

Occurrence, distribution and fate of pharmaceuticals as chemical markers of contamination from urban sources in the vulnerable area of the Ebro Delta (Spain)

Mira Čelić¹, Meritxell Gros¹, Marinella Farre², Damia Barceló^{1,2}, Mira Petrović^{1,3}

ICRA-Catalan Institute for Water Research, Water Quality Area¹, Girona, Spain

IDAEA-CSIC, Department of Environmental Chemistry², Barcelona, Spain

Catalan Institution for Research and Advanced Studies³, Barcelona, Spain

OUTLINE

O Introduction

- o Sources and routes of entry of pharmaceuticals
- o INTEGRA-COAST project
- o Objectives of the study
- o Study area and sampling sites

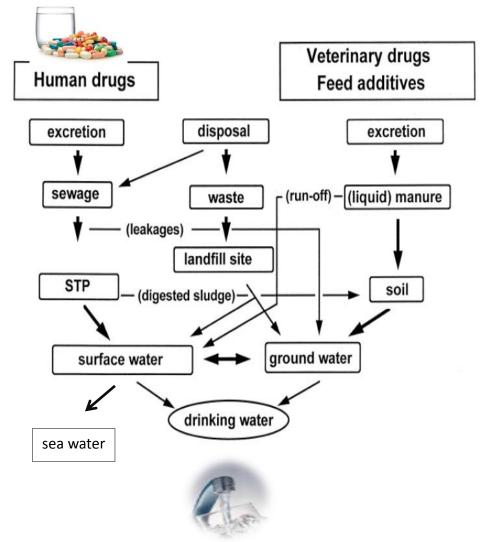
o Analysis

- o Target pharmaceuticals in water samples
- o Extraction of water samples
- o Target pharmaceuticals in sediment samples
- o Extraction of sediment samples
- o Quality parameters obtained during analysis

o Results

- o Occurrence of PhACs in water samples
- o Removal during wastewater treatment processes
- o Occurrence of PhACs in sediment

o Conclusion



INTRODUCTION

PhACs are the contaminants of anthropogenic origin with the biggest input into the environment.

•After their consumption they **are discharged** into wastewaters.

•PhACs are **partially removed** during wastewater treatment processes, being discharged into receiving water bodies.

•Changes in river flow have one of the greatest effects on water quality (point source pollution is controlled by river flow).

•Up to now there have been a lot of studies on their occurrence in waste and surface waters but information about their presence in sea and coastal areas is still sparse.

INTEGRA-COAST study microplastics, nanomaterials, **emerging organic contaminants** (pharmaceuticals and personal care products, new pesticides, perfluoroalkyl substances and siloxanes) **and marine biotoxins in a vulnerable coastal area.**

The main goal of **INTEGRA-COAST** is to perform an integrated study of the *fate, behaviour, and the river transport* of emerging pollutants, nanomaterials and microplastics in estuaries, wetlands and coastal waters and to identify specific organic contaminants used as chemical markers of wastewater pollution.

- To assess the impact of WWTP discharges in coastal areas and protected ecosystems, with special focus on the contamination by pharmaceuticals.
- To study the fate and transport of a large number of multiple-class pharmaceuticals in riverine and coastal ecosystems (e.g. occurrence in water and sediments).
- To evaluate possible seasonal fluctuations in the occurrence and behavior of these contaminants in these ecosystems.
- Identify relevant pharmaceuticals as markers of urban pollution in coastal areas with the objective to include them in risk assessment schemes and future monitoring programs.

Study area – the Ebro Delta

INTRODUCTION

- wetland area of 320 km²
- the third largest delta in the Mediterranean Sea with high biological productivity
- highly relevant for conservation
- has a typical Mediterranean climate (with rainfall concentrated in autumn and spring (200–300 mm) and intense summer drought (<50 mm))
- c.a. 13% of its total surface is composed of natural lagoons, bays and marshes
- agricultural is one of the main activities such as **rice** and **orchards**.

