

One-year monitoring of legacy and emerging contaminants in a coastal setting (Cadiz Bay, Spain) using a combined approach: passive samplers and sentinel organisms

Marina G. Pintado-Herrera¹, Ian J. Allan², <u>Pablo A. Lara-</u> <u>Martín¹</u>

¹Department of Physical Chemistry, Faculty of Environmental and Marine Sciences, CEI·MAR, 11510 Puerto Real, Cadiz, Spain ²Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway

Funding: P09-RNM-5417 CTM2015-70731-R

1. Introduction

Since the 1970s, monitoring of **persistent**, **bioaccumulative and toxic (PBT)** chemicals using analytical chemistry has provided important spatial and temporal trend data in three important contexts :

- Relating to human health protection from seafood contamination
- Addressing threats to marine top predators
- Providing essential evidence to better protect the biodiversity of commercial and noncommercial marine species

T.H. Hutchinson, B.P. Lyons, J.E. Thain and R.J. Law. Marine Pollution Bulletin 74 (2013) 517-525

2. Objectives

- To analyze a wide range of hydrophobic organic contaminants (log $K_{ow} > 4$, including legacy and emerging compounds) in <u>water and biota</u> from a highly urbanized coastal system (Bay of Cadiz, SW Spain).

- To monitor their occurrence and distribution over <u>a long time period (1 year)</u> to determine seasonal changes in their inputs and concentrations by means of <u>silicone-based passive samplers</u>.

- To assess their bioaccumulation potential by parallel deployment of <u>sentinel</u> <u>organisms</u> (clams).

- To select those <u>emerging compounds that are predominant</u> in terms of concentration, frequency of detection and bioaccumulation potential and conduct further characterization of their environmental behavior and fate.

Silicone strips (100 x 2.5 cm) were prepared from AltesilTM (500 μ m thickness). Performance reference compounds (PRCs) were added: Fluoranthene d₁₀ (FL-d₁₀) Chrysene d₁₂ (CHR-d₁₂)

Triphenylphosphate d_{15} (TPP- d_{15}) Triclosan d_3 (TCS- d_3) Benzophenone d_{10} (BP- d_{10})

K. Booij, F. Smedes, and E.M. van Weerlee. Chemosphere 46 (2002) 1157-1161

ICCE 2017

GC-EI-MS/MS (Scion, Bruker)

M.G. Pintado-Herrera, E. González-Mazo, and P. A. Lara-Martín. Journal of Chromatography A 1429 (2016) 107-118.

Target compounds: <u>legacy</u> and <u>emerging</u> contaminants

PAHs	Organophosphorus			UV filters
Naphthalene	flame retardants			2-OHBP
Acenaphtene	ТРР			Benzophenone-3
Acenaphtylene	ТІВР			Octocrylene
Anthracene	ТМВР			HMS
Fluorene	ТЕНР			EHS
Phenanthrene	EHDPP			ЕНМС
Pyrene	ттр			4-MBC
Chrysene				
Benz[a]anthracene		An	timicrobials	Fragrances
Fluoranthene			Triclosan	Musk xylene
Benzo[b]fluoranthene	PCBs			Musk ketone
Benzo[k]fluoranthene	PCB 52		Me-res	Galaxolide
Benzo[a]pyrene	PCB 101	ſ	Nonylphenol	Tonalide
Benzo[g,h,j]perylene	PCB 138		Chlorpyrifos	Celestolide
Indene[1,2,3-cd]pyrene	PCB 180		Irgarol	OTNE

 $Cw = \frac{Np}{Kpw \, mp \, (1 - e^{-Rs \, t} / Kpw \, mp \,)}$

Np = measured mass of each analyte

mp = mass of the silicone strip

t = exposure time

Kpw = polymer-water partition coefficient (refs. 1 and 2)

Rs = sampling rate \rightarrow PRC dissipation data and unweighted NLS model (refs. 3 and 4):

 $log Rs = log \beta - 0.08 \log K_{pw}$

1. M.G. Pintado-Herrera, P.A. Lara-Martín, E. González-Mazo, and I.J. Allan. Environmental Toxicology & Chemistry 35 (2015) 2162-2172.

2. F. Smedes, R.W. Geertsma, T. van der Zande, and K. Booij. Environmental Science & Technology 43 (2009) 7047-7054.

3. K. Booij and F. Smedes. Environmental Science & Technology 44 (2010) 6789-6794.

4. T.P. Rusina, F. Smedes, M. Koblizkova, and J. Klanova. Environmental Science & Technology 44 (2010) 362-367.

Passive samplers

Passive samplers

Chlorpyrifos ĊH₃

J

Sentinel organisms

Sentinel organisms

Sentinel organisms

Tributylphosphate (TBP) and tri-isobutylphosphate (TBP iso)

5. Conclusions

 Hydrophobic legacy and emerging contaminants were detected in water and biota samples from Bay of Cadiz at ng/L and ng/g levels, respectively.
 <u>Fragrances and UV filters were predominant</u> in both types of samples.

- Contaminants showed highest aqueous concentrations in a sewage-impacted estuary in the north, with <u>values decreasing during summer</u> (except for UV filters). Bioconcentration factors in clams for legacy compounds (e.g., PAHs, PCBs and nonylphenol) were <u>clearly beyond 1000</u>.

- We have selected the following predominant hydrophobic emerging contaminants for further studies: organophosphate flame retardants (<u>EDHP</u>, <u>TPP, TBP</u>), UV filters (<u>octocrylene</u>, <u>benzophenone 3</u>, <u>EHMC</u>), fragrances (<u>OTNE</u>), and antimicrobials (<u>triclosan and methyl triclosan</u>).

6. Work in progress

Lab characterization of environmental processes for <u>selected target compounds</u>:

- Sorption/desorption tests
 - Aerobic/anaerobic
 degradation assays
- Bioaccumulation/toxicity
 experiments → omics

Thanks for your attention

Questions?

pablo.lara@uca.es marina.pintado@uca.es

Funding: P09-RNM-5417 CTM2015-70731-R

TECHNICAL DETAILS:

- Log β ranged between 1.1 L/kg and 1.5 L/kg
- Rs values ranged between 6.4 and 18.5 L/d during the warm months and between 3.55 and 8.54 L/d during the cold months
- PRC mass percentage retained in the silicone rubber after 1 month ranged between 10% for more polar compounds (i.e., TCS-d3 and BP-d10) and more than 65% for fluoranthene-d10, TPP-d15, and chrysene-d12.
- The equilibrium time for PRCs was between 8 days for BP-d10 and 167 days for the most hydrophobic chemicals.

Funding: P09-RNM-5417 CTM2015-70731-R

