A new method for fast and efficient analysis of POPs in low volume samples of plasma and serum

Jordan Stubleski, Petr Kukucka, Samira Salihovic, P. Monica Lind, Lars Lind, Anna Kärrman

Stockholm Convention POPs

Addition to Stockholm Convention:

- 2001: PCBs, Pesticides, Dioxins
- 2009: PBDEs

Reasons for restriction:

- Persistent in Environment
- Bioaccumulate
- Endocrine disruption, diabetes, cardiovascular disease

Risk Assessement:

Population-based biomonitoring —

Current Sample Preparation

Typically

- Solid phase or liquid-liquid extraction
- 12 to 24 samples processed at one time
- Sample volumes of 0.5mL and up

Journal of Chromatography A Volume 1216, Issue 6, 6 February 2009, Pages 897-901

A simple and fast liquid–liqui determination of 2,2',4,4',5,5 1,1-dichloro-2,2-bis(*p*-chloro human serum for epidemiolc Panu Rantakokko¹²⁸, Hannu Kiviranta^a, Lars Ry

Journal of Chromatography A Volume 1309, 27 September 2013, Pages 48-55

Determination of selected perfluorinated alkyl acids and persistent organic pollutants from a small volume human serum sample relevant for epidemiological studies

Jani Koponen⊠[®], Panu Rantakokko, Riikka Airaksinen, Hannu Kiviranta

Objective

- To increase the efficiency and cost-effectiveness of sample preparation procedures
 - extraction of Stockholm Convention POPs
 - low volumes of serum and plasma samples
- Develop and <u>validate</u> a miniaturized 96-well plate SPE procedure for high-throughput extraction of Stockholm Convention POPs from low volumes of plasma and serum
- Apply to large population-based biomonitoring and epidemiological studies
 - PIVUS Study

23 Target Cl/Br- POPs

PCBs (Polychlorobiphenyls)

Tetra: 74, 99 Penta: 118, 105,126 Hexa: 153, 138, 156, 157, 169 Hepta: 180, 170, 189 Octa: 194 Nona: 206 Deca: 209

PCDD (Polychlorinated dibenzo-*p*-dioxin) OCDD (Octachlorodibenzo-*p*dioxin)

OC (Organochlorine) pesticides

HCB (Hexachlorobenzene)

Trans and Cis-chlordane

Trans-nonachlor

*p, p'-*DDE

PBDE (Polybrominated diphenyl ether)

Tetra: 47

96-well plate SPE method and analysis

Precondition

Methanol and Water

Load

Sample: 150µL serum/plasma pretreated with sulfuric acid in water and acetonitrile in water

Wash

1.5mL methanol in water

Dry wells

15 minute centrifugation at 4,000 RPM dried under vacuum with nitrogen stream for 3hrs (32 wells per hour)

Elute

1.3mL (1:1) Dichloromethane:hexane collected in vials holding 20µL tetradecane

96-well SPE plate

 Oasis HLB 60mg sorbent/well (Waters Corporation)

96-well clean-up plate

 containing 40% H₂SO₄ modified silica and sodium sulfate

96-well plate SPE method and analysis

Instrumental Analysis

Agilent 6890 N GC coupled to a Waters Micromass Autospec Ultima HRMS

Agilent 7890A GC coupled to a Waters APCI-MS/MS (Xevo TQ-S)

2µL injected onto a 30 m × 0.25mm i.d. × 0.25 µm DB-5MS capillary column

POPs quantified by using isotope dilution of ¹³C-labeled standards.

Limits of Detection and Quantification:

- H₂O method blanks
- Newborn Bovine Serum (NBS) method blanks

Precision and Reproducibility:

- In-house reference plasma
- National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1957

Accuracy:

• NIST SRM 1957

Quantification and Instrument Performance:

- Batch standards
- Instrument blanks
- Calibration curve

Difference in results between instruments (GC-HRMS vs. GC

- Limits of Detection and Quantification:
- H₂O method blanks
- Newborn Bovine Serum (NBS) method blanks

Precision and Reproducibility:

- In-house reference plasma
- National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1957

Accuracy:

• NIST SRM 1957

Quantification and Instrument Performance:

- Batch standards
- Instrument blanks
- Calibration curve

Difference in results between instruments (GC-HRMS vs. GC

Limits of Detection and Quantification:

- H₂O method blanks
- Newborn Bovine Serum (NBS) method blanks

Precision and Reproducibility:

- In-house reference plasma
- National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1957

Accuracy:

• NIST SRM 1957

Quantification and Instrument Performance:

