

Stephan Weinbruch, Nathalie Benker, Konrad Kandler, Katharina Schütze, Kirsten Kling,

Balázs Berlinger, Yngvar Thomassen, Tatiana Drotikova, and Roland Kallenborn

Source identification of individual soot agglomerates in Arctic air by transmission electron microscopy

coal burning Longyearbyen

cruise ship Ny Ålesund

Introduction

Soot (black carbon) influences the Arctic climate by (Quinn et al., 2011):

- (a) direct forcing by absorption of solar radiation,
- (b) reduction of albedo after deposition on snow,
- (c) indirect and semi direct forcing by changing microphysical properties of clouds,
- (d) radiative forcing outside the Arctic leading to changes in energy transport by the atmospere and oceans.

highest BC concentrations in late winter/early spring: $80 - 100 \text{ ng/m}^3$ lowest BC concentrations in summer/autumn: $5 - 10 \text{ ng/m}^3$

downward trend of annual mean BC of approximately 1 – 2 ng/m³ per year (≈ 1989 – 2009)

main source region Northern Eurasia, but also contribution from South Asia

Contribution of different sources to BC in the Arctic are usually derived from emission inventories or chemical tracers measured at the receptor. In the latter case source identification usually based on bulk analysis.

In the present contribution, a single particle approach is elaborated:

- (a) **Properties of individual soot agglomerates**
 - size of primary particles
 - graphene sheet separation distance
 - chemical composition of soot agglomerates

(b) Particle groups externally mixed with soot

Sampling

Umweltmineralogie

location/source	code	date
ambient samples		
Longyearbyen settlement	A-LB	19.03.2010
		22.03.2010
Ny Ålesund settlement	A-NA	11.03.2010
Ny Ålesund balloon	A-NAB	26.03.2014
	A 770	07 10 2000
Zeppelin Station, Ny Alesund	A-ZS	07.10.2008
		07.11.2008
		22.11.2008
local sources		
Barentsburg downwind power plant	L-BBPP	27.03.2010
Longyearbyen downwind power plant	L-LBPP	22.03.2010
		25.03.2010
Ny Ålesund downwind cruise ship	L-NACS	16.07.2007
Ny Ålesund diesel aggregate	I-NADA	26.03.2014
ny mesund dieser aggregate	LIMDA	20.03.2014
Ny Ålesund oil burning	L-NAOB	26.03.2014
Sveagruva diesel aggregate	L-SGDA	10.03.2014
other sources		
air plane	O-AP	09.04.2014
biomass burning (airborn sampling)	O-BB	22.01.2008
		23.01.2008
diesel car	O-DC	26.04.2012

Analysis

Sampling:

two-stage micro inertial cascade impactor

or

electrostatic precipitator

Ni or Cu grids covered with Formvar foil

Transmission electron microscopy: Philips CM 20, LaB₆-cathode, 200 kV (≈ 0.23 nm point resolution) energy-dispersive X-ray microanalysis Oxford Instruments (Max 80) all elements with Z ≥ 5

Results

chain-like or more compacted agglomerates of primary particles

coal burning Barentsburg

coal burning Longyearbyen

typical onion shell structure of graphene layers

diesel car

Size and nanostructure of soot primary particles

primary particle diameter

primary particle diameter <u>not</u> suited for source identification

graphene sheet separation distance <u>not</u> suited for source identification

Umweltmineralogie

TU-Darmstadt

S, O and Na <u>not</u> used for source identification, as all ambient samples and all local source samples not directly collected at the stack contain secondary aerosol and/or (aged) sea salt

 \rightarrow apparent concentration of these elements in soot are enhanced

→ only minor elements in soot which not effected by the presence of other phases can be used for source identification

Si is a good marker for ship emissions

P is a good marker for coal burning at Barentsburg

R

O-AP

O-BB

O-DC

L-NACS L-NADA L-NAOB L-SGDA

Ca is higer in soot from oil burning in Ny Ålesund and from the diesel power plant in Sveagruva

ambient samples

1.0

0.5

0.0

A-LB

A-NA

A-NAB

A-ZS

L-BBPP

L-LBPP

sample

K [at.%]

Umweltmineralogie

TU-Darmstadt

Fe concentrations are rather constant. Lowest values observed for coal coal burning in Longyearbyen, diesel power plant in Ny Ålesund, biomass burning, diesel car.

coal burning samples (Barentsburg, Longyearbyen)
contain a significant fraction of fly ashes
(this is also true for coal burning in general)

fly ashes were found in all ambient samples on Svalbard

coal burning Longyearbyen

diesel aggregate Sveagruva

emissions from the diesel aggregate in Sveagruva contain small ($\approx 10 - 30$ nm) metacinnabar (cubic HgS) particles

not observed in ambient samples on Svalbard

biomass/wood burning always leads to emission of tar balls

not observed in ambient samples on Svalbard

Biomass burning, Mozambique; (Pósfai et al., 2003)

Sources of soot in ambient samples

source	contribution	criteria
coal burning Barentsburg	excluded	P content
coal burning Longyearbyen	likely in Longyearbyen	fly ashes
	excluded for Zeppelin Station	Si content
long-range transport of coal	likely	fly ashes
burning emissions		
ship emissions	excluded	Si content, other tracers (V, Ni)
biomass/wood burning	excluded	K content, tar balls
diesel aggregate Sveagruva	excluded	HgS particles
oil burning Ny Ålesund	possible	no criterion found
diesel aggregate Ny Ålesund	possible	no criterion found
diesel engines	minor contribution possible	Fe content
aircraft emissions	possible	no criterion found

Further work

ice core samples

- → differences between the wood burning, coal burning and oil burning era
- sources of EC in urban environments
- \rightarrow wood burning versus diesel cars
- carbonaceous particles in stratospheric samples
- → **not enough material for bulk analysis available**