

The major pathway for BDE-209 entering the Arctic air

ICCE 2017

June 18-22, 2017 Oslo, Norway

Yi-Fan Li, Li-Na Qiao, Nan-Qi Ren, Donald Mackay, Robie W. Macdonald

International Research Center for Arctic Environment and Ecosystem (IRC-AEE), Harbin Institute of Technology, Harbin, 150090, China

IJRC-PTS-NA, Toronto, M2N 6X9, Canada

Trent University, Peterborough, ON. K9J 7B8, Canada

Institute of Ocean Sciences, Department of Fisheries and Oceans, P.O. Box 6000,

Sidney, BC, V8L 4B2, Canada

Acknowledgments

National Natural Science Foundation of China (No.

21577030)

IJRC-PTS Project (#201505)

Hayley Hung from Environment and Climate Change of

Canada

Contents

- Introduction
- The current point of view
- Our point of view
- Conclusions

Contents

- Introduction
- G-P partition Quotients for BDE-209
- BDE-209: Long-range transport
- Conclusions

Introduction:

The major pathways for POPs to enter the Arctic :

LRAT: represented by α-HCH (MacDonald et al. 2002, Li et al., 1998, 2004; Li and Bidleman, 2003, Li and MacDonald, 2005)

LROT: represented by β-HCH (Li et al. 2002, Li and MacDonald, 2005)

How does BDE-209 enter the Arctic air? LRAT

Is its gas phase or particle phase?

To answer this question, we need to understand the gas/particle partition.

Contents

- Introduction: The question
- The current point of view
- Our point of view
- Conclusions

Models to predict G/P for SVOCs

Junge-Pankow model (Junge, 1977; Pankow, 1987)

 $\varphi = c\theta/(P_{L} + c\theta)$

All these models predicted that BDE-209 in air is entirely sorbed to particles.

Harner-Bidleman model (Harner and Bidleman, 1998)

 $\log K_{\rm PE} = \log K_{\rm OA} + \log f_{\rm OM} - 11.91$

Current View

Previous view :

- BDE-209 is entirely sorbed in particles
- BDE-209 can only be found in source areas

Monitoring:

- Remote areas
- Arctic

Explanation:

it is particulate BDE-209 that enters Arctic through LRAT.

Contents

- Introduction: The question
- The current point of view
- Our point of view
- Conclusions

Predicting Equation

Steady-state model

Atmos. Chem. Phys., 15, 1669–1681, 2015 www.atmos-chem-phys.net/15/1669/2015/ doi:10.5194/acp-15-1669-2015 © Author(s) 2015. CC Attribution 3.0 License.

RC-AEE: 000

Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: A theoretical study

Y.-F. Li^{1,2,3}, W.-L. Ma¹, and M. Yang²

¹International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China ²IJRC-PTS, Dalian Maritime University, Dalian 116026, China ³IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada **Equations at steady state: Important predictions**

- 1. The threshold values predict the equilibrium or nonequilibrium states $(\log K_{OA1,2} \text{ vs. the values of m (Slope)})$
- For the first time, we have the threshold values of logK_{OA1,2} to classify the equilibrium or nonequilibrium states for PBDEs, or other SVOCs in future

Li et al, 2015

Introduction: The slope *m*

The regression model ($\log K_{PR}$) needs monitoring data to calculate the parameters m_0 (0.23) and b_0 (-3.90)

Yang et al. 2013

Equations at steady state: Important predictions

1.

2. The relationship between $log K_P$ and $log K_{OA}$ (and $log P_L$) are not linear

Equations at steady state: Important predictions

- 1.
- 2.

3. The existence of the maximum domain for PBDEs in which $logK_{P} = -1.53$

Li et al, 2015

Prediction by Steady-State Model for PBDEs

Figure 1. The G/P partition coefficients of PBDEs as functions of logK_{OA} calculated by two equations. (Li et al., 2015) Equations at steady state: Threshold Values

logK_{OA} range

- logK_{OA1}=11.4: The first threshold value, separating equilibrium (EQ) and nonequilibrium (NE) domains
- logK_{OA2}=12.5: The second threshold value, the start of the maximum partition (MP) domain

Li et al, 2015

Prediction by Steady-state Model for PBDEs

Important predictions:

• The existence of MP domain is the most important prediction by the Steady-state Model

Equations at steady state: Threshold Values

For BDE-209

Log $K_{OA} = 14.2$ at +50°C = 20.0 at -50°C

Both > $\log K_{OA2}$ =12.5

Li et al, 2015

Prediction by Steady-state model for PBDEs

The G/P partition coefficients of PBDEs as functions of $\log K_{OA}$ calculated by two equations.

(Li et al., 2015)

We predict

The logarithm of partition quotient ($\log K_P$) of BDE-209 is a constant (-1.53) at any ambient temperature and at any sampling sites.

(Li et al., 2017)

C/P partition quotient

Monitoring data

Izmir Bay, Turkey

The values of $\log K_P$ of BDE-209 versus sampling date in Izmir Bay, Turkey in 2005. Assuming that the values of *TSP* at the site were 30 μ g/m³ in summer and 50 μ g/m³ in winter.

Cetin and Odabasi, 2007

The values of $\log K_{PM}$ of BDE-209 versus sampling date in Zurich, Switzerland in 2010. Assuming that the values of *TSP* in this city were 30 $\mu g/m^3$ in summer and 50 $\mu g/m^3$ in winter.

Bogdal 2014

Variation of $\log K_{PM}$ for BDE-209 versus sampling date in downtown Paris, France. Assuming that the values of *TSP* in this city were 50 µg/m³ in summer and 100 µg/m³ in winter.

Tlili et al., 2011

SAMP-II, China

Variation of log*K*_{PM} for BDE-209 versus sampling date in China.

(Li et al., 2017)

or Arctic

Arctic air

Variation of $\log K_{PM}$ for BDE-209 versus temperature at Alert, Canada from 2006 to 2012

Hung et al, NCP 2013

BDE-209: Fractions in gas and particle phases

(Li et al., 2017)

Contents

- Introduction: The question
- The current point of view
- Our point of view
- Conclusions

BDE-209: Long-range transport

- Gaseous BDE-209 are abundant in air (from 87.1% when TSP=5 μg/m³ to 14.5% when TSP=200 μg/m³ from our equation), and dominant over all PBDE congeners in gas phase in many populated areas, like China, Turkey, Switzerland, and other countries.
- Similarly to other SVOCs, this compound in gas phase is subject to LRAT from warmer to colder areas.

(Li et al., 2017)

Thus, it is mainly the gaseous not particulate BDE-209 that enters the Arctic atmosphere via LRAT.

(Li et al., 2017)

Headline Paper:

- Decabrominated Diphenyl Ethers (BDE-209) in Chinese and
- Global Air: Levels, Gas/Particle Partitioning, and Long-
- Range Transport: Is Long-Range Transport of BDE-209
- Really Governed by the Movement of Particles?
- Environmental Science & Technology, 51, 1035-1042, 2017

Thank you for your attention!

Models to predict G/P for SVOCs

(Breivik et al, 2006) 35

Threshold Values

(Li and Jia., 2014)