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Abstract—This PhD project aims to develop a versatile mod-
elling framework for dynamic energy systems, crucial for ad-
dressing fluctuations and uncertainties in energy demand and
production, and achieving current climate goals. By exploring
trade-offs between accuracy and computational efficiency, and
leveraging advancements in artificial intelligence and machine
learning, the project seeks to provide a robust tool for energy
system design and control.

I. INTRODUCTION

THE adoption of the Paris agreement by a large number
of the world’s industrialized nations has led to a call

for action to drastically reduce greenhouse gas emissions, in
order to achieve the ambitious goal of limiting the global
temperature increase to 1.5°C above pre-industrial levels.
Among the sectors involved, energy systems account for close
to 75% of all emissions, as seen in figure 1, and represent
one of the toughest challenges for the green transition, due to
their historically heavy reliance on fossil fuels. Energy systems
and their modelling represent therefore a hugely important
and fast-growing area of research, as they must adequately
incorporate the current demands in order to support good
policy making.

Fig. 1: Global greenhouse gas emissions in 2016 by sector [1].

Energy systems can be modelled as a large and diverse
combination of sub-systems or components, forming an in-
tegrated complex multi-scale network [2]. These sub-systems
can include energy storage, filling, production, consumption,

transfer, and a system controller, as can be seen in figure 2. The
behaviour of these components can become quite complex,
and the optimisation of the system as a whole relatively
challenging. It is therefore crucial to have an efficient and
versatile model to ease both operation and design, allowing
for the inclusion of generic sub-systems in the framework
while providing useful information on the system state at every
point in time. Additionally, these systems come in multiple
scales, from small, such as autonomous underwater vehicles,
through medium-sized installations, like temporary remote
military bases, to large national and international electricity
grids. This means that a robust energy system model must
also be scalable.

Fig. 2: Generic energy system and its respective sub-systems.

Energy systems are inherently dynamic, a characteristic that
is especially prevalent in the energy conversion processes. For
instance, energy production by means of renewable sources
such as solar and wind energy is highly variable, and subject
to fluctuations at all time scales. However, despite their relative
instability compared to fossil and nuclear solutions, their use
is expected to steadily increase as nations rally to achieve
the current climate goals. Likewise, electricity demand is
expected to undergo significant changes in the near to distant
future [3]. The electrification of infrastructure, such as train
lines, and the expansion of industries previously not reliant
on electricity could result in increased global consumption.
Additionally, the widespread establishment of power-hungry
sectors, such as data centers, is expected to contribute to this
spike in energy demand. This load increase will likely be
combated through the inclusion of distributed energy resources
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in the systems themselves, and with the utilisation of demand
side management. Lastly, an increasing interconnection to
Europe will inevitably change the dynamics and management
of Norway’s own energy system.

To tackle this variability, it is therefore crucial to have in
place good forecasts for the energy production and consump-
tion profiles, in addition to robust models that can combine
these different time scales and allow for the addition of
intelligent control systems.

The main goal of this PhD is to define a general framework
for the fundamental modelling of an intelligent dynamic
energy system that can address significant fluctuations and
uncertainties in energy demand and production. It must also
be computationally fast enough to enable training of state-
of-the-art machine learning control systems, while also being
usable as a larger design tool. The trade-offs between accurate
and fast numerical models, such as model-based vs data-driven
algorithms, will be explored, as will the possible abstraction
constructs for different sub-systems. The advent of Artificial
Intelligence (AI) and Machine Learning (ML)/Deep Learn-
ing (DL) methods has allowed for the development of powerful
processes that are capable of combining different scales and
effectively approximate complex functions and relationships.
These areas will therefore also be explored, as a possible
way to strike a balance between robustness and tolerance
to complexity. Specifically, the PhD project will begin by
developing a modelling framework for a stand-alone power
system, and proceed with applying it as a base model for
energy installations and autonomous or large-scale vehicles.

II. BACKGROUND AND SCIENTIFIC BASIS

This project is a part of the Intelligent Dynamic Energy
Systems (IDES) project, a collaboration between the Depart-
ment of Technology Systems (ITS) of the University of Oslo,
the Norwegian Defence Research Establishment (FFI), and the
Institute for Energy Technology (IFE). Within IDES, two other
PhD projects will address work packages related to AI-based
forecasting, and AI-based control of dynamic energy systems.
This PhD will focus on frameworks for improved numerical
modelling of energy systems, serving as a base for the two
other projects. With these work packages combined, a new
understanding of how to design and operate scalable energy
systems can be achieved, through a reimagining of model,
forecast and control, turning the project into one of strategic
importance for all of the involved parties.

