

KJM 9250

AVII-600 SHSQC and SHMBC Experiments

Version 7.3

Topspin 3.2 Windows 7 AVII600

© Professor Emeritus Alistair Lawrence Wilkins, University of Waikato, New Zealand. January 2020

AVII-600 SHSQC and SHMBC Experiments

1.0 Introduction

aw coded **AVII-600 SHSQC** and **SHMB**C parameter sets are set up with 2K acquired ¹H points and 128 ¹³C increments. ¹H and ¹³C spectral windows and their mid points should be determined before setting up **SHSQC** or **SHMBC** experiments.

The ¹³C axis resolution of **SHSQC** and **SHMBC** spectra acquired using 128 increments is typically 4-5 times greater than that of standard full window **HSQC** and **HMBC** spectra acquired with 160-256 or more increments.

A greater range of SHSQC and SHMBC experiments is available on the AVII-600 than is the case for the case for the AVI-600

1.2 Processing

SHSQC45 and SHSQC135 experiments are phase sensitive experiments. These spectra should be phased **before** using the **abs1** and **abs2** commands. Low level ${}^{2}J$ correlations may be observed in SHSQC spectra.

SHMBCQ5 spectra are processed with xfb. SHMBCCT spectra are acquired in echoantiecho mode and transformed with xfb <u>and</u> xf2m.

2.0 AVII-600 Experiments and Parameter Sets

2.1	SHSQC45	semi-selective hsqc45
2.2	SHSQC45.m	medium-selective hsqc45
2.3	SHSQC135	semi-selective hsqc135
2.4	SHSQC135.m	medium-selective hsqc135
2.5	SHMBCQ5	semi-selective shmbc experiment
2.6	SHMBCCT	constant time mode shmbc experiment

2.1 SHSQC45

Parameter set: awshsqc45 (+ getprosol)
Pulse programme: awshsqcetgpsisp2.2-45
d24 is automatically calculated from cnst2

Type eda (enter) and enter $SW(^1H)$ and $O1P = ^1H$ spectral window midpoint in ppm.

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

 $SW(^{13}C) = 20$ ppm, excitation band width is ca 10-12 ppm.

TD(F2) = 2K, TD(F1) = 128 points.

NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay = 1.5 sec or other time of your choice.

 $\mathbf{CNST2} = {}^{1}J$ coupling constant = 145 Hz or other value of your choice (eg. 125-160 Hz).

Type **ased** (enter) and review parameters used in the job.

Check that gradients and shaped pulses are OK, including a 3000 usec p43:sp32 band selective Q3.1000 pulse.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K, SI(F1) = 512 or 1024 points

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

xfb, abs1 and abs2

AVII-600 SHSQC45 spectrum of quinine in D₆-DSMO. The ¹³C axis is centered at 4 ppm.

2.2 SHSQC45.m

Parameter set: awshsqc45.m (+ getprosol)
Pulse programme: awshsqcetgpsisp2.2-45m
d24 is automatically calculated from cnst2

Type eda (enter) and enter $SW(^{1}H)$ and $O1P = {}^{1}H$ spectral window midpoint in ppm.

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

 $SW(^{13}C) = 60$ ppm, excitation band width is ca 40-45 ppm.

TD(F2) = 2K, TD(F1) = 128 points.

NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay = 1.5 sec or other time of your choice.

CNST2 = ${}^{1}J$ coupling constant = **145 Hz** or other value of your choice (eg: 125-160 Hz).

Type **ased** (enter) and review parameters used in the job.

Check that gradients and shaped pulses are OK, including a 700 usec p33:sp23 band selective Q3.1000 pulse.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K, SI(F1) = 512 or 1024 points

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2

xfb, abs1 and abs2

AVII-600 SHSQC45.m spectrum of quinine in D₆-DSMO. The ¹³C axis is centered at 40 ppm.

2.3 SHSQC135

Parameter set: **awshsqc135** (+ **getprosol**)
Pulse programme: **awshsqcedetgpsisp2.3-135**

d21 and d24 are automatically calculated from cnst2

Type eda (enter) and enter $SW(^{1}H)$ and $O1P = {}^{1}H$ spectral window midpoint in ppm.

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

 $SW(^{13}C) = 20$ ppm, excitation band width is ca 10-12 ppm

TD(F2) = 2K, TD(F1) = 64-128 points.

NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay = **1.5 sec** or other time of your choice.

 $\mathbf{CNST2} = {}^{1}J$ coupling constant = 145 Hz or other value of your choice (eg. 125-160 Hz).

Type **ased** (enter) and review parameters used in the job.

Check that gradients and shaped pulses are OK, including a 3000 usec p24:sp32 band selecive Q3.1000 pulse.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K, SI(F1) = 512 or 1024 points

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2xfb, abs1 and abs2

AVII-600 SHSQC135 spectrum of quinine in D₆-DSMO. The ¹³C axis is centered at 40 ppm.

2.4 SHSQC135.m

Parameter set: **awshsqc135.m** (+ **getprosol**)
Pulse programme: **awshsqcedetgpsisp2.3-135m**

d21 and d24 are automatically calculated from cnst2

Type eda (enter) and enter $SW(^{1}H)$ and $O1P = {}^{1}H$ spectral window midpoint in ppm.

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

 $SW(^{13}C) = 60$ ppm, excitation band width is ca 40-45 ppm

TD(F2) = 2K, TD(F1) = 64-128 points.

NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay = 1.5 sec or other time of your choice.

 $\mathbf{CNST2} = {}^{1}J$ coupling constant = 145 Hz or other value of your choice (eg. 125-160 Hz).

Type **ased** (enter) and review parameters used in the job.

Check that gradients and shaped pulses are OK, including a 768 usec p30:sp23 band selecive Q3.1000 pulse.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K, SI(F1) = 512 or 1024 points

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2xfb, abs1 and abs2

AVII-600 SHSQC135.m spectrum of quinine in D₆-DSMO. The ¹³C axis is centered at 40 ppm.

2.5 SHMBCQ5

Parameter set: awshmbcq5 (+ getprosol)

Pulse programme: awshmbcq5

Type eda (enter) and enter $SW(^{1}H)$ and $O1P = {}^{1}H$ spectral window midpoint in ppm.

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

 $SW(^{13}C) = 20$ ppm, excitation band width is ca 12 ppm

TD(F2) = 2K, TD(F1) = 64-128 points

NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay =1.5 sec or other time of your choice.

 $\mathbf{CNST2} = {}^{1}J$ coupling constant = 145 Hz or other value of your choice (eg 125-220 Hz).

CNST13 = ${}^{n}J$ selection filter = **8 Hz** or other value of your choice (eg. 6-14 Hz).

Type **ased** (enter) and review parameters used in the job.

Check that gradients and shaped pulses are OK, including a 3000 usec p35:sp27 band selective Q5.1000 pulse.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K, SI(F1) = 512 or 1024 points

WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2xfb, abs1 and abs2

AVII-600 SHMBCQ5 spectrum of quinine in D₆-DMSO. The ¹³C axis is centered at 122 ppm.

2.6 SHMBCCT (Constant time mode SHMBC experiment)

Parameter set: **awshmbcct** (+ **getprosol**)
Pulse programme: **awshmbcctetgpl2nd**

Type eda (enter) and enter $SW(^{1}H)$ and $O1P = {}^{1}H$ spectral window midpoint in ppm.

Enter $O2P = {}^{13}C$ spectral window midpoint in ppm.

 $SW(^{13}C) = 20$ ppm, excitation band width is ca 10-12 ppm.

TD(F2) = 2K, TD(F1) = 64-128 points

NS = multiple of 4, 8 or 16, DS = 8 or 16.

D1 = repetition delay =**1.5 sec** or other time of your choice.

CNST6 = 120 Hz, CNST7 = 170 Hz = min/max ^{1}J coupling constants.

CNST13 = ${}^{n}J$ selection filter = **8 Hz** or other value of your choice (eg. 6-14 Hz).

Type **ased** (enter) and review parameters used in the job.

Check that gradients and shaped pulses are OK, including a 3000 usec p43:sp32 band selective Q3.1000 pulse.

Set receiver gain using RGA (Important!).

Process with: SI(F2) = 2K, SI(F1) = 512 or 1024 points WDW(F1) = WDW(F2) = QSINE

SSB(F2) = SSB(F1) = 2xfb <u>and</u> xf2m, abs1 and abs2

AVII-600 SHMBCCT spectrum of quinine in D₆-DMSO. The ¹³C axis is centered at 122 ppm.