

Monitoring gaseous mercury with a precise, accurate and inexpensive passive air sampler

Frank Wania¹

David S. McLagan,¹ C. P. J Mitchell,¹ Y. D. Lei, H. Huang,¹ B. Abdul Hussain,¹ F. Monaci,² A. Steffen,³ H. Hung,³ C. Shin,³ G. W. Stupple,³ B. Bergquist,⁴ D. Howard,⁵ G. Edwards,⁵ M. Olson,⁶ A. Dreyer,⁷ and H. Xiao⁸

The Sampler

McLagan, et al., ES&T Lett (2016), 3, 24-29

Rationale for passive sampling

- measuring ambient Hg levels close to the global average over extended periods of time, possibly for long term trend monitoring
- measuring Hg concentration variability/gradients at fine spatial resolution close to point sources to the atmosphere
- Personal Hg exposure monitoring for compliance and exposure assessment

Field Calibration

Toronto, Canada

1 year

Alongside Tekran 2537B active air sampler for gaseous Hg

Excellent linear uptake

Replicate precision

 $RSD_{avg} = 2.1 \pm 1.3 \%$

Sampling rate (SR):

Volume of air effectively stripped of Hg per unit time

SR = m / (C t) $SR = 0.121 \pm 0.005 \text{ m}^3 \text{ day}^{-1}$

0.129 m³ day⁻¹

at average T of calibration 7.6 °C

Based on:

- Temperature adjusted molecular diffusivity of mercury in air
- Molecular diffusion distance as the sum of a boundary layer, and Radiello's porous diffusive barrier and internal airspace

Meteorological factors and SR

Indoor experiments to test influence of temperature (*T*), wind speed (*WS*), and relative humidity (*RH*) on *SR*

Effect of RH on SR

Meteorological factors and SR

Effect of wind speed (WS) on SR

Strongest dependence at low wind speed (indoors)

At wind speeds above 1 m s⁻¹ (outdoors): minor, but significant linear dependence

SR increases by 2.5% for 1 m/s increase

SR adjusted for temperature and wind speed of individual deployments

$$\begin{split} SR_{adj} = & SR_{calibration} \\ &+ (T_{deployment} - T_{calibration}) * 0.0009 \text{ m}^3 \,^{\circ}\text{C}^{-1} \, \text{day}^{-1} \\ &+ (WS_{deployment} - WS_{calibration}) * 0.0028 \,\text{m}^2 \,\text{s day}^{-1} \end{split}$$

Global Accuracy Testing

- 20 sites with ongoing active sampling (TEKRAN)
- Varying climate and gaseous Hg conditions
- One full year
- Varying intensity of deployments
 Monthly, seasonal, halfyearly, & yearly resolution
- Triplicates

Global Accuracy Testing

Active-Passive comparison

n = 278 (some losses due to Tekran outages)

- Previously calibrated unadjusted SR
 0.121 m³ day⁻¹
 |RPD|_{avg} = 11.8 ± 8.3 %
- Recalibrated SR from all data
 0.133 m³ day⁻¹
 |RPD|_{avg} = 7.8 ± 6.0 %
- Recalibrated SR: T and WS adj.
 |RPD|_{avg} = 8.3 ± 5.9 %
- Theoretical SR: 0.134 m³ day⁻¹
 Based on average T = 13.0 °C

- Monte Amiata (1738m) 3rd largest global Hg production region
- >100 000 t of Hg produced between 1847–1982
- Major mine: Abbadia San Salvatore

Two 7x7 PAS sampling grids

Abbadia San Salvatore Mine

two 1-week deployments Oct 2015 & July 2016

Monte Amiata region

four seasonal deployments: Oct 2015 - Oct 2016

Concentrations (weekly average) around Abbadia San Salvatore Mine

1-week measured & predicted (Kriging model) gaseous Hg conc. at ASSM

weak, but consistent westerly wind in summer advect elevated Hg levels in town

Concentration in residential area exceed 200 ng m⁻³

Concentrations (seasonal average) around Monte Amiata

- Consistent spatial patterns
 - incremental increase toward source
 - predominantly westerly winds push Hg plume east into town and valley
- Concentrations at hemispheric background (~1.4 ng m⁻³) in SW and NW corners of grid

- Source characterisation and mapping
- Population-level inhalation exposure assessment

Estimation of emission from entire mine area

- Use spatial concentration maps and decline of concentration with height to estimate excess mercury in the air above the mine
- Estimate average residence time of air in the area based on average wind speed

$$E_{July} = 310 \text{ kg yr}^{-1}$$

(uncertainty: 140 - 520 kg yr^1)
 $E_{Oct} = 170 \text{ kg yr}^{-1}$

(uncertainty: 120 - 220 kg yr¹)

- Universally applicable SR: 0.133 m³ day⁻¹
- Overall uncertainty: 8 ± 6 % with or without *T* and *WS* adjustment
- Suitable for:
 - monitoring even global background concentrations with time resolution of 1 week to >1 year
 - concurrent point source characterisation & emissions estimation
 - source identification

Future Application Potential

Artisanal and small scale gold-mining

Geological Hg sources

Effectiveness evaluation of Minamata Convention

Contaminated site remediation

etc.

Acknowledgements

- AMNET (USA) and CAMNET (Canada) mercury monitoring networks
- Undergraduate and graduate student help at University of Toronto Scarborough and University of Siena
- Machine Shop, Dept. Chemistry, University of Toronto
- Funding sources

Environment and Climate Change Canada Environnement et Changement climatique Canada

Source Identification: Toronto

- 161 sites across city over 6-week period in Jul/Aug 2016
 - Transfer centres
 - Recycling centres
 - Crematoria
 - Hospitals and dental
 - Homes/workplaces
 - Additional sites
- Source transect at disposal site for Hg containing products (only Hg retort in Canada)

Source Identification: Toronto

6-week measured & predicted (Kriging model) gaseous Hg conc. in GTA in July/August 2016

- [Gaseous Hg]: low At or just above hemispheric background
- Range of [gaseous Hg]: low
- Highest in downtown
- Additional sites were significantly lower than dental/hospital, waste sites and crematoria (p<0.001)
- Disposal facility: 1 order of magnitude above background