, are transmitted whenever an agent’s oscillator peaks
or climaxes (i.e. after its cycle or period is finished, having phase ϕ(t) = 1) —
or actually after every second peak, as a way (discovered by K. Nymoen et al.
[23]) to attain the system target goal of harmonic synchrony, to be elaborated
upon in Section 3.1.

The “fire” signals are short and impulsive tones that the agents output
through their loudspeakers. These short audio-signals/sounds “wildly” transmit-
ted or played into the environment are then the only means of communication
within the multi-agent collective, implying that are agents are pulse-coupled,
not phase-coupled, oscillators. In other words, our agents will communicate
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Hyperparameter Meaning
α Phase coupling constant. The larger the α, the more a

robot adjusts its phase when hearing “adjustment sig-
nals” from neighbouring robots.

Adjϕ Phase adjustment method used to synchronize phase
values ϕ with.

β Frequency coupling constant. The higher the β, the
more robots adjust their frequencies ωi.

Adjω Frequency adjustment method used to synchronize fre-
quency values ω with.

m Error memory length. The larger the m, the more error
scores ϵ robots remember with which they use in their
calculation of the self assessed sync score s.

ks Integer number of nearest neighbour robots that are
within a robot’s self awareness scope, and hence telling
how many neighbour robots a robot listens to for fire
events.

ds Physical radius (in Unity units) around a robot where
robots closer to the robot than ds are within said robot’s
self awareness scope, and hence telling how far out from
itself a robot listens for neighbours’s fire events.

Table 4.3: The hyperparameters possible to alter for the individual musical
robots in the synchronization simulator in Unity.

and co-ordinate with each other through the very typical multi-agent system
concept of stigmergy.

When an agent detects a “fire”-/adjust-signal, the agent will adjust its own
oscillator-properties (phase ϕ and frequency ω), depending on which type of
problem the agents are to solve. No individual agent is directly able to adjust
or modify the state or properties of any other agent, only its own.

4.1.3.1 Under the hood in the simulator

Three distinct self awareness scope (cf. Domain in 2.3.3) scenarios are imple-
mented for each individual musical robot in Unity:

1. ks nearest neighbours self awareness scope: Each individual robot
hears the ks nearest neighbouring robot’s “fire” signals (cf. 4.1.3). In this
scenario, at least for small ks values, robots can have more limited and
local knowledge.

2. Radial ds self awareness scope: Each individual robot hears neigbour-
ing robots’s “fire” signals within a radius ds around it. In this scenario,
robots’s self awareness scope is more focussed on the spatial locations of
other robots, and can also simulate the robot only hearing robots close in
space to itself.

3. Global self awareness scope: Each individual robot hears all other
neigbouring robots’s “fire” signals. In this scenario, robots have maximum
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and global knowledge when it comes to awareness of other neighbouring
robots.

In this way, the degree to which robots are self aware of or communicating
with other robots is increasing. The effects of increasing or decreasing this
degree of self awareness are shown in Chapter 5, and especially in 5.1.4 and
5.2.2.

4.1.3.2 Audible to human simulator observer

Fire signal design The fire signal audible to the human observer watch-
ing and listening to the musical robots synchronizing to each other should be
distinct and short enough so that one can clearly distinguish between which
robots are firing and when. At the same time, the firing-sounds should to the
human observer not be too sharp and loud to listen to so that it is uncom-
fortable observing the musical robot collective. Keeping these aspects in mind,
some relatively soft and pleasant firing-sounds from an instrument usually as-
sociated with harmonious music—the harp—were produced and developed for
the synchronization simulator.

Some manually and empirically perceived harmonious (in terms of sound-
ing good when played together) musical tones were digitally reproduced and
recorded in the form of harp plucks. This was achieved using the music-making
system and digital synthesizer LMMS, and a digital string-instrument in the
form of a LMMS-plugin from DSK Music3. The musical tones, perceived to be
harmonious when being heard simultaneously and reproduced with the digital
harp instrument, were some of the very first tones perceived in the intro of Pogo’s
song “Strangerous4.” One possible avenue to explore in order to find harmonious
chords or tones—when played together—in a more automatic approach, live and
online during simulation, is discussed in Further work in Chapter 6.

However, the harp-sounds produced with DSK’s LMMS-plugin are primar-
ily long and constant harp plucks, as shown in Figure 4.2a. Using such harp
plucks as a fire-sound directly can make it hard to distinguish to the human
ear when multiple robots are playing these frequently and simultaneously. The
harp-sounds thus need to be slightly edited—which they in our implementation
were in the audio-editing program Audacity—so that the long and constant
harp pluck became more of a “quick” and distinguishable (when played often by
several agents) “sound-bullet” — essentially what we want in a solid “fire” signal
sound. The “before” and “after” of such an audio-editing process is depicted in
Figure 4.2. Edits performed on waveform 4.2a to obtain waveform 4.2b consists
of effects like “Fade Out”, to dampen the sound in the tail of the waveform and
get a shorter sustain as it is called, and hence obtaining a “quicker” sound. It
also includes, in the complete beginning, the “Amplify” effect, in order to get
a as high “attack” or maximum amplitude as wanted to make the fire-sound
audible enough before it quickly decays. And lastly, obviously it was needed to
cut the waveform accordingly, specifically from the time it had amplitude ≈ 0
to the end of the waveform.

3https://www.dskmusic.com/dsk-world-stringz-updated/ (accessed 2022.05.17)
4https://www.youtube.com/watch?v=cRzcsXDBn8g (accessed 2022.05.17)
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(a) An unedited and pure harp sound (stereo audio waveform).

time (s)
0s 1.2s0.65s

1.0

0.0

-1.0

1.0

0.0

-1.0

le
ft

 c
h
an

n
el

ri
g
h
t

ch
an

n
el

A
m

p
lit

u
d
e

(b) The pure harp sound from 4.2a transformed into a fire signal.

Figure 4.2: Here we see the starting point and end result of a fire sound design
process, where the longer and pure harp sound in 4.2a got edited and trans-
formed into the more rapid fire sound in 4.2b.

Frequency based fire-sound assignment Given that our developed system
is not simply a synchronization-system, which could have been implemented
with simpler electrical circuits e.g. [11], but also a musical robot system — the
display and expression of the robots synchronizing and becoming synchronized
should have a musical dimension, as well as providing a clear way to see whether
the robots are getting synchronized or not. Therefore, a musically interesting
and meaningful way of signalizing the synchronization process was needed. The
answers to the question of what is different between robots throughout the
simulation plays a key part here; namely, e.g. the robot’s oscillator frequencies.
Different musical tones were recorded (again with a harp instrument) and later
edited into “fire” signals, as described above, with various signal lengths given
their pitch. The idea was to assign, online and dynamically throughout the
simulation run, “fire”-signal-transformed musical tones with higher pitch (or
waveform frequencies) to musical robots with the highest oscillator frequencies
in the robot-collective. This is done by calculating a frequency percentage ω%

a given robot ri has, as in the formula given in 4.1 and visually in Figure 4.3.

ω% =
ωi − ω0

ωmax − ω0
, (4.1)

where ωi is the oscillator frequency of robot ri, ω0 is the fundamental or
smallest oscillator frequency currently in the robot collective, and ωmax is the
highest oscillator frequency currently in the robot collective.
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Figure 4.3: Schema of frequency based fire signal assignment in an example
where four fire sounds with increasing frequency or pitch exist, and the robot is
assigned the second lowest due to its oscillator frequency ωi.

This percentage is then used in a manner like in the schema given in Figure
4.3, where the frequency percentage ω% is decides in which region, corresponding
to a lower or higher pitch fire sound, the robot’s frequency belongs to. Hence,
robots are assigned fire sounds with higher pitch or frequency the higher fre-
quencies the robots themselves have, and similarly fire sounds with lower pitch
or frequency the lower oscillator frequencies the robots have.