In a classical sense, there are two types of numerical models
used to simulate the dynamics of energy conversion within
a system, namely first-principle and empiric models. First-
principle, or equation-based models, rely on the physics that
is inherent to the conversion processes, such as heat and
mass transfer. These models, when correctly calibrated, can
deliver highly accurate results, but are typically computation-
ally expensive and have low-reusability due the the series of
fixed assumptions made during their development [4]. On the
other hand, empirical models employ empirical equations that
describe the performance of the various technologies utilized
in the energy system. This results in high computation speeds,

Fig. 3: Accuracy and computational speed of different mod-
elling strategies [7].

due to the simplistic and generally linear nature of empirical
equations, but low accuracy in the results, because of the
lack of a physical foundation [5]. Between first-principle and
empiric, there are also the semi-empiric models, which do
include equations based on physical mechanisms, while also
having key parameters specified by empirical values [6].

With the coming of the era of big data, data-driven models
arrive as an alternative framework for energy system mod-
elling. These approaches can reproduce the hidden algebraic
relations between vast amounts of data sets without requiring
a description of the physical processes inherent to the same
data. This renders these models extremely versatile, and a shift
from first-principle to data-driven modelling can already be
observed in an array of fields of expertise [8]. Additionally,
the creation of ML techniques adapted to different domains
provides a new depth to data-driven approaches, due to its
ability to handle high complexity and to adapt to the scale of
the data [9]. The accuracy and computational speed of each
type of model can be seen in figure 3.

The rapid development of ML has sparked a paradigm shift
in several traditional industries, especially when it comes to
digitalisation. Regarding the energy industry, an IEA report
states that “digitally interconnected systems could fundamen-
tally transform the current energy industry” [10]. However, the
same report points out that the design and operation method-
ologies of energy systems remain by and large unchanged,
despite some isolated successful case studies, such as the
development of ML algorithms for energy demand prediction
for buildings [11] and transportation [12]. In general, ML
algorithms employed in the context of energy systems include
supervised, unsupervised, and reinforcement learning. In su-
pervised learning, the input variables, or features, are labelled,
meaning that the outputs are also provided, so known sets of
inputs and outputs are used as training data to develop predic-
tive models for unknown feature values. Supervised learning
can be further divided into regression and classification prob-
lems, depending on whether the outputs are continuous or
discrete/categorical. Most ML applications developed so far
for energy systems have fallen under this classification [7].
In unsupervised learning, only the features are labelled, so
the ML problem consists in finding hidden patterns in the
feature space, through techniques such as clustering. Finally,
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reinforcement learning employs reward functions that allow
for interactions between the software and the environment,
enabling dynamic decision-making. It is thus an invaluable
tool for optimisation under heavy uncertainty [13].

Optimisation goes hand in hand with the modelling of
energy systems, and begins with the formulation of the en-
visioned objective in the form of a mathematical program-
ming problem, with decision variables, an objective function
that should be minimised or maximised, and the constrained
variable space, typically written as

min
x

f(x)

s.t. g(x) ≤ 0

h(x) = 0,

(1)

where x is the vector of decision variables, f is the ob-
jective function, and g and h correspond respectively to
the inequality and equality constraints. These optimisation
problems can be further categorised into linear program-
ming (LP), mixed integer linear programming (MILP), non-
linear programming (NLP) and mixed integer nonlinear pro-
gramming (MINLP), according to the linearity of the equations
employed and the domain and continuity of the decision
variables. However, NLP and MINLP problems, though simple
to formulate, do not have an easily reachable optimum through
the algorithms available as of today [14]. They are therefore
often linearised into respectively LP and MILP formulations,
in order to improve efficiency. This demonstrates how chal-
lenging the choice and development of solution algorithms is,
both for energy system design and operation, rendering it a
promising focus point for this project.