Three sampling campaigns:

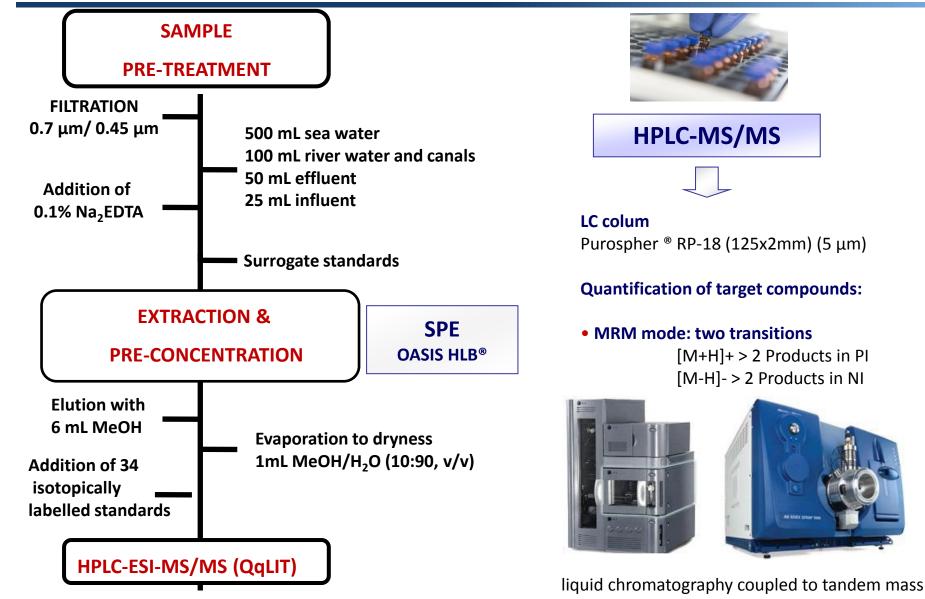
- October-November 2015 (autumn)
- February-April 2016 (winter)
- June-July 2016 (spring-summer)

Total number of 213 samples: 87 waters and 71 sediments

Sampling: 29 "hot-spots" sites

wastewater IN/OUT
emissary
canals
Ebro river
lagoons
sea water
(water/sediment)

Wastewater treatment plants (WWTP)	Edar Amposta (WWTP1)	Sant Carles de la Ràpita (WWTP2)
Served population:	19 805	14 262
Population equivalent (PE):	27.500	28.921
Flow (m ³ /dan):	5.500	6.310
Type of the treatment:	Biological with activated sludge	Biological with elimination of N with tertiary treatment