4.1.3.3 Robot instansiation

Robots are spawned randomly in the Unity scene within a circle from origo
until a certain radius according to the empirically found, through trial and
error, formula for not too crowded robot collectives in (4.2).

radiusspawn =
|R|
6
· rwidth + 4, (4.2)

where rwidth = 5.7 is the measured physical width or diameter in Unity of
an individual robot r, and the term 4 simply is to add a bit more space to avoid
crowding. The simple model was found through trial and error, and will make
the robots spawn kind of like in a round pool of water.

4.2 Synchronizing oscillator phases
If we first assume constant and equal oscillator frequencies in our agents, we
can take a look at how the agents adjust their initially random phases in order
to synchronize to each other. Examples of how phase synchronization can look
are given in Figure 4.4 and 4.5. A more formal requirement and definition for
phases to be deemed harmonically synchronized is also given below.

For both of the implemented phase synchronization methods, Mirollo & Stro-
gatz and Nymoen’s, the timing of when the update functions are used and ap-
plied is the same; Musical agents’s phases get updated immediately as “fire”
events from neighbouring robots are perceived.

Legal phases definition:
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In an oscillator collective with heterogenous oscillator frequencies ωi, os-
cillator phases ϕi are harmonically synchronized when all oscillators’s phase
climaxes (i.e. ϕ = 1) or resets (i.e. ϕ = 0) occur exactly Tmin · N seconds
later after tsynced, where Tmin = 1/ωmax for the highest oscillator frequency in
the collective ωmax, tsynced is the time after the oscillator collective has become
harmonically synchronized and the oscillator with the highest frequency ωmax

has a phase climax or reset, and N are all natural (positive integer) numbers.

4.2.1 Implementing and verifying Mirollo-Strogatz’s phase
adjustment

Mirollo-Strogatz’s approach for synchronizing phases in oscillators, as intro-
duced in 2.5.2.1, is implemented in the Unity simulator, and each agent is en-
dowed with phase update function (2.4) with which they adjust themselves
according to when perceiving a “fire”-signal as described above.

The verification that this works in the newly built synchronization simulator
was performed by dumping all agents’s phase values ϕ(t) during simulation runs.
A plot of these ϕ(t)-values, evolving through simulation time in seconds, is shown
in Figure 4.4.

Ph
as

e 
ϕ(
t)

Figure 4.4: “Standard” phase adjustment with Mirollo-Strogatz’s approach

4.2.2 Implementing and verifying Nymoen’s bi-directional
phase adjustment

Nymoen’s approach for synchronizing phases in oscillators, as introduced in
Section 3.2.2, is implemented in Unity, and each agent is endowed with phase
update function (3.2) with which they adjust themselves according to when
perceiving a “fire”-event as described above.

The verification that this works in the newly set-up simulator-environment
was performed by analysing carefully all the agents’s phase values ϕ(t) through-
out a simulation run. Such an analysis plot can be seen in Figure 4.5.
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Figure 4.5: Bi-directional phase-adjustment with Nymoen’s approach

4.3 Synchronizing oscillator frequencies
When we open up for the possibility for heterogenous frequencies in our musical
agent collective, we open up to exciting musical aspects like the playing of diverse
rhythmic patterns as e.g. mentioned in Section 3.1, but we then also need to
not only synchronize phases, but also frequencies, simultaneously. An example
of how Nymoen’s frequency synchronization, implemented in the current Unity
synchronization simulator, can look like is given in Figure 4.6.

For Nymoen’s frequency synchronization method, the timing for when the
update function is to be used and applied is a bit peculiar, and only happens
once every phase climax (ϕ = 1). This is due to its utilization of the so-called
reachback firefly algorithm, as explained in Subsection 3.3.2 and displayed in
the corresponding Figure 3.4.

We hence now introduce randomly initialized, non-constant, and heteroge-
nous oscillator frequencies in our musical agents. The agents are now required
to synchronize their initially different and random frequencies, so that frequen-
cies are “legal” and harmonically synchronized. Such “legal” frequencies are now
described clearly in detail.

Legal frequencies definition:

Building upon Nymoen’s definition of harmonic synchronized oscillator fre-
quencies (cf. (3.1)), a consise definition for the legal frequencies can be given
as follows. All musical oscillators i, in a harmonically synchronized state, will
have frequencies ωi which are element in the mathematical set

Ωlegal(ω0) = ω0 · 2N0 = {ω0, 2ω0, 4ω0, 8ω0, ...}, (4.3)

where ω0 is the lowest frequency in the oscillator collective (or the funda-
mental frequency if you will), and N0 are the natural numbers including the
number zero.

If e.g. the smallest oscillator frequency in the musical oscillator collective
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Figure 4.6: Frequency synchronization for five robots in a Unity synchroniza-
tion simulation run achieving harmonic synchrony after 30 seconds. Note how
the legal harmonic frequencies (dashed gray lines) are defined by the low-
est—fundamental—frequency ω0 in the robot collective fluctuating slightly be-
low 1Hz, correctly leading to the legal frequencies right below 2 and 4 Hz.
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(ω0) was equal to 1.5Hz, legal frequencies the rest of the oscillators in the col-
lective could have would be Ωlegal(1.5Hz) = {1.5Hz, 3Hz, 6Hz, 12Hz, ...}.

Hence, in terms of frequencies ωi for all oscillators i in the oscillator network,
we have harmonically synchronized and legal oscillator frequencies ωi if (and
only if)

ωi ∈ Ωlegal(ω0),∀i. (4.4)

This state of harmonic synchrony is then the system goal state K. Nymoen
et al. achieve using their phase and frequency update functions, as explained
in Sections 3.2 and 3.3; and is also the target or goal state we want to continue
achieving and experimenting for in this thesis.

Implementation details:

In the newly proposed Unity simulator environment, the previously intro-
duced self-assessed sync score s(n) (in 3.3.2), encompassing the approach’s main
self awareness capabilities, is implemented as the median of a list containing m
error-scores ϵ. Such an error score list of length m is easily implemented by a
list called errorBuffer :

errorBuffer = {ϵ(n), ϵ(n− 1), ..., ϵ(n−m)}, (4.5)

then leading to:

s(n) = median(errorBuffer)
= median({ϵ(n), ϵ(n− 1), ..., ϵ(n−m)}) ∈ [0, 1],

(4.6)

where n is the latest observed “fire-event”, and m is the number of the last
observed “fire”-events we would like to take into account when calculating the
self-assessed synch-score.

Regarding the “frequency-update-contributions” (the H-values described in
3.3.2) in my Unity-simulator, all the calculated H-values are accumulated and
stored in an initially empty C#-list (of floats), referred to as H(n), at once they
are calculated. The H(n)-list is then consecutively “cleared out” or “flushed”
when its H-values have been used for the current period’s frequency adjustment
(i.e. at the phase climax, when ϕ(t) = 1), and is then ready to accumulate new
H-values during the next period.

By using K. Nymoen et al.’s frequency adjustment method, synchroniza-
tion of initially random frequencies in our newly developed Unity simulator is
achieved.

The details of how the Dr. Squiggles in Unity adjust and eventually syn-
chronize (harmonically) their oscillator frequencies, is shown in Algorithm 1 and
2. Algorithm 1 outlines how the “frequency adjustment contributions” H get
calculated as soon as the Dr. Squiggles hear a neighbour Dr. Squiggle sending a
“fire” signal; whereas Algorithm 2 shows how these previously calculated H(n)
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values are used to obtain the new and updated oscillator frequency ωi(t
+) with

which individual oscillators assign their frequencies to after each phase climax
(i.e. when ϕ = 1).

