

Prioritizing relevant nontarget contaminants using statistical analysis of LC-HRMS data of lake sediments

Aurea C. Chiaia-Hernandez, B. F. Günthardt, Martin P. Frey and J. Hollender

Lakes are Sensitive Barometers

- They respond to changes around them
 - Climate change (e.g. changes in rainfall)
 - Catchment change (e.g. caused by people)

Sediments

Sediments = History Books of the Environment

Age model 1900 1950 2000

Target and Suspect Screening by HRMS – Known Compounds

eawag

1. Collecting Lake Sediments

2. Profile Detection- enviMass

Profile Detection (enviMass) vs. Concentration Profiles

3. Trend Characterization: Spearman's Rank Correlation

Trend characterization 1: Spearman's rank correlation

Profile extracted using enviMass

4. Trend Characterization: Hierarchical Cluster Analysis

Cluster analysis: Group samples that are similar

Intensity paterns in sediments

Agglomerative hierarchical clustering

- Classification
- Information retrieval

Hierarchical Clustering- Greifensee

Hierarchical Clustering- Greifensee

Hierarchical Clustering- Lake Lugano

Hierarchical Clustering- Lake Lugano

Prioritization of Relevant Nontarget Contaminants

List of candidates

Re-measured at different collision energies (HCD) of 15, 35, and 55, 75 and 90 %

(+)

- · >10⁶
- very characteristic isotopic pattern

prioritized masses

Match to different DB MetFrag 2.3 (R version)

Identifying Nontarget Contaminants

229.0187

150.0234

Conclusion:

- Spearman's rank correlation coefficient help to identify substances with increasing trends over time
- Hierarchical clustering is a very useful method to evaluate the contamination and distinguish compounds with different trend patterns- *Transfer to other matrices*
- Prioritization of non-targets using statistical tools is promising to reduce matrix interferences and focus on relevant contaminants
- Sediments are useful to identify chemicals with unrecognized input pathways

Adi Müller (eawag)
Martin Loos (eawag)
Emma Schymanski (eawag)
Heinz Singer (eawag)
Uchem Department-eawag
SURF Department-eawag

Funding:

Federal Office for the Environment (BAFU)
Academic Transition Grant (Eawag)

Analytical Methods

Preservation and Storage

Extraction and Enrichment

 In-cell clean up (Florisil)*

Chromatography

Orbitrap-MS HR Chromatogram

- 1.Target
- 2. Suspect
- 3. Non-target

- Generic method
- Non-compound class specific

Appendix:

Normalization cluster analysis:

Trend characterization 1: Spearman's rank correlation Spearman Pearson interested 0.95 0.66 10 time concentration interested 1.00 0.99 10 time 3 concentration not interested 0.73 10 time not interested 0.10 0.00 10 15-

Cluster Analysis

- Cluster Analysis (or Data segmentation)
 - Goals: to group a collection of objects into subsets or "clusters"
 - Different types of cluster analysis

Hierarchical Clustering

- Classification and information retrieval
- Seeks to build a hierarchy of clusters
- Two basic paradigms: Agglomerative (bottom up) and divisive (top-down)

Hierarchical cluster analysis

Four main steps:

- I) Normalization (over the sum)
- II) Distance matrix (Euclidian distance)
- III) Hierarchical clustering (Ward's minimum variance method)
- IV) Define number of clusters (some knowledge)

In R library(cluster)

Function within the package:

Daisy: Distance matrix

Arguments - methods

euclidian= root sum-of-squares of differences

Function within the package:

Hclust

Arguments - methods

ward.D2 = Ward's minimum variance method

Different Temporal Trends-Target Analysis

Hierarchical cluster analysis

Four main steps:

Normalization (over the sum)

			/ II II			
		S 1	S2	S 3	S4	 hod)
Euc aut	S 1	0	0.2	1.6	1.7	1100)
	S2	0.2	0	1.4	1.8	
	S 3	1.6	1.4	0	1.5	;
	S4	1.7	1.8	1.5	0	

$$egin{aligned} \mathrm{d}(\mathbf{p},\mathbf{q}) &= \mathrm{d}(\mathbf{q},\mathbf{p}) = \sqrt{\left(q_1 - p_1\right)^2 + \left(q_2 - p_2\right)^2 + \dots + \left(q_n - p_n\right)^2} \ &= \sqrt{\sum_{i=1}^n (q_i - p_i)^2}. \end{aligned}$$

Challenges in Nontarget Screening - Unknown Compounds

- Different tools and approaches have been developed in recent years for structure elucidation
 - In silico fragmentation and including information on exposure, chromatographic retention, toxicity prediction

- Pre-selection of relevant features
 - Masses with increased identification probabilities
 - Highest intensities
 - Specific mass defects
 - Based on isotopic patterns (e.g. Cl, Br)