Multiple-objective optimisation (MOO) poses also a
formidable challenge during model development. When build-
ing scalable systems, these can be thought of as integrated
complex multi-scale networks. In these cases, it is common
that multiple objectives may arise (e.g. minimising both the
cost and CO2 emissions of an energy system). It is often
the case that no single optimum exists, due to the conflicting
nature of multiple objectives, so the goal becomes that of gen-
erating trade-off compromise solutions, also know as Pareto-
optimal solutions. There are several available algorithms to
deal with MOO, the most popular being population-based,
that convert the problem into a set of single-objective sub-
problems, surrogate-based, where the objectives and con-
straints are approximated by comprehensible models, and
combinations of the two. These methods have been employed
to, among other cases, aid in thermal system design [15] and
environmental economic power dispatch [16].

Modelling systems that display a high penetration of vari-
able renewable sources present a whole new set of chal-
lenges, mainly regarding temporal resolution and planning
horizons [17]. These are crucial aspects in both technical and
economic analyses [18], and a review of current modelling
solutions, including a categorisation in optimisation, equilib-
rium and alternative models, can be found in [19]. While
there is a rich variety of modelling proposals to tackle these
issues, scalability remains an issue, as design questions such
as the derivation of the electrical energy storage capacity for

Europe with adequate spatial resolution still have a limited
answer [17].

Uncertainty regarding the long-term future is another chal-
lenging aspect of developing future-proof models when con-
sidering aspects such as price fluctuations in energy mar-
kets [20], [21] and the evolution of consumer behaviour. As of
now, four main techniques have been identified to tackle this
issue: Monte Carlo analysis, stochastic programming, robust
optimisation, and modelling to generate alternatives [22]. Each
of these have their unique set of advantages considering the
parameter space of knowledge on the sources of uncertainty
and the impact of the undesired outcomes. However, most
studies employ only simple sensitive analysis or scenario
studies to address sources of uncertainty, revealing room for
improvement in this area.

A. Energy Installation Case Study

The IDES project has a goal of studying both medium
and large energy installations. Medium-sized installations refer
to installations with local power production such as on-site
photovoltaic solar panels, local power storage like batteries
for short-term and hydrogen for long-term, and local power
consumption. In the context of collaboration with FFI, remote
military bases are stellar candidates for a case study in this
project. These bases can be thought of as microgrids, with
localised interconnected energy resources and loads [23].
They are therefore a good starting point for testing potential
modelling frameworks, as resilience and energy cost efficiency
are the main goals of these scenarios. This can also test
the framework’s ability to include variable renewable energy
sources [24], as they are an important source of self production
for these facilities, and its robustness due to future uncertainty.
There will also be extensive collaboration opportunities with
the third work package of IDES, which focuses on forecasting
of wind and solar energy production, the main energy sources
in such installations. However, one of the greatest challenges
of this case study will be the access to data, due to the
classified nature of information in this sector, which could
possibly hinder the project’s ability to explore data-driven
solutions.

On the other hand, large-sized energy installations refer to,
for example, renewable power plants with some kind of storage
solution, but that also interact with the national energy grid.
This case can test the scalability of the developed framework in
both time, space and complexity, and allow for the construction
of a breadth of optimisation scenarios.

B. Vehicle Case Study

Modelling vehicles as energy systems is a field of interest
in many aspects, such as the automatisation of transportation
and the electrification of this industry. In the context of
the collaboration with FFI, the first focus of IDES will fall
upon energy management in Autonomous Underwater Vehi-
cles (AUVs). These are relatively small but complex vessels,
that require precise control systems to maximise their range.
Energy management strategies have already been developed
for other water-based vehicles [25], but this case will test the
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versatility of the modelling framework, as one must consider
a variety of factors such as battery life, route planning, and
sensor usage. The goal can be thus formulated as a multi-
objective optimisation problem, and the model must employ
general intelligent energy management techniques in order to
solve it, while using forecasts as inputs, and control strategies
to enforce the obtained scheduling.

In the later stages of IDES, this framework can be applied
to larger systems such as commercial ships or heavy-duty
transport applications. These are as of today huge sources
of emissions [26], and are prime candidates for the use of
hydrogen as fuel, given the possibility of on-board energy
production and storage in a larger scale. This will considerably
increase the complexity of the system, and further challenge
the developed framework and its integration with the other
work packages of IDES, while modelling a potentially crucial
component of the roadmap towards an emissions-free world.

III. RESEARCH QUESTIONS AND SCIENTIFIC
CHALLENGES

This project will be based on three main goals within
energy systems modelling. It will firstly build knowledge on
existing standards and methods within system modelling and
optimisation, then create a general integrated framework, and
finally apply it to a set of case studies. To achieve the main
goal of developing the framework, the following research
questions must be answered:

• How can one create a flexible and scalable modelling
framework for a generic energy system?

