Multiple residues of pesticides and pesticide metabolites in honeybees: mass-spectrometry based method, exposure assessment of honeybee colonies and evaluation of risks

<u>Tomasz Kiljanek</u>, Alicja Niewiadowska, Marta Gaweł, Stanisław Semeniuk, Milena Borzęcka, Andrzej Posyniak

Bee Health

- In Europe production for over 80% of crops depends at least to some extent upon animal pollination (Klein 2007)
- Pollinators contribute at least 22 billion EUR each year to the European agriculture industry (EC)
- CCD in North America and Europe
- Losses of honey bee colonies:
 - o up to 36 % in Europe (Laurent 2014)
 - o **up to 45% in the USA** (Seitz 2015)
- For the first time summer losses greater than winter losses (Seitz 2015)

Plant Protection Products (PPPs)

- There are more than <u>1800</u> different PPPs authorized to use in Poland
- Level of PPPs sale in Poland in 2015 reached <u>67 298 tons</u>
 and by active ingredients 22 204 tons

(Central Statistical Office of Poland, Statistical Yearbook of Agriculture 2016)

Sale of individual categories of PPPs (%)

Determination of pesticides <u>currently approved to use in EU</u>

- Method for the determination of 200 pesticides and pesticide metabolites in honeybee samples
- 195 compounds substances approved to use within EU as PPPs or varroacides

Kiljanek, T., Niewiadowska, A., Semeniuk, S., Gaweł, M., Borzęcka, M., Posyniak, A., Multi-residue method for the determination of pesticides and pesticide metabolites in honeybees by liquid and gas chromatography coupled with tandem mass spectrometry – honeybee poisoning incidents, Journal of Chromatography A 1435 (2016)100–114.

DOI: 10.1016/j.chroma.2016.01.045

Analytical Method

QuEChERS Z-Sep+ PSA

LC-MS/MS

GC-MS/MS

LC-MS/MS QTrap 6500

GC-MS/MS Agilent 7000

Analytical Capabilities

- Validation according to the SANCO/12571/2013 guidance document
- EUPT AO-10 (honey) organised by EURL for Residues of Pesticides in Food of Animal Origin
- AZ²=0.15 (the Average of the Squared z-Score)

Analysis of 417 samples of honeybees

Diagnosis of bee poisoning incidents

74 samples of poisoned honeybees

Monitoring of pesticides in apiaries

343 samples of live honeybees

Number of pesticide residues

Samples of poisoned honeybees contained as average four times more pesticide residues than samples of live honeybees

81 pesticide residues

- 34 insecticides, acaricides, varroacides and metabolites
- 32 fungicides
- 15 herbicides
- 30 various modes of action (MoA)

Kiljanek T., Niewiadowska A., Gaweł M., Semeniuk S., Borzęcka M., Posyniak A., Pohorecka K., Multiple pesticide residues in live and poisoned honeybees – preliminary exposure assessment Chemosphere 175 (2017) 36–44.

DOI: 10.1016/j.chemosphere.2017.02.028

MoA	Compound
Acetylcholinesterase inhibitors	Chlorpyrifos
	Chlorpyrifos-methyl
	Coumaphos
	Dimethoate
GABA-gated chloride	Fipronil
channel blockers	Fipronil-carboxamide
	Fipronil-desulfinyl
	Fipronil-sulfide
	Fipronil-sulfone
Sodium channel	alpha-Cypermethrin
modulators	Beta-Cyfluthrin
	Deltamethrin
	Etofenprox
	lambda-Cyhalothrin
	tau-Fluwalinate
	zeta-Cypermethrin

MoA	Compound	
Nicotinic acetylcholine receptor	Acetamiprid	
competitive modulators	Clothianidin	
	Imidacloprid	
	Imidacloprid-urea	
	Thiacloprid	
	Thiacloprid-amide	
	Thiamethoxam	
nAChR allosteric modulators	Spinosyn A	
Glutamate-gated chloride channel	Abamectin	
allosteric modulators		
Mite growth inhibitors	Etoxazole	
Octopamine receptor agonists	DMA	
	DMF	
	DMPF	
Mitochondrial complex III electron	Bifenazate	
transport inhibitors	Fenazaquin	
	Fenpyroximate	
Inhibitors of acetyl coa carboxylase National Veterinary Research Ins	Spirodiclofer PlWet	
UN National Veterinary Research ins	Bromopropylate	

Fungicides

MoA	Compound	
Nucleic acids synthesis	Bupirimate	
Cytoskeleton and motor	Metalaxyl-M/Metalaxyl Carbendazim	
proteins	Thiophanate-methyl	
Respiration	Azoxystrobin	
	Boscalid	
	Dimoxystrobin	
	Kresoxim-methyl	
	Trifloxystrobin	
Amino acids and protein synthesis	Cyprodinil	
	Mepanipyrim	
	Pyrimethanil	
Signal transduction	Fludioxonil	
	Iprodione	
	Quinoxyfen	
Lipid synthesis and membrane integrity	Propamocarb	

MoA	Compound
Sterol biosynthesis inhibition (SBI)	Difenoconazole
	Epoxiconazole
	Fenhexamid
	Fenpropidin
	Flusilazole
	Metconazole
	Myclobutanil
	Prochloraz
	Propiconazole
	Spiroxamine
	Tebuconazole
	Tetraconazole
Cell wall biosynthesis	Dimethomorph
Multi-site contact activity	Chlorothalonil
	Dithianon
UN	Cyflufenamid

Herbicides

MoA	Compound
Inhibition of acetyl CoA carboxylase	Propaquizafop
Inhibition of photosynthesis	Desmedipham
at photosystem II	Lenacil
	Phenmedipham
	Terbuthylazine
	Bentazone
Inhibition of carotenoid	
biosynthesis at the phytoene	Flurochloridone
desaturase step	

MoA	Compound
Inhibition of lycopene cyclase	Clomazone
Microtubule assembly inhibition	Pendimethalin
Inhibition of cell division	Metazachlor
	S-Metolachlor
Inhibition of lipid synthesis	Prosulfocarb
Action like indole acetic acid	2.4-D
	MCPA
Photosynthesis inhibitor	Quinoclamine

Hazard Quotient (HQ)

- Correlation of predicted environmental concentration (PEC) of pesticides with LD50
- Honeybees illustrate PEC in the best way connection of all possible sources of exposure
- Comparison of multiple pesticide related risk for typical live honeybee
 colony and for poisoned colony the worst case scenario

$$HQ = rac{Concentration\ of\ pesticide\ in\ honeybee\ sample}{LD_{50}}rac{[ng/g]}{[\mu g/bee]}$$

Overview of calculated HQ scores

	Live honeybee	Poisoned honeybee
	samples	samples
Analysed samples	343	74
Samples without residues	56,0% (192)	1,4% (1)
HQ < 50	37,6% (129)	6,8% (5)
HQ 50+	6,4% (22)	91,9% (68)
HQ 1000+	0	59,5% (44)
Min HQ	0,01	0,1
Mean HQ ± SE	$19,2 \pm 35,3$	15984 ± 36902
Median HQ	0,8	1504
Max HQ	181,5	164501

If the resulting HQ is 50 or less, then the risk reflects acceptable background mortality 5.3% suggested by EFSA (EFSA, 2013)

HQ 50+ as a limit value that confirms pesticide poisoning

Thank you for your attention

