

Uncertain Henry's Law Constants Compromise Equilibrium Partitioning Calculations of Atmospheric Oxidation Products

Frank Wania¹

Chen Wang¹, Tiange Yuan¹, Stephen Wood¹, Kai-Uwe Goss², Jingyi Li ³, Qi Ying³

3

Partitioning of Atmospheric Oxidation Products

Atmospheric Phase Partitioning Equilibria

Organic phase (water insoluble organic matter, WIOM) Aqueous phase (water, W)

Equilibrium partitioning coefficients

K_{WIOM/G} between WIOM and gas phase.

 $K_{W/G}$ between water and gas phase, i.e. Henry's law constant.

Atmospheric Oxidation Products

- large in number
- often with multiple functional groups
- high affinity for organic/aqueous phase
 (i.e. K_{W/G} and K_{WIOM/G} are large)
- experimental data not available
 - \rightarrow prediction required

Research Questions

- How well do partitioning prediction methods perform for atmospheric oxidation products?
- What determines the uncertainty of the phase partitioning prediction?
- Does the uncertainty in the prediction affect the estimated phase distribution of atmospheric oxidation products?

Three Prediction Methods

1. **ppLFERs**: polyparameter linear free energy relationships

System parameters calibrated with experimental data for aerosol-gas and water-gas partitioning

÷

Solute descriptors describing intermolecular interactions (H-bond, polarity, cavity...) predicted with ABSOLV (ACD labs)

2. **SPARC** Performs Automated Reasoning in Chemistry (on-line calculator)

SMILES (structures) of the organic compounds and "solvent" (WIOM or water)

Structure of WIOM

3. COSMOtherm: COnductor like Screening MOdel for Realistic Solvents (COSMO-RS)

Arp et al. , *Environ. Sci. Technol.*, 42, 5951-5957, 2008. Wania et al. *Atmos. Chem. Phys.*, 14, 13189-13204, 2014. Goss. Chemosphere, 64, 1369-1374, 2006.

Atmospheric Oxidation Products

Structures of Atmospheric Oxidation products were generated with the Master Chemical Mechanism (MCM v3.2)

• 143 VOCs, anthropogenic and biogenic species

Reaction products: 3414 non-radical species

C811OH MCM4

C921OOH MCM8

PINONIC MCM12

ΤΕΧΑς Α&

UNIVERSIT

Predictions for Atmospheric Oxidation Products

Number of

K_{WIOM/G}

MAD: Mean Absolute Difference MD: Mean Difference

• Discrepancy increases with number of functional groups for predicted $K_{W/G}$.

2

1

N

Possible Explanations for the Discrepancies

 Lack of experimental data for compounds structurally similar to the multifunctional atmospheric compounds for prediction method calibration.
 →prediction outside the applicability domain

Platts et al., J. Chem. Inf. Comput. Sci., 39, 835-845, 1999.

Possible Explanations for the Discrepancies

 Failure of some prediction methods to account for the various conformations that multifunctional compounds can undergo due to intramolecular interaction (mostly internal hydrogen bonding) →Formation of intramolecular H-bonds competes with the formation of H-bond with water or WIOM.

Example : internal hydrogen bonding for multifunctional compounds

Conformer 1

Conformer 2

Possible Explanations for the Discrepancies

- 2. Failure of some prediction methods to account for the various conformations that multifunctional compounds can undergo due to intramolecular interaction (mostly internal hydrogen bonding)
- ppLFER

- Experimentally determined solute descriptors can consider conformation.
- However, the group contribution based ABSOLV predictions have limited consideration of intramolecular interaction.

• SPARC

• Likely not considering conformation

COSMOtherm

- Considers conformation and intramolecular interactions
- Smaller predicted $K_{W/G}$

Predicted Phase Distribution

Only 2-5 % of the 3414 compounds have a different preferred phase when a different prediction method is used.

Phase distribution varies only slightly using different prediction method.

Predicted Phase Distribution

11-34% of the 3414 compounds have a different preferred phase using different prediction method, with COSMOtherm predicting fewer compounds in the cloud.

Phase distribution varies substantially depending on the prediction method.

Predicted Phase Distribution

Compounds with ≤ 2 functional groups: predominantly present in the gas phase.

- Highly functionalized compounds (>3 functional groups): different depending on the method
 - ppLFER and SPARC predict more compounds in aqueous phase than COSMOtherm.

Phase distribution varies substantially, especially for multifunctional compounds.

- How well do partitioning prediction methods perform for atmospheric oxidation products?
 - *K*_{WIOM/G}: generally good agreement using different method
 - $K_{W/G}$: quite large discrepancy, increasing with functional group number
- What determines the uncertainty of the phase partitioning prediction?
 - Reliance on empirical calibration: applicability domain (ppLFER, SPARC)
 - Intramolecular interaction: $K_{WIOM/G}$ vs. $K_{W/G}$, COSMOtherm vs. ppLFER, SPARC
- Does the uncertainty in the prediction affect the estimated phase distribution of atmospheric oxidation products?
 - It depends on atmospheric scenarios and prediction method for $K_{W/G}$.

Scenarios	Different Prediction Method
Organic aerosol (without water)	Similar
Cloud	Different
Aerosol with two liquid phases	Different

Acknowledgements

Natural Sciences and Engineering Research Council of Canada

Conseil de recherches en sciences naturelles et en génie du Canada

Canada

University of Toronto SciNet High Performance Computing Consortium