Target pharmaceuticals in water samples

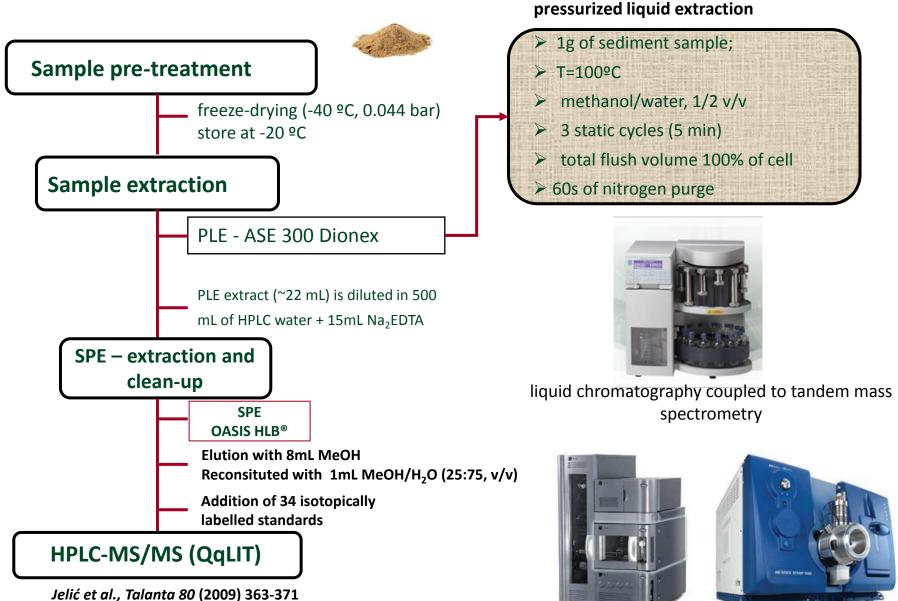
ANALYSIS

Analgesics/anti- inflammatories Ketoprofen Naproxen Ibuprofen Indomethacine Acetaminophen Salicylic acid Diclofenac Phenazone Propylphenazone Piroxicam Tenoxicam Meloxicam Oxycodone Codeine	Psychiatric drugs Carbamazepine 2-Hydroxycarbamazepine 10,11-epoxycarbamzepine Acridone Sertraline Citalopram Venlafaxine Olanzapine Trazadone Fluxotine Norfluxotine Paroxetine Diazepam Lorazepam Alprazolam	AntibioticsErithromycinAzithromycinClarithromycinClarithromycinTetracyclineOfloxacinCiprofloxacinSulfamethoxazoleTrimethoprimMetronidazoleMetronidazole-OHDimetridiazoleRonidazoleCefalexinTo treat asthmaSalbutamol	Histimine H2 receptor antagonistsLoratadine Desloratadine Ranitidine Famotidine CimetidineCholesterol lowering agents Atrovastatine Pravastatine MevastatineAntihelminticsAlbendazole Thiabendazole Levamisole	B-Blocking agentsAtenolol Sotalol Metoprolol Propranolol Carzalol NadalolAntihypertensivesAmlodipine Losartan Ibersartan ValsartanDiureticHydroclorothiazide Furosemide Torasemide
Lipid regulators and cholesterol lowering drugs Bezafibrate Gemfibrozil Pravastatin Fluvastatin Atrovastatin	 X-ray contrast agents lopromide Anticoagulant Warfarin Prostatic hyperplasia Tamsulosin 	Antiplatelet agent Clopidogrel Sedation and muscle relaxation Xylizine Tranquilizer Azaperone Azaperol	Synthetic glucocoticoid Dexamethasone Calcium channel blockers Diltiazem Verapamil Norverapamil Norverapamil	Total=81 PhACs

Extraction of water samples

ANALYSIS

Gros et al., Journal of Chromatography A, 1248 (2012) 104-121


spectrometry

Target pharmaceuticals in sediment samples ANALYSIS

Analgesics/anti- inflammatories Acetaminophen Diclophenac Ibuprofen Indomethacine Ketoprofen Naproxen Mefenamic acid	Lipid regulators and cholesterol lowering drugs Bezafibrate Fenofibrate Gemfibrozil Mevastatin Pravastatin Atrovastatin	Macrolide antibiotics Erytromicin Roxithromycin Clarithromicin Josamycin Tylosin A	B-blockers Atenolol Sotalol Metoprolol Timolol Nadalol Pindolol
Histimine H2 receptor antagonists Ranitidine Famotidine Cimetidine	Psychiatric drugsDiazepamLorazepamCarbamazepine	Diuretic Hydrohlorothiazide Furosemide	Antihypertensive Nifuroxazide Enalapril
Cimetiume	Sulfonamid antibiotics Sulfamethazine	B-agonists Clenbuterol Salbutamol	Antidiabetic Glibenclamide
Other antibiotics Trimethoprim Chloramphenicol Metronidazole	Phenazone type of drugs Phenazone	Barbiturates Butalbital	Total=43 PhACs