Algorithm 1: Calculating frequency update contributions H for a robot

1: procedure (ϕ(t),m)
2: if not in refractory period then
3: ϵ← sin(πϕ(t))2 ▷ Step 1
4: else
5: ϵ← 0
6: end if
7: ϵ is added to errorBuffer
8: s← median{ϵ(n), ϵ(n− 1), ..., ϵ(n−m)} ▷ Step 2
9: ρ← −sin(2πϕ(t)) ▷ Step 3

10: H ← ρ · s ▷ Step 4
11: H is added to list H(n)
12: end procedure

Algorithm 2: Updating robot frequency with calculated H contributions

1: procedure (H(n), β)
2: cycleHSum← 0 ▷ Step 5 started
3: y ← length(H(n))
4: for all H ∈ H(n) do
5: cycleHSum← cycleHSum+H
6: end for
7: F (n)← 0
8: if y not 0 then
9: F (n)← β · cycleHSum/y ▷ Step 5 finished

10: end if
11: Emptying H(n) ▷ for new contributions next oscillator cycle
12: ωi(t

+)← ωi(t) · 2F (n)

13: end procedure

4.4 Detecting harmonic synchrony
The whole detection of harmonic synchrony in all its simplicity boils down to
utilizing Unity’s concept of Coroutines, meaning a process that can go on and
be distributed across multiple frames in the simulator, as well as the firing of
the robots as they every second phase climax (ϕ = 1) transmit a fire signal the
simulator picks up on. As this in itself took several hundred lines of code5 to
implement, the exact details of how it is implemented will not be expounded
here.

The performance measurement is used in the synchrony simulator to eval-
uate and test the multi-robot collective’s ability to achieve harmonic synchro-
nization. As mentioned in Subsection 3.1.1, K. Nymoen et al.’s requirements

5https://github.com/theRealSherapat/CompSA (accessed 2022.05.29)
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and illustrations (cf. Figure 3.3) for achieving harmonic synchrony serve as a
blueprint or guide for how to similarly implement our synchrony or performance
measurement. This performance measurement should be able, during synchro-
nization simulation, to detect if harmonic synchronization has been achieved in
our decentralized oscillator network. The successful triggering of this detection
will then in turn terminate the synchronization simulation run and save to a
dataset the time it took to synchronize (the performance score), in the case of
a “synchronization success.”

The resulting and corresponding performance scores obtained using this per-
formance measurement will then take values of the termination time (sim s) it
takes for the robot collective, from the start of the synchronization simulation,
to achieve the system target state of harmonic synchrony, as specified in Section
3.1.

Now if Conditions 5)-7) from Subsection 3.1.1 are kept and fulfilled, we
have achieved harmonic synchrony.

My specific implementation of the synchrony measurement essentially con-
sists of enforcing all the requirements or rules listed in 3.1.1, given some constant
tf - and k-values (e.g. 80ms and 8 respectively [23]). And again—to recall from
3.1.1—tf is the short time-window within which nodes are allowed to fire at
each beat, and k represents how many times nodes have to fire at even under-
lying pulses/beats in a row without changing the tq-period—before becoming
harmonically synchronized.

The requirement of firing evenly k times in a row with identical tq-periods
can be—and in fact is in our implementation—enforced by incrementing an
integer variable towards_k_counter after a ‘legal’ tf -window has occured (i.e.
one or more nodes fired inbetween the onset and ending of the tf -window),
and conversely by resetting towards_k_counter to 0 when an illegally trans-
mitted firing was heard during a ‘silent’ (or so it was supposed to be at least)
tq-window, hence restarting the synchrony-detection process—as can be seen
occuring several times in Figure 4.7.

Note that in the specific simulation run in Figure 4.7, the robots were on
their way to achieve harmonic synchrony five times before the 10th second of the
synchronization-simulation already, but since one or more of them fired ‘illegally’
(i.e. inside a tq-window), they were consequently ‘punished’—or rather deemed
‘not synchronized enough yet’—by getting their counter reset to 0. Eventually
however, through further phase and frequency synchronization, the multi robot
collective was in this case after 12.5 seconds able to achieve harmonic synchrony,
when the “even beat” counter became equal to k, as well as all other requirements
for achieving harmonic synchrony was met. Note that this gives us a sense of
how synchronized the robot collective is over time; the more even beats the
robots have in a row, the closer they are to achieving harmonic synchrony.

If a certain amount of time, e.g. 5 simulation minutes [23], has gone without
the detection of harmonic synchrony occuring, the simulation run is terminated
as a “fail”.
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Figure 4.7: A synchrony evolution plot, displaying the temporal recording
of the towards_k_counter variable throughout a synchrony simulation run in
Unity. The counter is incremented as the robot collective fires evenly within
‘legal’ tf windows, and is conversely reset to 0 if illegal firings during ‘silent’ tq
windows are heard.
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Chapter 5

Experiments and results

This chapter presents the experiments set up and performed in the novel syn-
chronization simulator in Unity, as presented in Chapter 4, for certain config-
urations of musical robot collectives. Effects of the individual musical robots’s
hyperparameters on the collective achievement and performance of achieving
harmonic synchrony are presented. Some examples are hyperparameters which
determines how much each musical robot will adjust itself after hearing a trans-
mitted fire signal from a neighbouring robot; α for phase adjustment and β for
frequency adjustment.

The main performance scores presented in this chapter will consist of syn-
chronization times given in simulation time (s) (i.e. how long it takes robot
collectives to reach the state of harmonic synchrony if they ever do), accom-
panied by the respective and corresponding error rates during the belonging
simulation runs (i.e. the percentage of robot collectives out of e.g. 30 runs
failing to reach harmonic synchrony before the maximum time limit of e.g. 5
simulation minutes). If a musical robot collective then never reaches the target
state of harmonic synchrony within the maximum time limit, this simulation
run will be regarded as a “synchronization fail”, and we will then not regard
its termination time (in simulation time seconds) as harmonic synchronization
time—but simply that, that simulation run’s termination time.

As previously mentioned, relating to the different robot colors like turquoise,
red, and green, all robots are homogenous apartly from the visual; all individ-
ual robots have for experiments the same hyperparameters unless otherwise is
explicitly stated.

5.1 Phase synchronization
This is the section where experiments attempting to synchronize for the first
and simpler problem, namely synchronizing only the phases ϕi of all agents i,
are presented and analyzed resuls for. These are then experiments where all
musical robots have an equal and fixed frequency, only adjusting phases, in
order to entrain to synchronize their phases to each other until reaching the
target state of harmonic synchrony. Or in other words, all experiments in this
phase synchronization section have the two hyperparameters shown in Table 5.1
in addition to the individual experiment hyperparameters listed.
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Adjϕ Adjω
Mirollo & Strogatz None

Table 5.1: Hyperparameter setup for phase (ϕ) synchronization experiments.

5.1.1 Reproducing baseline results
Experiment setup:

In order to see that our developed synchronization simulator in Unity yields
more or less the same results as Nymoen’s results, similar experiments as re-
ported in their paper are performed here. These tell us whether differences
in performance, in terms of synchronization times (sim s), is simply due to
implementation differences, or actually because of the utilized synchronization
methods and hyperparameters in question.

First off, Mirollo & Strogatz’s phase adjustment method (as presented in
2.5.2.1) is experimented with for the initial phase (ϕ) synchronization prob-
lem, for varying phase coupling constants α. Hyperparameters are set in the
simulator as shown in Table 5.2. Results can be seen in Figure 5.1.

|R| β tref tf k tmax

6 0 50ms 80ms 8 5min

Table 5.2: Hyperparameter setup for ϕ synchronization baseline reproduction
experiment.

Figure 5.1: Harmonic synchronization times (s) for 6 robots with initially ran-
dom and unsynchronized phases but equal and fixed frequencies (1Hz), for vary-
ing phase coupling constants α. 30 simulation runs per α are reported.

Experiment results:
As we can see here, the average synchronization times lie just above 20 sim-

ulation seconds, which is almost twice as much as the average synchronization
time as in the baseline results. However, synchronization performance, as it
does in the baseline author’s results, also here increases as the phase coupling
constant α increases. We see both that robot collectives of |R| = 6 manage to
synchronize harmonically to each other faster, as well as more successfully (with
smaller error rates).
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Experiment analysis:
What we then found in this baseline reproducing experiment was that even

though we did not attain exactly as good synchronization times as the authors
of the baseline approach [23], we did observe the same phenomenon; being that a
larger phase coupling constant α—telling every robot how much to adjust their
phases ϕ when hearing a fire event—leads to better performing synchronization.
This is at least the case for |R| = 6.

