Photochemical degradation of bisphenols in aqueous solution: Degradation kinetics and identification of transformation products

<u>CELINE GYS¹</u>, ANA KOVAČIČ², TINA KOSJEK², ADRIAN COVACI¹, ESTER HEATH² Contact: celine.gys@uantwerpen.be

Setup of the experiment

Identification of transformation products

Bisphenol A (BPA) = high production volume industrial chemical

In production of polycarbonate, epoxy resins

HO

CH₃

OH

H₃C

As developer in thermal paper

Endocrine disruptive compound

BPA analogues – **bisphenols** (BPs):

- Structural similarity
- Detected in humans and environment
- Potentially similar toxic effects

Study occurrence and fate of BPs in the environment

Removal through photochemical methods

Bisphenol F BPF

Bisphenol S BPS

Setup of the experiment

Identification of transformation products

Setup of the experiment

Photochemical degradation

- **BPF/BPS/BPZ in aqueous solution** MilliQ water
- Monochromatic UV light λ_{max} = 254 nm by 6 watt low pressure Hg lamp
- Three treatments:
 - UV light only
 - 2. Cyclodextrin UV with added ß-cyclodextrin (ß-CD)
 - 3. Photo-Fenton

UV with added Fenton's reagent $H_2O_2 + FeSO_4 + H_2SO_4$

Setup of the experiment

Identification of transformation products

Experiment

- Initial concentration = 200 ng/L
- 350 mL sample in duplicate at t = 0 min → 2 h
- Labeled internal standards added ¹³C₁₂-BPF, ¹³C₁₂-BPS and ¹³C₁₂-BPB

Objectives

- What is the kinetic profile of the degradation of the BPs?
- What is the degradation efficiency of the three treatments?

Sample preparation

- SPE with Oasis HLB cartridges
- Derivatisation with BSTFA

Analysis

- GC-EI-MS
- Column: Agilent DB 5-MS 30 m x 0.25 mm x 0.25 μm
- SIM method

Compound	m/z	RT (min)
	344	9 6 1
DPF-11VIS	329	0.01
	356	9 6 1
¹⁰ C ₁₂ -DPF-11VIS	341	0.01
	394	12.20
DP3-11VIS	379	15.20
13C DDS TMS	406	12 20
C ₁₂ -DP5-11VI5	391	15.20
RD7 TMC	412	12.40
	397	12.49
	383	0 02
¹⁰ C ₁₂ -DFD-11VIS	398	9.85

Results

Pseudo

Results

- > What is the degradation efficiency of the three treatments?
 - Shortest half-lives for all three BPs with Photo-Fenton reaction
 → enhanced degradation due to generation of reactive OH•

•	BPF	treatment	UV	ß-CD	PF	
		t _{1/2} (min)	139	116	<u>16</u>	
•	. RDS	treatment	UV	ß-CD	PF	
	t _{1/2} (min)	33	27	<u>17</u>		
		treatment	UV	ß-CD	PF	
• врг	t _{1/2} (min)	41	87	<u>22</u>		

Setup of the experiment

Identification of transformation products

Experiments

- Initial concentration = 5 mg/L
- 1 mL sample in triplicate at same time intervals as kinetic experiment
- Labeled internal standards added ¹³C₁₂-BPF, ¹³C₁₂-BPS and ¹³C₁₂-BPB

Objective

What are the major transformation products (TPs)?

Analysis

- LC-ESI-QTOFMS
- Column: Agilent Poroshell 120 EC-C18 3.0 x 50mm 2.7μm
- Mobile phase: A = 100 % MilliQ water, B = 100 % methanol
- ESI +/-
- Auto-MS/MS (data dependent acquisition)
 CE = 10 and 20 V
- 2. Targeted MS/MS reinjection CE = 10 and 20 V Target list m/z

Time (min)	% B
0.00	10
1.00	10
5.00	50
10.00	85
11.00	95
15.00	95
15.10	10
20.00	10

Workflow data analysis

- 1. Auto-MS/MS \rightarrow Molecular Feature Extraction
- 2. List of entities \rightarrow filter out possible false positives

- 3. Heatmap of molecular masses of possible transformation products
- 4. Identification

Comparison with suspect list based on literature

5. Target list $m/z \rightarrow$ reinjection targeted MS/MS

Confidence level of identification Schymanski E. et al. – Environ. Sci. Technol. 2014, 48 (4): 2097-2098

Results

What are the major transformation products?