Extraction of solid samples

ANALYSIS

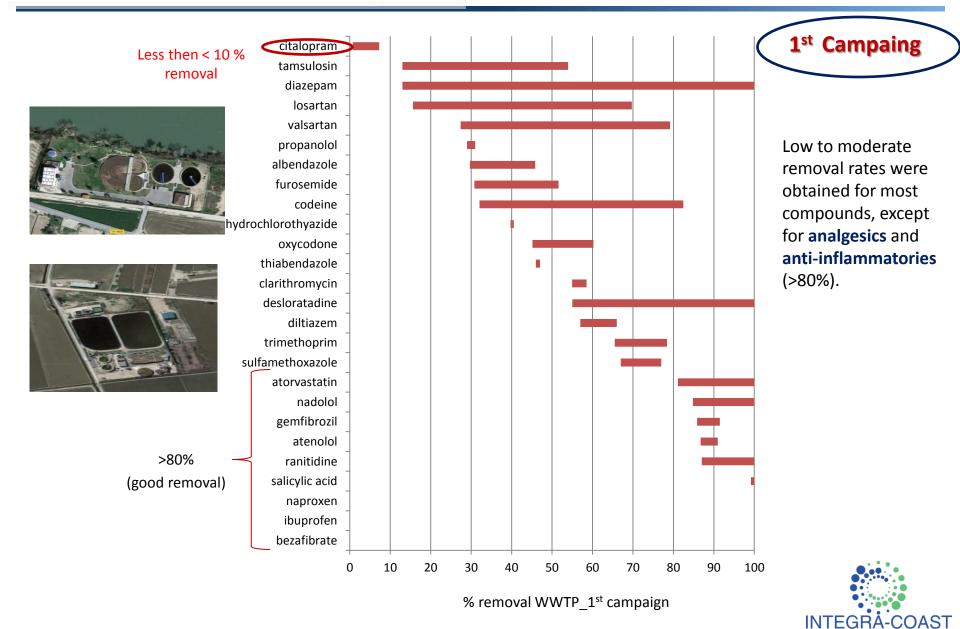
AST

Quality parameters obtained during analysis, recoveries (%) and method detection limits (MDL)

ANALYSIS

INTEGRA-COAST

WATER

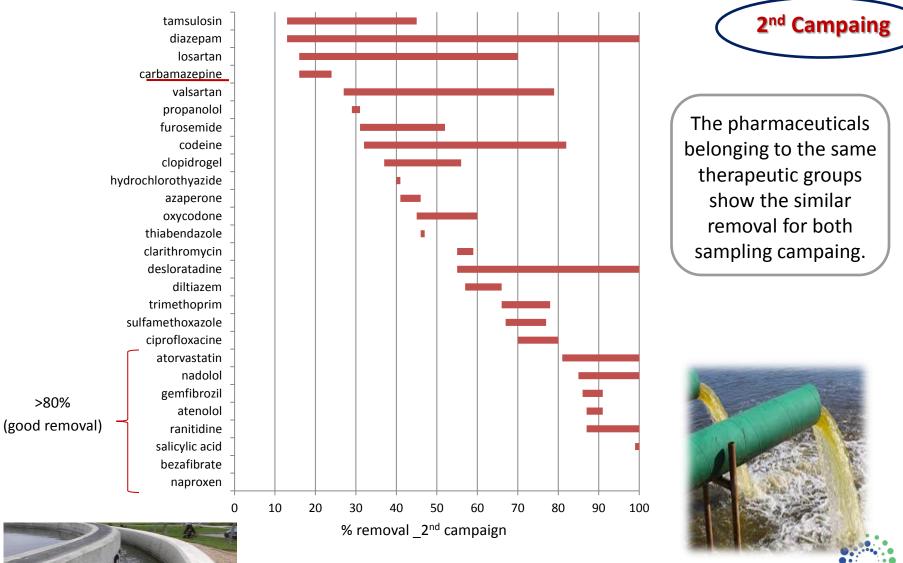

Recovery, % (n=3), ± RSD	Sea	Lagoons	Canal	Effluent	Influent
Analgesics/ant-	59-114%	50-120%	56-146%	57-112%	59-110%
inflammatories	55 11470	50 12070	50 140/0	57 11270	35 110/0
Lipid regulators and					
cholesterol lowering statin	58-101%	60-96%	42-117%	70-99%	88-103%
drugs					
Psychiatric drugs	63-114%	51-124%	41-147%	61-113%	55-115%
Histamine H1 and H2 receptor antagonist	62-124%	52-80%	40-95%	87-119%	50-112%
β-Blocking agents	71-126%	60-90%	57-120%	56-88%	57-109%
Duretic	85-101%	68-113%	53-91%	55-98%	63-76%
Antidiabetic	87%	104%	97%	103%	112%
Antihypertensives	73-102%	60-90%	41-101%	51-85%	51-85%
Antiplstelet agent	91%	95%	86%	90%	60%
Prostatic hyperplasia	110%	50-97%	100%	112%	56%
To treat asthma	72%	82%	73%	117%	108%
Anticoagulant	82%	123%	90%	76%	62%
X-ray contrast agent	102%	52-85%	100%	94%	70%
Anti helmintics	55-120%	50-110%	50-115%	74-98%	60-112%
Synthetic glucocorticoid	80%	60-118%	82%	74%	65%
Sedation and muscle relaxation	85%	123%	88%	83%	87%
Tranquilizer	90-92%	52-85%	93-100%	92-102%	76-92%
Antibiotics	63-121%	57-128%	53-116%	66-116%	61-120%
Calcium channel blocker	86-120%	60-127%	64-96%	83-115%	69-74%
MDL (ng/L)	0.01-7.2	0.01-9	0.03-15.2	0.2-26	0.2-50