• Which new modelling techniques can be established to
optimise the design and operation of energy systems?

• How to include advanced forecast and control systems
within the design of a modelling tool in order to test and
validate their efficiency?

This is crucial in order to attain a model that can be
employed in both operation and design analysis. Additionally,
a special attention has to be given to the issue of tackling
uncertainty, such as in fluctuating prices, variable renewable
energy generation, demand side management, and flexibility
in production and storage alternatives [17]. The reusability
of the proposed framework is also a focal aspect, as energy
system solutions for synthesis, design and operation are widely
available for a number of cases, but seldom reused.

The main challenge related to these goals will indubitably
be data sourcing. Whether it is to be employed in model
validation or creation of data-driven techniques, information
is key for this project, but the field is of a sensitive nature.
However, the cooperation with IFE and FFI might unlock
some otherwise inaccessible data, such as renewable energy
forecasting from the IFE side, and, although admittedly more
complicated, possible information regarding consumption pro-
files of military bases or autonomous vehicles from FFI.

IV. SCIENTIFIC METHOD

This project is naturally divided into two components:
modelling and optimisation. Regarding the modelling section,
a thorough comparison between developed frameworks and

existing models will need to be carried out in order to obtain
quantifiable metrics of improvement. Among others, these
metrics will consist in the benchmarking of speed, considered
and/or permitted scales, accuracy, and robustness, i.e. general-
isation, of models. For this direct comparison to be possible,
the same system configuration and associated data have to be
used for the considered methods. However, given the distinct
nature of the studied models, different types and quantity of
data are to be used for each case. For example, empirical
models tend to mostly rely on input from experimental data
associated with the targeted technologies, while data-driven
models might include a greater array of information, such as
that of peripheral systems. It is therefore important to ensure
that, for each test, the data used is a subset of a common
dataset. As for the source of the data, it is expected that a large
portion of it will lie outside of the public domain, as a result
of the tight collaboration with IFE and FFI. It is thus crucial
to ensure the creation of comprehensible documentation, so as
to ensure reproducibility with non-local data.

As data-driven methods will also be studied, it is also rele-
vant to comment on the testing method for machine learning
models. These are generally tested by using a benchmarking
of algorithms that compares speed and accuracy under the
same conditions, by splitting the data into training and testing
sets. The training set is used to train and optimise each model
with a cross-validation technique, to assess the performance
of different model configurations. The testing set is then
employed to evaluate the accuracy of the trained models.

Regarding optimisation, different problem formulations and
solution algorithms can be directly compared regarding the
speed of the whole process and the quality of the final
result. However, validation is a notoriously tough challenge
in this domain, once again due to the classified nature of a
variety of information related to the field. To tackle this, a
close cooperation with experts is of the utmost importance to
obtain the full picture of the value offered by the frameworks
developed within this project.

V. EXPECTED IMPACT

The motivation for this project is deeply grounded in the
need for smart solutions to combat climate change and achieve
an efficient green shift. By developing an effective framework
for an intelligent and dynamic energy system, we can ensure
smart distribution of available resources, and the widespread
inclusion of variable renewable energy sources, along with
their forecasts. This is likely to play a considerable role in
the shift that is to come, in an age where demand-centric
management is becoming increasingly crucial for achieving
the proposed climate goals and ensuring the resilience of the
systems themselves.

Regarding the area of energy systems as a whole, a recent
push can be already observed towards the open-source world,
which is inherently more transparent and collaborative – two
key words often heard in the context of achieving ambitious
climate goals. By developing an open-source based framework
that is also general and modular in its design, it is the hope of
this project to contribute to this transition and to an increased
scientific collaboration within this field.
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Fig. 4: Gantt chart with proposed timeline for the PhD project.

Furthermore, due to the targeted case studies, more accurate
and widespread models may help explore society’s options
when it comes to shifting the heavy-duty transport and industry
sectors to a zero-emissions paradigm, while the relevance
in defence applications is apparent when considering robust
models that can handle extreme weather scenarios and external
interference in energy installations.

