

Norwegian University of Life Sciences

Occurrence and levels of persistent organic pollutants (POPs) in marine farmed and wild fish from Tanzania, A pilot study

Eliezer Brown Mwakalapa

Anuschka Polder, *Dr. Philos, NMBU*. Metter Hellen Bjørge Müller, *PhD, NMBU*. Aviti John Mmochi, *PhD, IMS*. Jan Ludvig Lyche, *Prof., NMBU*.

Background

- Tanzanian population is growing fast (3.21%/year)
- Estimate for 2017 of 56,821,301 people
- Challenges in food security
- Increased demand for food, especially fish
- Insufficient catch from stagnated wild fisheries

Aquaculture introduced-1950s, growing very fast

- -Freshwater aquaculture of tilapia, rainbow trout and catfish
- Mariculture (Farming of marine water species) of milkfish, mullet and seaweed

- Mariculture dependent on quality of environment
- Environment Influenced by several dev. activities
- Led to increased potential harmful chemicals

No study has been done on chemical contaminants in farmed fish

The objective

 To determine the occurrence and levels of POPs in selected farmed fish and wild fish near the fish farms

What to accomplish

- -To reveal the occurrence of POPs (*OCPs*, *PCBs*, *BFRs & PFAS*) in farmed and wild fish in the coast of Tanzania
- -To explicate the levels of POPs occurring in the farmed and wild fish in the coast of Tanzania

Materials and Methods

- Study area: Tanzanian coast
- Study sites: Fish farms and wild
 - -Two (2)- Tanzania-mainland
 - (Mtwara)
 - -Four (4)- Tanzania-Zanzibar Isl.
 - Unguja and Pemba
- Number of samples:
 - -121 fish

Target sites

Target species

Milkfish (Chanos chanos)

Mullets (Mugil cephalus)

Biometric information of sampled fish

Site	Fish type	Sampling time	Mean weight(g)	Weight range(g)	Mean length (cm)	Length range(cm)	No of analysed sample
Unguja Jozani	Milkfish	Jan-16	662	413-826	44	38-48	8
Unguja Shakani	Milkfish	Jan-16	683	533-936	43	40-48	8
Pemba Ponds	Milkfish	Mar-16	211	196-226	29	28-31	8
Pemba wild	Mullet	Mar-16	611	542-711	39	37-42	8
Mtwara ponds	Milkfish	Apr-16	189	83-308	25	20-29	8
Mtwara wild	Milkfish	Apr-16	107	59-185	21	18-27	8

Sample collection

Sample analysis: Laboratory of Environmental Toxicology, NMBU, Norway

Sample preparation

Lipid extraction

Lipid cleanup

Method: Polder et al. 2014

Separation & detection

Analyte extraction

Results and discussion

Organochlorine Pesticides (OCPs)

M H

- DDTs major contaminants
- p,p'-DDE- dominant
- Highest in wild milkfish (Mtwara)
- Lowest in farmed milkfish (Mtwara)
- Recent and historical use
- Other OCPs low levels

Polychlorinated Biphenyls (PCBs)

- PCBs- low levels
- PCB-153 dominant
- Milkfish from Unguja had highest levels
- Long range atmospheric transport (LRAT)
- Soil deposition
- Improper handling of products with PCBs
- Airport emission

Brominated Flame retardants (BFRs)

M B U

- BDE-47- >80% detection
- BDE-100 highest mean conc. (1.8 ng/g lw)
- HBCD detected only in wild mullet from Pemba (5.2 ng/g lw)
- Imported consumer products
- Improper disposal of waste

Perfluoroalkyl substances (PFAS)

- PFASs were below detectable limit in all sites
- Clean from/Insignificant PFAS contamination
- Levels may probably increase in the future
 - -Detection in human blood (Müller et al. 2017 in press)
 - Continue importation and use in PFAS imbedded consumer products

Conclusions

- OCPs
- DDTs were the dominant contaminants
- Historical and recent use in the environment revealed
- Other OCPs from historical use

- PCBs
- PCBs: widespread in all locations
- LRAT potential source
- Improper handling/disposal of PCBs products, open fires
- Emissions from airport

- **BFRs**
- PBDEs were found highest in areas close to human activities
- May be originated from improper disposal of consumer products

The levels of detected contaminants were below the USFDA and EU MRLs

- PCBs and PBDEs levels may reflect general background levels in the sites
- The higher levels of PCBs and PBDEs in Unguja and HBCD in Pemba may be influenced by some active sources
 - -Airport emission
 - –Sewage discharges
 - -Improper waste disposal

Thank you for listening