sediment

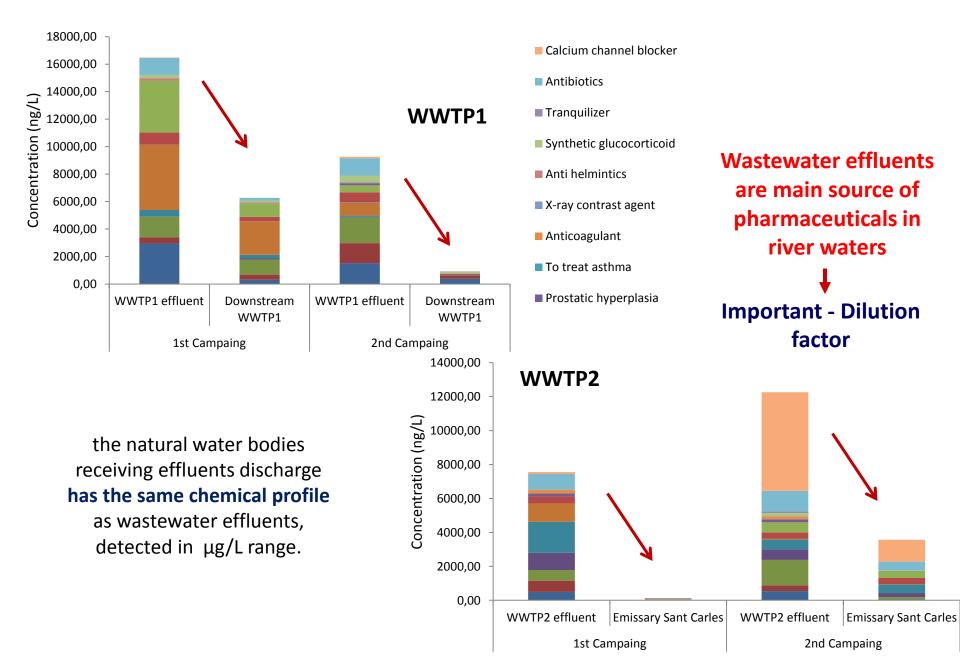
Sediment	Recovery (%)		
Analgesics/antiinflam			
matories	60-118%		
Phenayone type drugs	87-110%		
Lipid regulators and			
cholesterol lowering			
statin drugs	77-115%		
Psychiatric drugs	80-105%		
Histamine H1 and H2	00 103/0		
receptor antagonist	87-104%		
Macrolide antibiotics	68-95%		
Sulfonamid antibiotics	59-100%		
Other antibioptics	75-93%		
β-blockers	90-114%		
β-agonist	84-111%		
Diuretic	71-84%		
Antidiabetic	89-116%		
MDL (ng/g)	0.01-3.20		