5.1.2 Hyperparameter tuning
Experiment setup:

Here we tune the hyperparameters α and tdynref for several robot collective sizes,
according to performance scores of how long it takes robot collectives on average
to achieve harmonic synchrony. Exactly these two specific hyperparameters are
experimented with mostly since they empirically seem to be the most important
ones to set correctly before starting the simulator; that is, in order for the robots
to actually manage achieving harmonic synchrony. Additionaly, the point of K.
Konishi and H. Kokame (cf. 4.1.1) was also remembered.

The specific values of hyperparameters to test synchronization times for were
chosen based on an initial and identical but failed experiment (not reported)
where the tested values for tdynref were showing some interesting effects for various
robot collective sizes. Simple and limited insight was also collected from trial and
error in the complete beginning when trying to facilitate stable and successful
simulation runs. And furthermore, after seeing results found in this thesis for α
already, we also got some more ideas for which values of α could be interesting
to investigate further.

Other constant hyperparameters not being tuned or experimented for in this
experiment are shown in Table 5.3. The hyperparameter tuning results, where
the effects of tuning hyperparameters α and tdynref for various musical robot col-
lective sizes, are shown in Figure 5.2. Again, since we are synchronizing for the
phase (ϕ) synchronization problem, now only phases are initially unsynchro-
nized, and frequencies are fixed and constant (1Hz) throughout the simulation
runs.

β tf k tmax

0 80ms 8 5min

Table 5.3: Hyperparameter setup for ϕ synchronization hyperparameter tuning
experiment.

Experiment results:
As we can see in Figure 5.2, there are generally low standard deviations which

make errors in the plots barely visible. We also can notice that the largest
differences are seen for lower α values, as average harmonic synchronization
times are more and more overlapping and similar for larger α values.

A general pattern we can see is that larger robot collective sizes (larger
|R| values) handle lower phase coupling constants α better; in that the music
collectives both achieve harmonic synchrony in lower average times than the
smaller robot collectives, as well as achieving lower error rates. To this latter
point, note that for the lowest α value of 0.001, robot collectives with size |R| = 3
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Figure 5.2: Average harmonic synchronization times are plotted in errorbar
plots, where the standard deviation is the error. 30 simulation runs per α and
tdynref pair are reported, unless simulation runs ended up as “synchronization
fails.”

and 10 were not able to achieve harmonic synchrony at all during any of the
simulation runs (i.e. having 100% error rate), whereas larger collective sizes like
|R| = 25 and |R| = 50 managed to achieve harmonic synchrony despite the low
α value.

Experiment analysis:
The explanation for this latter observation regarding the seemingly increasing

robustness with increasing collective sizes |R| can very well lie in the fact that,
as we remember, the phase coupling constant α represents how much each robot
will adjust its phase when hearing a ”fire“ signal from a neighbouring robot. If
there are more neighbours firing “adjustment signals” to a certain robot (i.e. we
have a higher collective size |R|), it is also logical that the robot in question
will update its phase more often. And so we can then see why e.g. all aver-
age harmonic synchronization times for α = 0.01 seem to improve (i.e. gets
reduced) for every increase in collective size |R|; the phase coupling constant
α = 0.01 might be weak, but with further and more frequent weak adjustments
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accumulated over the same time, the weak α is compensated for.
Hence, it seems like larger robot collectives do not require as large of a

phase coupling constant α in order to synchronize to each other compared to
that which smaller robot collectives require.

5.1.3 Comparing phase adjustment methods
Experiment setup:

So far in this chapter and section, we have only run experiments for pure
phase synchronization, the ϕ problem, with Mirollo-Strogatz’s method of phase
adjustment, like described in 2.5.2.1. With this method of phase synchroniza-
tion, robots are simply adjusting phases in an excitatory way; they only “push”
other ocillators’s phases further or higher when firing themselves, never “hold-
ing” or “dragging” them back.

Now, in order to investigate the validity of the claimed [13, 23] benefits of per-
forming bi directional phase adjustments—both excitatory and inhibitory—like
that of Nymoen’s phase adjustment (see 3.2.2), an experiment comparing these
two aforementioned phase adjustment methods thus follows.

Empirically speaking based on previous results in phase synchronization ex-
periments, in particular the ones shown in Figure 5.1 and 5.2, arguably the best
values so far for α (i.e. α = 0.8) and tdynref (i.e. tdynref = 0.1) will be reused here
for Mirollo-Strogatz’s phase synchronization runs.

Since we have not yet performed any experiments for pure phase synchro-
nization in the ϕ problem using Nymoen’s slightly modified and bi directional
phase adjustment function, the same α value of 0.8 will also be used for the
phase synchronization runs here.

See the hyperparameter setup below in Table 5.4, and the results for the two
phase adjustment methods given various robot collective sizes |R| in 5.3. We
here measure how long it takes various sizes of robot collectives to synchronize
their phases to each other, given the two different phase adjustment methods.

α β tdynref tf k tmax

0.8 0 10% 80ms 8 5min

Table 5.4: Hyperparameter setup for comparative phase adjustment (Adjϕ)
method ϕ synchronization experiment.

Experiment results:
We quickly see from the results in Figure 5.3 there seems to be a considerable

difference in harmonic synchronization times between using Mirollo-Strogatz’s
and Nymoen’s phase adjustment methods to synchronize phase in the phase
(ϕ) synchronization problem. In Subfigure 5.3a, we see that for smaller mu-
sical robot collectives |R|, differences in synchronization time on average are
not especially large. However, as collective size |R| increases, we see the har-
monic synchronization times for Nymoen’s bi directional phase synchronization
becomes considerably lower than that of Mirollo-Strogatz’s mono-directional on
average, variance—or at least the square root of it—accounted for.

On the other hand, when we look at the error rates in Subfigure 5.3b, we
also see that Nymoen’s phase adjustment method’s error rates are considerably
higher than those of Mirollo-Strogatz’s error rates (being nearly negligible).
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Figure 5.3: Performance scores 5.3a given in average harmonic synchronization
times (sim s) with standard deviation. Corresponding error rates in 5.3b based
on 30 individual runs per collective size |R| for each of the two phase adjustment
methods.

Interestingly, this is only the case until collective size |R| = 500 though, after
the point of which both phase adjustment methods’s error rates are both equal
to 0, and hence this objection towards Nymoen’s phase adjustment method no
longer holds. Hence, there seems to—at least up until |R| = 500—exist a sort of
tradeoff or high risk high reward scenario here, where one can in the phase (ϕ)
synchronization problem achieve harmonic synchrony faster by using Nymoen’s
phase adjustment method while at the same time risking a higher chance of the
synchronziation failing; whereas Mirollo-Strogatz’s method of phase adjustment
on average seems to be the safer, albeit slower, option.

Yet again, we also in these results notice a trend where smaller hyperpa-
rameter values lead to more unstable or worse performing synchronizations.
Generally, although not strictly nor without exceptions, for both the harmonic
synchronization times in Subfigure 5.3a and the error rates in 5.3b, the larger
the hyperparameter |R|, the more stable or quick synchronization runs we per-
formed in the Unity synchronization simulator.

Experiment analysis:
In this specific case, what this latter observation of seemingly increasing ro-

bustness given increasing collective sizes |R| points to is perhaps that the sys-
tem’s robustness and stability is increasing as collective size increases—being a
strength classically advocated for in the multi agent systems and swarm systems
literature; akin to being found in e.g. robustness degrees in networks where you
in the one case have a single point of failure versus in the other case many
redundant paths and edges between your nodes.

As we see, the synchronization simulator in Unity is able to synchronize with
a lot of agents, still without having broken the simulation yet. Comparatively,
Nymoen et al. [23] only experimented with 6 oscillator nodes in their firefly
system.
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5.1.4 Increasing degree of self awareness
So far in the harmonic synchronization experiments, we have only and by default
used the most restrictive and comprehensive self awareness scopes; all individual
Dr. Squiggle robots have been globally connected, that is, and always hearing
every neighbour Dr. Squiggle’s fire signals. Now we want to challenge this
strong connectivity assumption.