- Batch standards
- Instrument blanks
- Calibration curve

Difference in results between instruments (GC-HRMS vs. GC

Limits of Detection and Quantification:

- H₂O method blanks
- Newborn Bovine Serum (NBS) method blanks

Precision and Reproducibility:

- In-house reference plasma
- National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1957

Accuracy:

• NIST SRM 1957

Quantification and Instrument Performance:

- Batch standards
- Instrument blanks
- Calibration curve

Difference in results between instruments (GC-HRMS vs. GC-APCI-MS/MS)

Limits of Detection and Quantification:

- H₂O method blanks
- Newborn Bovine Serum (NBS) method blanks

Precision and Reproducibility:

- In-house reference plasma
- National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1957

<u>Accuracy</u>:

• NIST SRM 1957

Quantification and Instrument Performance:

- Batch standards
- Instrument blanks
- Calibration curve

Difference in results between instruments (GC-HRMS vs. GC-APCI-MS/MS)

Recoveries

	Newborn	Reference
C13-labeled	bovine serum	plasma
POPs	blank (RSD)	(RSD)
C13-PCB 70	86 (20)	75 (22)
C13-PCB 101	76 (20)	65 (24)
C13-PCB 118	75 (19)	64 (21)
C13-PCB 105	76 (18)	67 (21)
C13-PCB 153	73 (21)	60 (25)
C13-PCB 138	76 (18)	62 (21)
C13-PCB 156	76 (21)	60 (26)
C13-PCB 180	76 (17)	55 (31)
C13-PCB 170	76 (17)	52 (20)
C13-PCB 194	74 (15)	49 (31)
C13-PCB 206	63 (14)	37 (21)
C13-PCB 209	56 (20)	35 (31)
C13-HCB	117 (10)	107 (33)
C13- <i>p,p'</i> -DDE	152 (23)	126 (50)
C13-OCDD	56 (15)	40 (35)
C13-PBDE 47	85 (52)	78 (39)

Limits of Detection				
pg/mL				
PCB 74	4.7	PCB 170	2.0	
PCB 99	19	PCB 189	1.2	
PCB 118	37	PCB 194	2.0	
PCB 105	12	PCB 206	1.4	
PCB 126	2.1	PCB 209	1.4	
PCB 153	38	OCDD	3.0	
PCB 138	32	HCB	93	
PCB 156	2.5	<i>p,p</i> '-DDE	12	
PCB 157	1.4	Trans-chlordane	2.0	
PCB 169	0.0	Cis-chlordane	2.0	
PCB 180	6.2	Trans-nonachlor	3.6	
		PBDE 47	4.8	
IOD (NIPS block) average + 2x CD				

LOD (NBS blank)=average + 3x SD

2017-06-21

Precision and Reproducibility

The average concentration and standard deviation of POPs in QC reference plasma between the 96-well plate method (N= $8;150\mu$ L plasma) and conventional SPE cartridge method (N=95; 500 μ L plasma) developed by Salihovic et al. 2012.

The average concentration and standard deviation of POPs in NIST SRM 1957 between the 96-well plate method (N= $8;150\mu$ L plasma) and certified reference values reported by NIST

GC-HRMS vs. GC-APCI-MS/MS

NIST SRM 1957

Application: Comparison of results between cartridge SPE and 96-well plate method

- POPs extracted from 6 epidemiological study samples using
 - 96-well plate method (y-axis)
 - Conventional cartridge method (Salihovic et al. 2012) (x-axis)

Concentration⁻¹ (pg/mL) conventional cartridge method

Benefits and Limitations

- + Increased sample throughput for large population based biomonitoring and epidemiological studies
- + Reliable quantification of Stockholm Convention POPs
- + Cost-effective and time-efficient
- For background level populations you may not be able to detect low-level analytes
 - OCDD will require larger volumes of plasma/serum (1pg/mL)
- Lowered recoveries can occur when
 - Wells are not thoroughly dried

Conclusions

- Miniaturized 96-well plate sample preparation developed for the extraction of Stockholm Convention POPs from low volume plasma and serum samples
- The sample throughput is increased by ~ 2 to 8-fold
 - One man/woman work week: process 73 to 146 samples vs. 10 to 40 samples
- Extraction and analysis provide reliable and accurate results
- Currently being applied to samples in epidemiological study

ICCE 2017

FORMAS and Swedish Research Council (VR)

MTM research group

MAN TECHNOLOGY ENVIRONMENT RESEARCH CENTRE

Thank you!

Jordan.stubleski@oru.se