Elimination efficiency, %

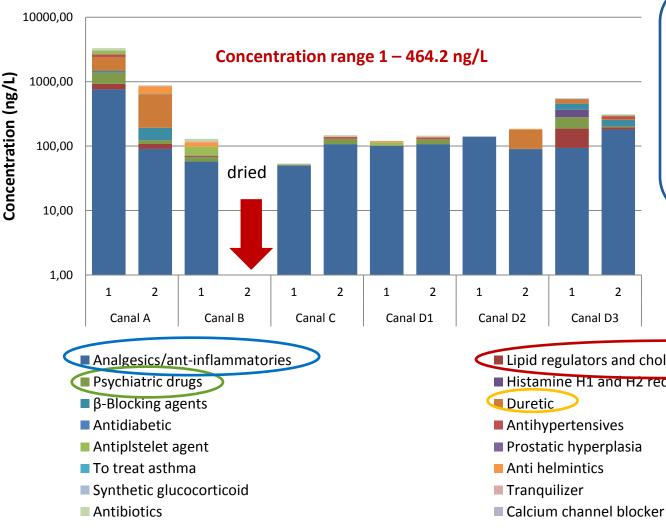
RESULTS



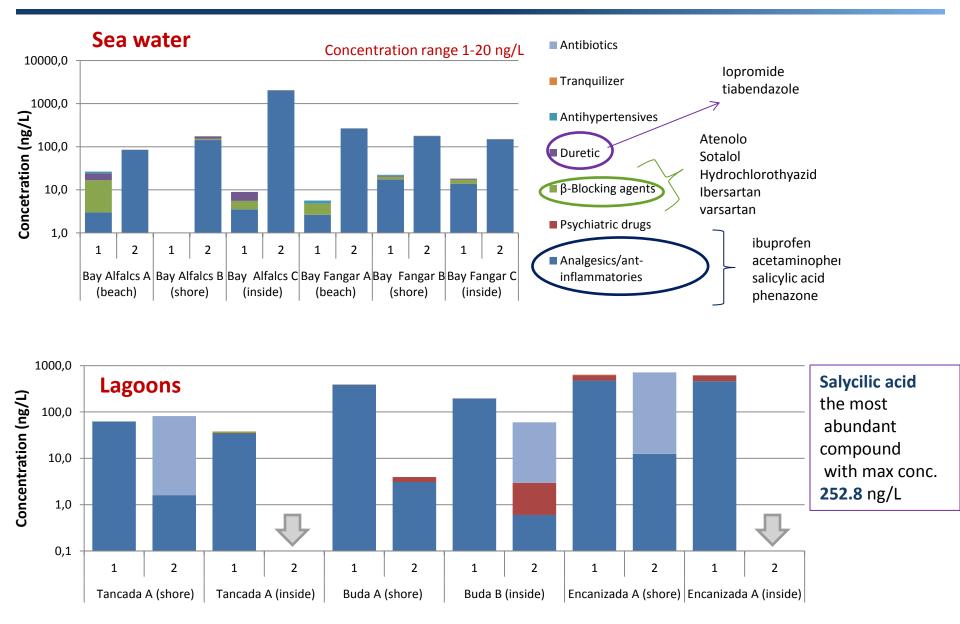
RESULTS

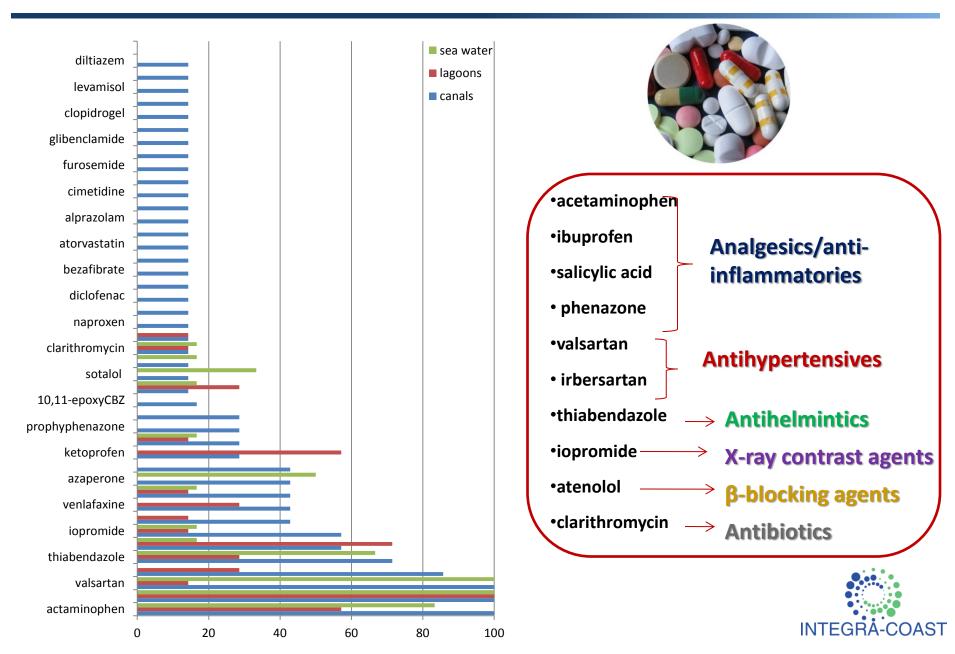