Information and messages have the ability to travel through networks of
many sorts, and the type of connectedness in these networks might influence
how this occurs—and indeed the quality or accuracy of the travelled message;
e.g. in a game of Chinese whispers versus a message sent through internet
directly from the sender to the receiver. Both the speed as well as the overall
quality of the message transmission can greatly be decided as a result of how
connected the communicating nodes in a network are. Phenomena as these are
to be experimented with here, as we will see how the connectedness between the
musical Dr. Squiggle robots influence their collective and overall performance
in synchronizing (harmonically).

It has previously, although more mathematically and not so much experimen-
tally, been attempted to reduce the connectivity assumptions in pulse coupled
oscillators [26] and to analyze the effects of it.

Here the hypothesis of whether increasing musical robots’s degrees of self
awareness will affect the synchronization performance or not, is investigated
experimentally. Exactly what is meant by an increasing degree of self aware-
ness specifically refers to the robots’s self awareness scope [14]. This is tested
in Unity for the more challenging ϕ&ω problem of harmonically synchronizing
both phases and frequencies. Perhaps a larger self awareness scope, meaning
more knowledge about the social environment, will lead to the robots having a
better “overview” of the environment; hence leading to shorter simulation time
(s) before reaching the goal state of harmonic synchrony. Or perhaps hear-
ing more “fire” signals on average simply will be disturbing to the robots and
hence disturb and slow down their entrainment towards harmonic synchrony.
This experiments attempts to answer questions like these by for the three self
awareness scope scenarios as introduced in 4.1.3.1 evaluating collective synchro-
nization performance.

5.1.4.1 Self awareness scope tuning

In order to find out whether global connections in the pulse coupled oscillators
is necessary to maintain performance in harmonic synchronization, varying self
awareness scopes (as introduced in 4.1.3.1) are now experimented with.

1) ks nearest neighbour SA scope experiment

Experiment setup:
Firstly, the first self awareness scope scenario (as in 4.1.3.1) is experimented

with and tuned for. The number of neighbouring Dr. Squiggle robots each
individual Dr. Squiggle robot will listen for fire signals to (ks) will be scaled
and increased from ks = 1 up until ks = |R| − 1 which is the maximum number
of neighbours each Dr. Squiggle robot can listen to for fire signals.
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In other words, the individual Dr. Squiggle robots’s self awareness scope is
increased incrementally in terms of ks nearest neighbour SA scope and evaluated
for performance in harmonic synchronization.

Hyperparameters are set in the simulator as shown in Table 5.5. Results can
be seen in Figure 5.4.

α β tdynref tf k tmax

0.8 0 10% 80ms 8 5min

Table 5.5: Hyperparameter setup for ks nearest neighbours SA scope ϕ synchro-
nization experiment.

Figure 5.4: Performance times (left) given in average harmonic synchronization
times (sim s) with standard deviation, given each nearest neighbour percentage
ks/(|R|−1) for each |R| and ks value pair. Corresponding error rates (right) are
based on 30 individual runs per collective size |R| for each ks nearest neighbour
percentage evaluated for.

Experiment results:
As we can see on the x axis in Figure 5.4, we here plot harmonic synchro-

nization scores per neighbour percentage ks/(|R|−1), which tells us the ratio of
closest neighbours each robot listens to for fire signals out of all neighbours |R|-1
— or in other words the size of its self awareness scope, not given in absolute
number of neighbours ks, but in terms of the percentage of its neighbours.

We definitely notice a trend here; the broader and larger self awareness scopes
are (when more of the ks nearest neighbours are being listened to in each robot
for adjustment signals), the more stable and higher performing the harmonic
synchronization generally is—both in terms of harmonic synchronization time,
as well as for error rates. However, we also at least for larger collective sizes
|R| see that not too much performance in harmonic synchronization is gained
by increasing the self awareness scopes further—e.g. after ks/(|R| − 1) = 0.4.

We also see that after ks/(|R| − 1) = 0.4, average harmonic synchronization
times lie around 20 seconds (sim s), which is then similar average synchroniza-
tion times as found when using Mirollo & Strogatz’s synchronization function
in earlier experiments.

Experiment analysis:
Given the trend where we saw where increased self awareness scopes lead to
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generally more stable and increased harmonic synchronization performance—we
here have a solid pointer to that more awareness of ones neighbourhood and
environment is beneficial for performance of a task.

But also, given that not much further improvement in synchronization per-
formance was achieved after each robot had 40% of their closest neighbours in
their self awareness scope, such a reduced self awareness scope actually shows
to be sufficient for achieving harmonic synchrony despite such a reduced self
awareness scope. Given that we achieve similar synchronization times with
ks/(|R| − 1) = 40% as we do for globally connected robots in e.g. Figure
5.1, this implies that global self awareness scopes in these cases are actually
rendundant, and the robots manage to solve their task with less constrained
connections.

2) ds radial SA scope experiment

Experiment setup:
Results can be seen in Figure 5.5.

Figure 5.5: Performance times (left) given for various |R| in average harmonic
synchronization times (sim s) with standard deviation, given each SA scope ra-
dius ds, spanning from the width of a robot to the maximum distance between
robots in the largest robot collective evaluated for (i.e. |R| = 200). Correspond-
ing error rates (right) are based on 30 individual runs per |R| and ds pair value
evaluated for.

Experiment results:
As we see after ds = 65.6, not much performance gain—if any—seems to be

achieved by increasing the self awareness scope ds further.
But also here we see the recurring trend; the larger the self awareness scopes

in individual musical robots are, the more stable or well performing synchro-
nizations the robot collectives achieve.

Experiment analysis:
Now, since we here tested with fixed ds values instead of e.g. ds-percentages

like we did for ks in experiment 5.4 above, it is clear that we will not get a
increasing scaling of self awareness proportional to the varying collective sizes
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|R|. This is primarily due to how the spawning radius musical robots are instan-
tiated within (cf. (4.2)) increases as collective sizes |R| increases. This means
that even for the third ds value (i.e. 45.6), collectives R with |R| = 3 having
radiusspawn = 13.65 Unity physical units (cf. equation (4.2)) already practi-
cally have global self awareness scopes. For this reason and in hindsight, it might
have been more fruitful to also here—instead of fixed ds values per |R|—test for
neighbour percentages in radial self awareness scopes (i.e. ds/(|R| − 1)).

Given the recurrence of the increased neighbourhood awareness trend, in
that larger self awareness scopes generally increases performance in harmonic
synchronization, again points to that increased physical or social environment
awareness leads to increased performance in achieving goal state or by achieving
something—specifically harmonic synchrony in our case.

5.1.4.2 Heterogenous self awareness scopes experiment

Experiment setup:
In order to test whether actually globally connected oscillators are neccssary

to maintain harmonic synchronization performance, or whether more relaxed
and less constrained connections in the oscillators still lead to similar perfor-
mance in harmonic synchronization peformance—heterogenous robot collectives
with varying degrees of self awareness scopes will be explored here.

First, relatively un-aware robot collectives (i.e. where musical robots have
small or narrow self awareness scopes) are given the task of harmonically syn-
chronizing to each other. Then, a more neighbour-aware robot collective (with
some robots having larger self awareness scopes) is to harmonically synchronize;
and so on for more and more self aware robot collectives.

We will see whether the intuition that more knowledge about ones neighbour-
hood or environment will lead to increased performance, or whether performance
is still maintained despite less awareness in robots of their neighbourhood.

The nearest neighbour SA scope value of ks/(|R| − 1) = 0.4 will be used
in this experiment for the smallest or minimal self awareness scope—referred
to as the minimal SA scope. This value of 0.4 (corresponding to 40% of each
robots’s closest neighbour robots) is chosen due to its good results in Figure 5.4,
as performance is barely increased after that point. Consequently, the collective
size |R| = 15 is selected for this experiment again due to this value’s performance
results in Figure 5.4; in Figure 5.4, collective size |R| = 15 yielded the most
interesting and varying behaviour, and compared to larger collective sizes one
can with |R| = 15 not simply blame good performance on the “strength of
numbers”, as larger collective sizes generally seem to synchronize more steadily.
The radial self awareness scope value ds = 65.6 is chosen due to the lack of
further improvement in performance scores in the relevant experiment shown
results for in Figure 5.5. However; given the lesson learned that it might be more
fruitful to test for neighbour percentages when it comes to self awareness scopes,
the corresponding percentage for |R| = 200 and ds = 65.6 in the aforementioned
experiment (cf. Figure 5.5), is chosen for the radial self awareness scope in this
experiment. Hence, we introduce the radial SA scope percentage as follows:

d%s := ds/(2 · radiusspawn), (5.1)

where ds is the radius (physical Unity units) within which the robot in
question will listen to neighbours’s fire signals for adjusting itself, and the robot
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collective instantiation radius radiusspawn is defined in equation (4.2). By using
the found values of ds = 65.6 and |R| = 200 =⇒ radiusspawn = 194, we then
acquire our desired d%s = 65.6/(2 · 194) = 0.17 = 17%.