VI. ETHICS

As previously stated, the nature of the data referent to
the field of energy systems is inherently classified, which
directly contradicts the philosophy of scientific research and
validation. It is therefore crucial to ensure the reproducibility
of methods and results, as this research field becomes more
vital by the minute. Reproducibility here refers to the ability
to replicate the settings of a scientific study in order to
verify the invariance of results. This can be achieved through
data sharing, ensuring detailed documentation, and in some
cases making the developed code openly available. Due to
the involvement of parties that have an interest in maintaining
the privacy of certain data and techniques, this becomes a
striking ethical challenge. Possible workarounds can be for
example the development of comprehensive documentation,
the description of a framework rather than actual code, and the
utilisation of dummy data-sets that can be used for validation
purposes. However, a constant evaluation of the methods
employed for development and scientific communication must
be undertaken in order to ensure the satisfaction of the involved
parties, while safeguarding the scientific quality of the project
in terms of its transparency, accessibility and availability.

Furthermore, one of the project’s stakeholders is the Nor-
wegian Defence Research Establishment (FFI), that conducts
research directly geared towards defence. Military related
projects present inherent ethical challenges that must also be
addressed [27]. While the project’s findings should in principle
be exclusively used in ways that are beneficial for society as
a whole and for the security of the Norwegian state, one must
also consider the potential misuse of developed technologies.

A preliminary evaluation must be therefore undertaken prior
to the execution of each case study, in order to assess their
potential ethical ramifications.

VII. PROJECT TIMELINE

The first semester is to be dedicated to knowledge building
through coursework and a general literature review. A total of
25 study points are to be completed within this time, with the
remaining 5 planned to be obtained in a summer school the
same year.

Regarding the project subdivision, this can be done keeping
three broad goals in mind, each contributing and building
up to the following one. This way, they can be scheduled
in a sequential manner that can also be efficiently made
parallel, as seen in figure 4. The first task will be to select
the modelling approach intended for the project, with a goal
of performing comparisons both at a global and at a case
study level. Secondly, a modelling framework is to be built
and documented, and a demonstration of its functionalities to
be performed on a case study that allows for the integration
of the AI forecasting work package. Lastly, there is the
goal of exploring the case studies specific to the IDES plan
description, regarding the military base installation and the
vehicle system. An ample timeslot has also been allocated for
writing the final dissertation.

According to current considerations, working titles for the
proposed articles in each focus block include:

• Model Comparison
– “A comparison of empirical, first-principal, and data-

driven models for electrolyser technologies in stan-
dalone power systems”

• Framework Construction
– “A framework for data-driven modelling and optimisa-

tion of generic energy systems”
– “Optimisation of hydrogen production in solar farms

using data-driven modelling and AI-based forecasting”
• Case Studies
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– “Modelling the feasibility of robust military bases
reliant on variable renewable energy”

– “Optimising maritime decarbonisation with onboard
hydrogen production”

VIII. PROJECT ORGANISATION AND COOPERATION

As previously mentioned, this project is a part of IDES, a
collaboration between ITS, IFE, and FFI. Each party will be
represented by means of a supervisor.

Øystein Ulleberg (IFE) will take the main supervisor role in
this project, and will be able to provide invaluable directional
insights, with his expertise lying in hydrogen technologies,
simulation modelling, and energy systems as a whole. The co-
supervisors will be Tareq Abou-Qassem (FFI), with a strong
competence in battery management systems and mathematical
modelling, and a full-time ITS professor that will be selected at
a later stage. Additionally, Isabel Llamas-Jansa (IFE) will act
as a close mentor, with expertise in the modelling of hydrogen
systems and experience in Monte Carlo simulations, while Paal
Engelstad (ITS) is the designated head project manager for
IDES. This team of experts lays the foundation for a strong
collaborative environment between the three institutions, and
facilitates a vibrant scientific stage with a breadth of perspec-
tives, fully apt to tackle this highly interdisciplinary project.

Finally, IDES as a whole will create a long-term round table
for collaborative discussions, with the potential of including
an unlimited number of mentor positions, thus ensuring the
project’s continuity in the event of a member having to vacate
their role.

IX. COOPERATION WITH EXTERNAL PARTIES

All three parties involved in the IDES project share the goal
of contributing to a rich spread of knowledge and competence
between all partners. This collaboration serves not only the
purpose of working on a specific project, but also that of cre-
ating a starting point for a long-lasting scientific partnership.
This is the reason why all work packages associated to the
project are being supervised by a team composed of members
from all involved institutions. All in all, it is a cooperation
expected to yield valuable competence from its collaborative
nature, with a potential for development of highly impactful
innovations in the field.
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