INTEGRA-COAST

Elimination efficiency, %



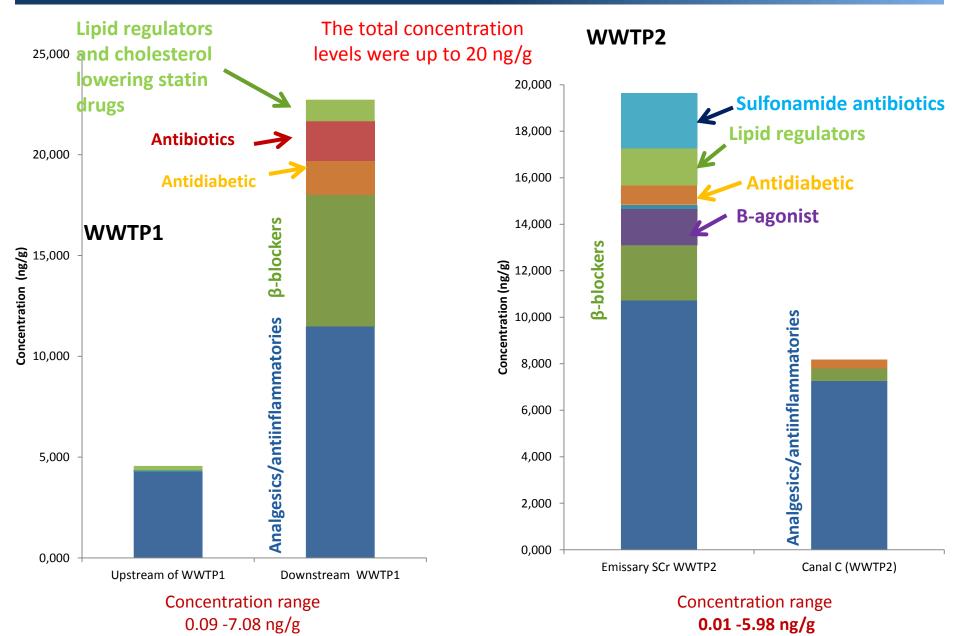
Concentration of pharmaceuticals in WWTP effluents and in receiving natural water bodies