In other words, if a musical robot has a radial SA scope of d%s = 17%, it
implies that this robot will listen to (for “fire” signals) from all neighbouring
robots with a radius of less than 17% times the diameter of the spawning area
(i.e. 2 · radiusspawn).

And finally, robots will increasingly also have global self awareness scopes,
as these are the most neighbour aware robot collectives.

Hence, and since we now will give heterogenous robot collectives the task
of synchronizing harmonically to each other, robot collectives’s individual robot
self awareness scopes will now as a whole consist of ratios on the form:

(minimal, radial, global) = (m, r, g) (5.2)

where the minimal, radial, and global self awareness scopes are as defined
above. E.g., the least self aware robot collective imaginable would in this case be
one of SA scopes (1.0, 0.0, 0.0) (i.e. |R| ∗ 1.0 robots would have the minimal SA
scope, and |R| ∗ 0.0 = 0 robots would have radial or global SA scopes), whereas
the most imaginable self aware robot collective would have self awareness scopes
(0.0, 0.0, 1.0). These two will serve as the boundaries within which we want to
test for various percentages of self awareness scopes, given the three percentages
m, r, and g.

The other hyperparameter values for this heterogenous SA scopes experi-
ment is given in Table 5.6. The synchronization results obtained by running
experiments in the Unity simulator is shown in Figure 5.6.

α β tdynref tf k tmax

0.8 0 10% 80ms 8 5min

Table 5.6: Hyperparameter setup for heterogenous SA scopes ϕ synchronization
experiment.

Experiment results:
As we here can see, robot collectives of size |R| = 15 achieve harmonic syn-

chrony with varying degrees of self awareness; namely with varying self aware-
ness scopes. The mixes of robot SA scopes represented by the SA scope ratios
(m,r,g) reads from “least neighbour self aware” to “most neighbour self aware.”
In the outer points, musical robots all have either minimal SA scopes (i.e. (1,
0, 0)), or they all have global SA scopes (i.e. (0, 0, 1)). Some robot collec-
tives with neighbour awareness inbetween these are also explored, as seen in the
middle of the outer points.

What we can observe, is how synchronization is the most stable and well per-
forming when robot collectives are homogenous in their self awareness scopes
(i.e. for the purely minimal or global SA scopes collective). From the sec-
ond least self aware robot collective (i.e. (m, r, g) = (0.65, 0.25, 0.1)) and on-
wards to the most self aware robot collective, we see the similar trend as seen
before in terms of increased synchronization performance given increased self
awareness scopes. However, the error rates are extremely high in the het-
erogenous robot collectives; the second most self aware robot collective (i.e.
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Figure 5.6: Performance times (left) given in harmonic synchronization times
(sim s) in a boxplot, given varying self awareness scope ratios (m, r, g). Corre-
sponding error rates (right) are based on 30 individual runs per SA scope ratio.

(m, r, g) = (0.1, 0.25, 0.65)) only managed to achieve harmonic synchronization
once, and not many more were achieved by the second least self aware robot
collective either.

Experiment analysis:
Hence, we found that for the system and synchronization simulator at hand,

utilizing heterogenous self awareness scopes with varying degrees did not yield
increased performance—or even similar performance as homogenous robot col-
lectives in terms of SA scopes.

For the synchronziation simulator developed in Unity, it might be beneficial
to stick to homogenous self awareness scopes in the musical robots for this
reason.
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5.2 Phase and frequency synchronization
This is the section for the experiments attempting to synchronize for the second
and harder problem of synchronizing both phases ϕi, as well as frequencies ωi, for
all agents i. These are then experiments where all musical robots originally have
unequal and ever-changing phases and frequencies, adjusting both phases and
frequencies in order to entrain to synchronize their phases and frequencies until
reaching harmonic synchrony. Or in other words, all experiments in this phase
and frequency synchronization section have the two hyperparameters shown
in Table 5.7 in addition to the individual experiment hyperparameters listed;
simply reflecting that in this problem we have to use both a phase adjustment
(Adjϕ) function as well as a frequency adjustment (Adjω) function.

Adjϕ Adjω
Nymoen Nymoen

Table 5.7: Hyperparameter setup for phase and frequency (ϕ & ω) synchroniza-
tion experiments.

5.2.1 Reproducing baseline results
Again, we want to here see whether we get more or less the same results in the
Unity simulator as Nymoen get in their firefly oscillator system.

Hence, we here present attempts made in the novel Unity synchronization
simulator at recreating Nymoen’s first results with their novel frequency syn-
chronization method, which is utilizing, amongst other aspects, self awareness
[23].

5.2.1.1 Ordering by phase couplings experiment

Experiment setup:
Given that Nymoen do not mention their β value in their frequency synchro-

nization experiment where they order for different phase coupling values α, an
empirically decent β value of 0.4 is chosen for this experiment. What empiri-
cally decent refers to in this case are Nymoen’s findings in the results of their
last experiment [23] where synchronization times for various β values were eval-
uated; deeming β = 0.4 to be a good value, with no further improvement in
synchronization performance when β is increased further.

Here, Nymoen’s self aware frequency adjustment method, implemented in
our novel synchrony simulator in Unity, is experimented with for varying phase
coupling constants α. This time not only oscillator phases are initially unsyn-
chronized; oscillator frequencies are also unsynchronized to begin with. Hence,
we here try to synchronize our musical robots in the phase (ϕ) and frequency (ω)
synchronization problem, using Nymoen’s phase adjustment method to synchro-
nize phases, as well as Nymoen’s frequency adjustment method to synchronize
frequencies. See set up hyperparameters in Table 5.8. See the results in Figure
5.7.

|R| β ωinit
min ωinit

max m tref tf k tmax

6 0.4 0.5Hz 4Hz 5 50ms 80ms 8 5min
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Table 5.8: Hyperparameter setup for first ϕ & ω synchronization baseline re-
production experiment.

Figure 5.7: Harmonic synchronization times (sim s) for 6 robots with both ini-
tially unsynchronized phases and frequencies, for varying phase coupling con-
stants α, reaching harmonic synchrony—but also often failing to. 30 simulation
runs per α are reported.

Experiment results:

Experiment analysis:
Similarly here, synchronization performance, as it does in the baseline au-

thor’s results, also here increases as the frequency coupling constant β increases.
We see that robot collectives of |R| = 6 manage to synchronize harmonically to
each other faster, although less successfully (with larger error rates).

However we here also did not achieve any better results than the author of
the baseline approach.

Experiment analysis:
What we then found in this baseline reproducing experiment was that even

though we did not attain exactly as good synchronization times as the authors
of the baseline approach [23], we did observe the same phenomenon; being that
a larger frequency coupling constant β—telling every robot how much to adjust
their frequencies ω when hearing a fire event—leads to faster albeit more risky
and less successful synchronization. This is at least the case for |R| = 6.

5.2.1.2 Hopefully stabler ordering by phase couplings experiment

Experiment setup:
After seeing how poorly the musical robot collectives managed to achieve har-

monic synchrony during previous experiment 5.2.1.1, we change the hyperpa-
rameters slightly in the hopes of achieving harmonic synchrony more frequently,
or in other words more stable synchronization simulation runs. The reason is
mostly that it would be beneficial to actually see whether we observe similar
patterns as in Nymoen’s results—something which becomes impossible when
robot collectives nearly never achieve harmonic synchrony.
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The frequency coupling constant of β = 0.6 could potentially be another
supposed good β value, at least solely judging by Nomoen’s results, and hence
we select this value for this hopefully stable phase and frequency synchronization
experiment.