Accurate mass (Da)	m/z	RT (min)	Formula	Diff (ppm)	Score	Treatment	Literature	Confidence level
230.0570	229.0497	4.512	$C_{13}H_{10}O_4$	6.50	86.37	PF		L3
216.0794	215.0721	5.266	$C_{13}H_{12}O_{3}$	7.59	91.93	UV/CD/PF	v	L3
216.0786	215.0714	6.255	$C_{13}H_{12}O_{3}$	7.73	89.16	UV/CD/PF	v	L3
214.0650	213.0535	6.034	$C_{13}H_{10}O_{3}$	8.09	81.47	PF	v	L3
139.0295	138.0200	5.147	-	-	-	UV/CD		L5
122.0368	121.0294	4.556	$C_7H_6O_2$	5.33	95.53	PF	v	L3

- Hydroxylation and cleavage products
- New and previously detected products

BPF

M = 200.0837 Da

Results

What are the major transformation products?

M = 216.0786 Da

- RT ~ 5.2 min and RT ~ 6.2 min •
- $C_{13}H_{12}O_3 \rightarrow positional isomers$

BPF

Results

What are the major transformation products?

Accurate mass (Da)	m/z	RT (min)	Formula	Diff (ppm)	Score	Treatment	Literature	Confidence level
266.0247	265.0176	4.674	$C_{12}H_{10}O_5S$	4.57	88.39	UV/CD/PF		L3
218.0222	217.0147	4.518	-	-	-	CD		L5
173.9973	172.9907	0.647	C ₆ H ₆ O ₄ S	4.98	94.56	UV/CD	~	L2b
124.0142	123.0070	0.763	$C_6H_4O_3$	14.44	81.82	CD		L4

- Hydroxylation and cleavage products
- New and previously detected products

M = 250.0300 Da

BPS

Results

What are the major transformation products?

M = 173.9986 Da

• ESI (-)

M = 250.0300 Da

BPS

Results

What are the major transformation products?

M = 173.9986 Da

- Same product ions at CE 20 V
- Same fragmentation pattern in other samples
- Also detected by Wang X. et al. Water Sci. Technol. 2014, 70.3: 540-547

M = 250.0300 Da

BPS

Results

What are the major transformation products?

Accurate mass (Da)	m/z	RT (min)	Formula	Diff (ppm)	Score	Treatment	Literature	Confidence level
156.0788	155.0716	3.672	-	-	-	UV/CD		L5
192.0416	191.0344	1.580	$C_{10}H_8O_4$	3.35	97.25	CD		L3
192.0410	191.0337	2.345	$C_{10}H_8O_4$	6.76	95.41	PF		L4
284.1418	283.1351	5.571	$C_{18}H_{20}O_{3}$	2.25	85.16	PF	 ✓ 	L3
284.1421	283.1358	6.511	$C_{18}H_{20}O_{3}$	3.13	83.88	PF	 ✓ 	L3
284.1424	283.1350	8.757	$C_{18}H_{20}O_{3}$	8.19	79.42	PF	 ✓ 	L3
284.1418	283.1341	9.222	$C_{18}H_{20}O_{3}$	2.01	89.10	PF	V	L3
304.1703	303.1634	7.577	$C_{18}H_{24}O_{4}$	3.65	86.54	UV/CD		L4

- Hydroxylation and cleavage products
- New and previously detected products

BPZ

M = 268.1463 Da

Results

M = 156.0781 Da

• ESI (-)

M = 192.0422 Da

- ESI (-)
- C₁₀H₈O₄

- ESI (-)
- C₁₈H₂₀O₃

L3

L5

Setup of the experiment

Identification of transformation products

Conclusions

Degradation kinetics

- Kinetic profile: pseudo first order
- Degradation efficiency: shortest t_{1/2} for PF

Identification of transformation products

- Hydroxylation and cleavage products detected
- Identification at different levels of confidence
 L5 L2b
- New and previously detected products

To do

- Targeted MS/MS
- Confirmation of identification
- Proposal degradation pathway

Acknowledgements

Prof. Dr. Adrian Covaci Colleagues at the Toxicological Center

Prof. Dr. Ester Heath Ana Kovačič Dr. Tina Kosjek