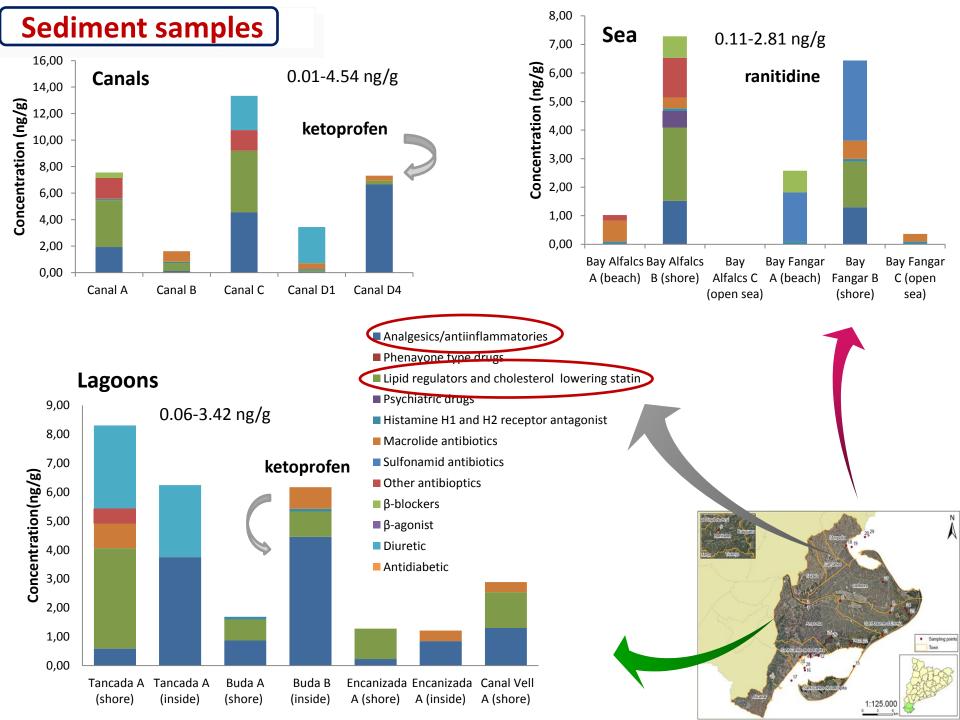

Canals

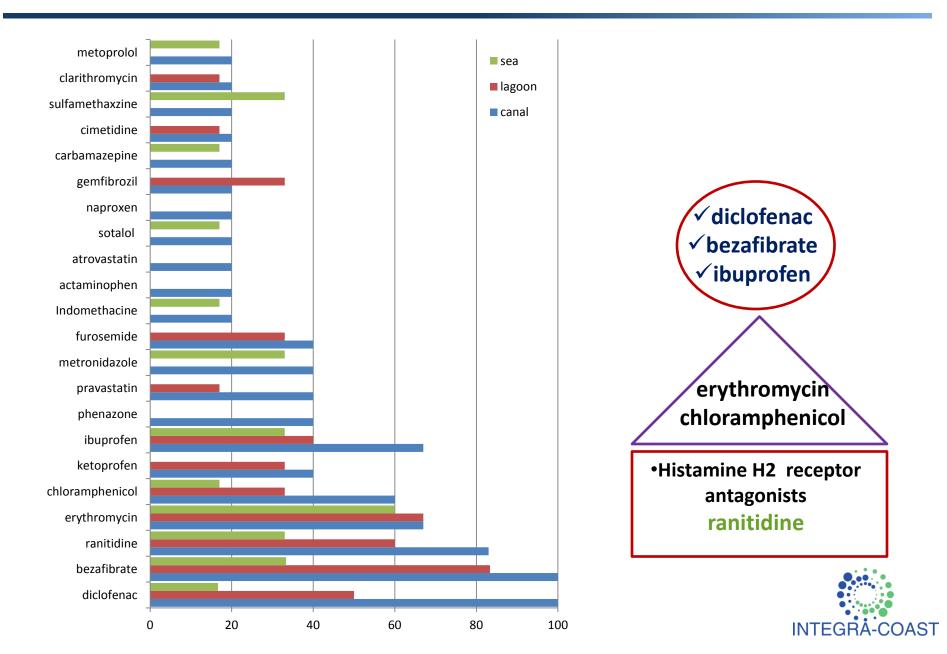

Canals are used to assist in the growing of agricultural crops, thus water quality requirements are essential. Water from this canals could be significant route of crop contamination.

- Lipid regulators and cholesterol lowering statin drugs
- Histamine H1 and H2 receptor antagonist

Sea water and lagoons


Frequency of detection in water samples




Sediment samples with influence of WWTPs discharges

Frequency of detection in sediment samples

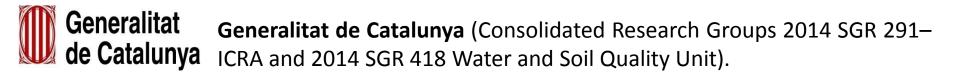
CONCLUSION

o Levels of PhACs detected in waste, river, canals, lagoons and sea water indicate that they **are widespread pollutants** along the Ebro Delta.

• Wastewater treatment plants proven to be an important source of pollution for water bodies, as well as for sediment.

o The compounds reaching **the sea water** coming from WWTP discharges were from the several therapeutical groups: **analgesics/anti-inflammatories** (such as acetaminophen, ibuprofen, salicylic acid, phenazone), **β-blocking agents** (atenolol, sotalol, ibersartan, valsartan) and **diuretics drugs** (iopromide, thiabendazole).

o The compounds most widely detected in **sediments** were: diclofenac, bezafibrate, ranitidine, ibuprofen, erythromycin, chloramphenicol.



ACKNOWLEDGMENTS

This work is supported by:

The Spanish Ministry of Economy and Competitiveness through the coordinated project TRANSFORM COAST (CGL- 2014-56530-C4-4-R)

<u>M.Celic</u> acknowledges for **grant** for PhD received from the Spanish Ministry of Economy and Competitiveness **(BES-2015-072297)**.

Thank you!