By initial trial and error, it also became apparent that phase and frequency
synchronization was not always stable—i.e. the robot collective not managing
to achieve harmonic synchrony within the maximum time limit—for collective
sizes of 6 or more. It did however become apparent that phase and frequency
synchronization was stable for smaller musical robot collective sizes, like 2 or 3.

Hence, a similar experiment to as in 5.2.1.1 is set up in the Unity synchrony
simulator, and is run similarly as before. So still, the phase (ϕ) and frequency
(ω) synchronization problem is to be experimented for, given different phase
coupling constants α, with Nymoen’s both phase and frequency adjustment
methods—only this time with β = 0.6 and collsize = 3 instead. See set up
hyperparameters in Table 5.9. See results in Figure 5.8.

|R| β ωinit
min ωinit

max m tref tf k tmax

3 0.6 0.5Hz 4Hz 5 50ms 80ms 8 5min

Table 5.9: Hyperparameter setup for ϕ & ω synchronization baseline reproduc-
tion and stabilization experiment.

Figure 5.8: Harmonic synchronization times (sim s) for 3 robots with both
initially unsynchronized phases and frequencies for varying phase coupling con-
stants α. 30 simulation runs per α are reported.

Experiment results:
As we can see, this yielded better and more stable results as expected. We

will hence continue using these values from now on.

5.2.1.3 Ordering by frequency couplings experiment

Experiment setup:
Lastly, for the final Baseline reproducing experiment, it was wanted to see

whether results within the phase and frequency (ϕ&ω) synchronization problem,
when one varied the frequency coupling constant β, also was more or less in the
same ballpark or not, for the same reasons as mentioned in the first Baseline
reproducing experiment in Section 5.1.
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Since we now do not synchronize in Unity for varying phase coupling con-
stants α, we now fix α and rather test how the individual musical robots’s
various frequency coupling constants β affect the performance of the musical
robot collective.

Again, Nymoen does not specify exactly the phase coupling constant α they
use in their latter experiment when testing their firefly-inspired synchronization
system for various β values. Hence, the now fixed phase coupling constant α
is here selected by reusing a reasonably good α value, based on the similar
ϕ&ω synchronization experiments presented in Figure 5.7 and 5.8. In these two
experiments in particular, α = 2 yielded both harmonic synchronization times
among the best synchronization times, given the error scores; and furthermore,
one of the lowest error rates. This then gives us a fixed α = 0.2.

See the set up hyperparameters for the experiment in Table 5.10, and the
corresponding results in Figure 5.9.

|R| α ωinit
min ωinit

max m tref tf k tmax

6 0.2 0.5Hz 4Hz 5 50ms 80ms 8 5min

Table 5.10: Hyperparameter setup for second ϕ & ω synchronization baseline
reproduction experiment.

Figure 5.9: Synchronization times (s) for 6 robots with both initially random
and unsynchronized phases, and frequencies, for varying frequency coupling
constants β. 30 simulation runs per β are reported.

Experiment results:
Even though we do not see exactly the same harmonic synchronization times

as we see in Nymoen’s results, and worse at that, we do in fact see a similar
pattern in that also here, synchronization times and error scores seem to improve
the larger frequency coupling constant β we have.

Experiment analysis:
Also, from the results in Figure 5.9, it becomes apparent that β = 0.7 might

be the best choice to continue using in our Unity synchrony simulator—at least
when it comes to collective sizes |R| = 6.
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5.2.2 Increasing degree of self awareness
Motivations and intentions are exactly the same as in 5.1.4, although now it
is time to explore the effects of various degrees and scopes of self awareness in
the second and more challenging phase and frequency (ϕ&ω) synchronization
problem.

5.2.2.1 Self awareness scope tuning

Similarly to in the experiments in 5.1.4.1 we here want find out whether global
connections in the pulse coupled oscillators really is necessary to maintain per-
formance in harmonic synchronization, but for this time in the second and more
complex (ϕ&ω) synchronization problem.

1) ks nearest neighbour SA scope experiment

Experiment setup:
The first self awareness scope scenario (as in 4.1.3.1) is now again exper-

imented with and tuned—only now for the phase and frequency (ϕ&ω) syn-
chronization problem. The number of neighbouring Dr. Squiggle robots each
individual Dr. Squiggle robot will listen for fire signals to (ks) will be scaled, for
each |R|, and increased from ks = 1 up until ks = |R|−1 which is the maximum
number of neighbours each Dr. Squiggle robot can listen to for fire signals.

In other words, the individual Dr. Squiggle robots’s self awareness scope is
increased incrementally in terms of ks nearest neighbour SA scope and evaluated
for performance in harmonic synchronization.

Hyperparameters are set in the simulator as shown in Table 5.11. These are
empirically found to be the best hyperparameters in previous experiment results
in Section 5.2 where we are attempting synchronization in the ϕ&ω problem.

Results can be seen in Figure 5.10.

α β tdynref tf k tmax

0.2 0.7 10% 80ms 8 5min

Table 5.11: Hyperparameter setup for ks nearest neighbours SA scope ϕ & ω
synchronization experiment.

Experiment results:
Also here, one can see on the x axis in 5.4 that harmonic synchronization

scores are plotted per neighbour percentage ks/(|R| − 1), which tells us the ra-
tio of closest neighbours each robot listens to for fire signals out of all neighbours
|R|-1 — or in other words the size of its self awareness scope, not given in abso-
lute number of neighbours ks, but in terms of the percentage of its neighbours.
Just like in the similar experiment for the phase (ϕ) synchronization problem
in 5.1.

Experiment analysis:
As is visible in the synchronization times and error rates in Figure 5.10, often
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Figure 5.10: Performance times (left) given in average harmonic synchronization
times (sim s) with standard deviation, given each nearest neighbour percentage
ks/(|R|−1) for each |R| and ks value pair. Corresponding error rates (right) are
based on 30 individual runs per collective size |R| for each ks nearest neighbour
percentage evaluated for.

times musical robot collectives still manage to achieve harmonic time synchro-
nization despite listening to smaller percentages of their neighbour robots. From
around after musical robots ri in the collectives R have 20% of their neighbour-
ing robots in their self awareness scope (i.e. ks/(|R| − 1) = 0.2), there seems to
be a trend we might expect; namely, synchronization times increase and error
rates decrease as we increase the self awareness scope of the musical robots.
As individual musical robots listen to more and more of their neighbouring Dr.
Squiggle robots for synchronizing themselves upon their neighbour’s “fire” sig-
nal, the faster the musical robot collective as a whole manage to harmonically
synchronize—and with less synchronization fails.

However, there actually also seems to be a region, when and before robots in
the robot collectives have ≈ 10% of their neighbours in their SA scopes, where
harmonic synchronization performance is good both in terms of synchronization
time as well as low error rates.

Not much improvement in harmonic synchronization time or error rate is
seen beyond the point where individual musical robots ri have 80% of their
neighbours in their self awareness scopes, and so perhaps it might be sufficient
in musical robot collectives that each robot litstens and is connected to 80% of
its closes neighbours, relaxing the globally connectivity assumption.

2) ds radial SA scope experiment

Experiment setup:
Results can be seen in Figure 5.11.

Experiment analysis:
As was alluded to before, as well as heavily experienced while developing

and performing phase and frequency synchronization in Unity, can also be seen
in Figure 5.11; namely, the synchronization process is much less stable and
predictable, as we see greatly overlapping standard deviations in the harmonic
synchronization time plot.
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Figure 5.11: Performance times (left) given for various |R| in average harmonic
synchronization times (sim s) with standard deviation, given each SA scope ra-
dius ds, spanning from the width of a robot to the maximum distance between
robots in the largest robot collective evaluated for (i.e. |R| = 200). Correspond-
ing error rates (right) are based on 30 individual runs per |R| and ds pair value
evaluated for.

However, despite the instability, harmonic time synchronization in the mu-
sical robot collective is achieved, although as we can see in the error rate plot
with much higher errors on average than with pure phase synchronization, as
e.g. in Figure 5.5.

