ICCE 2017

On the environmental fate of two endocrine disrupting chemicals in agricultural soils using wastewater for irrigation

Juan Carlos Durán-Álvarez and Blanca Prado

Centre of Applied Sciences and Technological Development National Autonomous University of Mexico

Wastewater is the main entrance of emerging pollutants into environment

Soil receives emerging pollutants during irrigation

Reuse of untreated wastewater in agricultural irrigation worldwide (Jimenez and Asano, 2008)

Case study in Mexico

- Wastewater from Mexico City (75 m³/s) is sent to Tula Valley 80 km north Mexico City.
- 90,000 ha of croplands are irrigated using untreated wastewater.
 - Infiltration of wastewater through the soil.
 - Non-intentional recharge of aquifer
 - Wastewaterpurificationbyinfiltrationresultsindrinkablewater.

Sites with different time under irrigation

- Irrigation using untreated wastewater started in 1914.
- Irrigated area gradually increased
- Accumulation of heavy metals in soil

Occurrence of emerging pollutants in Tula Valley

	1			Analyte	LOD (ng/g)	Phaeozem	Leptosol
	0.6			Clofibric acid	2.0	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
/ha yr				Ibuprofen	0.1	0.25 ± 0.04	<lod< td=""></lod<>
	0.5			2,4-D	2.0	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
	04 -		10 yrs 90 yrs	Gemfibrozil	2.0	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
50	Į.i			Naproxen	0.2	0.55 ± 0.01	0.73 ± 0.20
io	0.3			Ketoprofen	1.0	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
ulat				Diclofenac	1.0	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
ceum	0.2			Carbamazepine	0.5	6.48 ± 0.59	5.14 ± 0.48
				4-Nonylphenols	25	41 ± 6	123 ± 9
٩	0.1			Triclosan	1.0	4.4 ± 0.1	18.6 ± 1.2
\mathbb{N}				Bisphenol-A	2.0	<lod< td=""><td>14.8 ± 3.2</td></lod<>	14.8 ± 3.2
	0 -			Di-n-BuP	25	244 ± 43	552 ± 57
	N	ine an	اه يو	BuBeP	25	131 ± 23	346 ± 50
	N	1891. HOST	not oron	DEHP	25	820 ± 87	2079 ± 201
		anar the	hat ibur	Estrone	1.0	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
	j,	50		17β-Estradiol	1.0	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
	C ^O			EE2	2.5	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>

- Soil accumulates organic matter provided by wastewater.
- **Comparison between two ages under irrigation.**
- **Greater accumulation in soils with 10 years under irrigation.**
- Possible increased biodegradation in soils with 90 years under irrigation.

Aim

To asses the impact of long term wastewater irrigation on the biodegradation and mobility of two emerging pollutants in wastewater irrigated soils.

DR-03 Valle de Tula

Soil sampling: 0, 35, 65 and 100 years under irrigation

Superficial soil was taken for batch biodegradation tests

Superficial layer above soil removed 500 g of soil samples taken in glass bottles Soil preservation at -20°C until experiments

Dynamicsorption-desorptionprocesseswereassessed in undisturbed soil columns experiments

Soil characterization

	Age		Conductivity	Total organic	Clay	Slit cntent	Sand	Hydraulic
	(years)	pН	(mS/cm)	carbon (%)	Content	(%)	Content	conductivity
					(%)		(%)	(cm/h)
	0	7.23	4.7	2.8 ± 0.6	40	46.3	13.7	1.3
	35	6.82	5.	3.49 ± 0.4	35.7	50.9	13.4	1.3
	65	7.25	5.4	4.25 ± 0.2	40	47.9	12.1	1.0
	100	6.76	4.8	6.3 ± 1.1	32	48.9	19.1	1.2
					_			
Soil		D	EHP (µg/kg)	17β Estradiol (µg/kg)	Bee	idual co		iono of
0 years		215 ± 69		<ldd< td=""><td>Kes</td><td colspan="3" rowspan="3">target compounds were found in soil samples</td></ldd<>	Kes	target compounds were found in soil samples		
35 years		1048 ± 111		2.5 ± 0.8	in s			
65 years		1025 ± 85		< LDD	111 3			
100 years		829 ± 129		1.8 ± 1				

Dynamic sorption-desorption tests

Steady state flow conditions

Instrumental analysis

3

Extraction efficiency in aging experiments

Aging (days)	DEHP Spiked 2000 µg/kg)	17β Estradiol Spiked 50 µg/kg)
0	102 ± 2	89 ± 2
20	104 ± 2	87 ± 2
40	100 ± 1	90 ± 1
60	99 ± 3	88 ± 3
80	97 ± 3	87 ± 3
100	93 ± 3	84 ± 3

Biodegradation rates

- Higher biodegradation of DEHP as increased time under irrigation.
- Increased initial concentration had no effect biodegradation rate.

Time (days)

Years	<i>k</i> (d⁻¹) no spiking	<i>k</i> (d ⁻¹) spiking	Half life (days)			
under irrigation			This study	Agricultural soil, China (Cu et al., 2008)	Compost amended soil (Chang et al., 2009)	
0	0.019 ± 0.003	0.013 ± 0.004	35.5			
35	0.029 ± 0.003	0.03 ± 0.002	24.8	20.9	F	
65	0.034 ± 0.004	0.035 ± 0.007	20.3	30.0	5	
100	0.064 ± 0.007	0.061 ± 0.005	11.1			

Biodegradation rates

- **17β estradiol was readily degraded compared to DEHP.**
- Degradation rate increased with time under irrigation.
- Effect of high initial concentration.

Time (days)

Years	<i>k</i> (d⁻¹) spiking 10 ng/g	<i>k</i> (d⁻¹) spiking 50 ng/g	Half life (days)			
under irrigation			This study	Agricultural soil, China (Jacobsen et al., 2005)	Soil amended with manure (Lucas et al., 2006)	
0	0.033 ± 0.004	0.023 ± 0.004	21-29.7			
35	0.049 ± 0.004	0.035 ± 0.003	14.1-20	10	1 2	
65	0.077 ± 0.004	0.061 ± 0.006	9-11.3	12	1.5	
100	0.19 ± 0.004	0.12 ± 0.002	3.7-5.8			

BTC of 17β estradiol and DEHP in 65 years irrigated soil

Concluding remarks

- Agricultural soils are able to degrade and retain the tested micropollutants.
 - Biodegradation occurs more rapidly under dynamic conditions than in batch tests.
 - Increment of soil organic matter, which is supplied by wastewater increases the retention capacity, especially for non polar compounds.

Long term Irrigation using untreated wastewater increases the soil capacity to cope with organic pollutants by biodegradation and retention processes.

Acknowledgments

- National Autonomous University of Mexico
- Mexico City's Council of Science, Technology and Innovation
- Postgraduate students in environmental chemistry

Thank you for your kind attention

Floor is open to question and discussion!!