Also note that due to how the musical robots are instantiated in the Unity
scene, for lower collective sizes |R|, radial SA scopes effectively become global
SA scopes; e.g. if a robot collective has a diameter across the instantiation /
spawning area of only 13.65 Unity physical units (which is the case for robot
collectives of |R| = 3, cf. (4.2)), and the radial self awareness scope ds = 50.
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Chapter 6

Conclusions

6.1 General discussion
As we can see from the results in the previous chapter, musical robot collec-
tives achieve harmonic synchronization with various performance dependant on
various robot collective or individual hyperparameter values.

We see e.g. the recurring trend that the larger the robot collectives R we
have (i.e. the larger |R| we have), the more stable the robot collective seems
to manage synchronizing to each other—compared to with lower collective sizes
|R|.

Perhaps not so surprisingly, performance both in terms of harmonic syn-
chronization time as well as low error rates also tends to improve as we endow
individual musical robots with larger self awareness scopes; the more of the clos-
est neighbourhood each robot is self aware of, the higher the performance tends
to be. However, there were also cases where not much improvement was seen
in harmonic synchronization performance past certain points in self awareness
scopes—even before robots having all their neighbours in their scope (i.e. global
SA scope).

6.1.1 Conclusion
To summarize, time synchronization (harmonic at that) in musical robots, mod-
elled as pulse coupled oscillators, has been achieved in the newly developed
synchronization simulator, utilizing some already existing methods for synchro-
nizing both oscillator phases and oscillator frequencies.

Although individual hyperparameters plays a role in terms of harmonic syn-
chronization performance to a certain extent, what is often more decisive for
in a stable manner achieving harmonic synchrony in an oscillator collective is
the collective size |R|. The larger collective sizes, the more stable and well
performing synchronization is achieved.

Furthermore, musical robots need not to be globally connected in order to
achieve harmonic synchronization often times, and one can even relax the con-
nectivity whilst still achieving as good synchronization performance as globally
connected robots. E.g. we found for a synchronization scenario that when robots
listen to 40% of their closest neighbours, they achieve just as good performance
as globally connected robots do.
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However, there still is an overarching trend of increasing harmonic synchro-
nization performance the larger the self awareness scope of the individual musi-
cal robots are. Such increased degree of neighbour awareness leading to higher
performance in a multi agent system was also found by J. Cao et al. [2] as
they managed to increase cooperation in a multi-agent reinforcement learning
(MARL) scenario in the challenging videogame StarCraft II. This they achieved
by increasing each agent’s local awareness of its neighbour. Hence, in reference
to the architectural framework by P. Lewis et al. [4] (cf. 2.3.2), it seems that
an increased awareness of ones physical and social environment may lead to
significantly increased performance in the fulfilment of a task—particularly in
a multi-robot or multi-agent scenario.

To put this finding into a broader context, and a bit outside of what is stud-
ied here, this trend of increased cooperation and overall performance through
increased neighbour self awareness might be a good argument for why one should
always be open to input—both in life, organizations, and businesses—as well as
widen ones horizon and to be open minded. As Jordan Peterson’s ninth rule in
his book 12 Rules for Life reads: “Assume that the person you are listening to
might know something you don’t."

6.1.2 Ethical reflections
One might get frightened by hearing robots or machines have become self aware.
This can remind listeners of concepts like superintelligence or general artificial
intelligence, which can have scary and unknown consequences if ever achieved.

My personal view is that the work presented in this thesis probably holds
potential for computing systems and robots to get more well defined and con-
sise self awareness specifications, and hence might become more self aware as
a consequence of such clarity. Furthermore, frameworks for computing systems
inspired by psychology in terms of self awareness might potentially get us closer
to achieving something resembling general artificial intelligence or a superintel-
ligence. However, I do not fear of this happening in the near future or even
the far future; I would like to echo what Andrew Ng, being one of the leading
figures within the AI community, has been quoted to say regarding the possibil-
ity of an AI superintelligence: “Worrying about AI evil superintelligence today
is like worrying about overpopulation on the planet Mars. We haven’t even
landed on the planet yet!” I, like others, even think there is a safety argument
to be had about self awareness having a larger focus in computational systems
like robots, being that explainability (being a hot topic at the moment) can be
further increased by considering computational self awareness in a computing
system. However, I am very in favor of careful considerations and regulatory
oversight from all parts of society in order for humans to ensure control and
desired outcomes when it comes to both AI, and more specifically to topics like
the one explored in this thesis being computational self awareness.

6.2 Further work
Physical domain: Going from simulation to the real physical world, using
M. J. Krzyzaniak and RITMO’s actual musical robots, the Dr. Squiggles (cf.
2.2.1.2). This would involve implementing or translating the software written
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for the simulated Dr. Squiggles in the Unity simulator environment into the
physical hardware and interfaces available in the real Dr. Squiggle robots. Using
an audio interface with the Dr. Squiggles robots in order to transmit or play
audible “fire” signals would perhaps correspond to self awareness scope 2 as
defined in this thesis, whereas self awareness scope 3 could possibly correspond
in reality to communication technologies where messages are heard globally
relatively instantaneously after it is transmitted, such as e.g. wireless local area
networks (e.g. Wi-Fi) or—even faster—Ethernet internet cables.

Introduction of noise and epistemolgical challenges: In this music sys-
tem, pulses (or firings) were designed in such a way that the other musical nodes
would easily hear the distinct signals. We could have easily imagined a scenario
where this would not be given; hence calling for more sophisticated methods for
detecting and separating between actually separate (spatially) audio-sources.
Epistemological explorations, related to e.g. Computational Auditory Scene
Analysis (as mentioned in [20]) would then be of interest. Some simple ways
to introduce noise in the developed synchronization simulator would be to omit
or skip, with a probability, notifying a robot by sending a “fire” or adjustment
signal to it for self adjustment. In this way, it would be like robots randomly not
managing to listen for all the “fire” signals being transmitted into the environ-
ment. One could then do a study on how well different musical robot collectives,
in terms of e.g. self awareness scopes, would handle this additional challenge.

Learning of internal models capturing self awareness knowledge: It
is wanted to experiment further with internal and self adaptive models in the
agents; e.g. that robots change their own phase or frequency coupling values
depending on how much they want to be adjusted.

Automatic and online (harmonic) fire sound generation: As alluded to
in 4.1.3.2, one possible avenue to explore in order to find harmonious chords or
tones—when played together—in a more automatic approach, live and online
during simulation, could be found through musical machine learning models
predicting fitting and accompanying chords and harmonies (given a tone) in real-
time, like the ones tested thoroughly in B. Wallace’s interactive music system
PSCA [31]. This was however not attempted in this thesis, as this was beyond
the scope of the project.

Hindrances throughout the thesis work: The main reason why these
aforementioned ideas were not possible to explore throughout this thesis work in
the end, was due to an (to me at least) unseen and—for months—unobservable
Unity peculiarity (perhaps only to a Unity novice like me) which in turn caused
visible bugs in two mechanisms—namely the harmonic synchrony detection
mechanism as well as my implementation of K. Nymoen et al.’s frequency ad-
justment method. So given that I only saw problems in the harmonic synchrony
detection and frequency synchronization, I ended up spending considerable time
throughout the thesis period trying to debug these two mechanisms, without
success—or if any then with more bugs popping up. The way out of this ex-
tremely confusing and frustrating situation reared its head eventually as my
attention was brought to the synchrony simulator’s determinism. Little did I
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know that once I made my synchrony simulator deterministic, the problems I
had been debugging for months were solved immediately. And after discussing
with supervisors, and a much more experienced Unity user (Frank Veenstra),
the root (and to me unseen) problem, and the reasons why it lead to those visible
problems in my harmonic synchrony detection and frequency synchronization,
suddenly made total sense. And so now this resulting knowledge about inde-
terminism in Unity, learnt the hard way, will most likely be shared through a
ROBIN wiki page or the likes. Hopefully, this will prevent future UiO robotics
master’s students from stumbling onto the same problems I did, and from ending
up in similar rabbit holes as I ended up in.
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