

Lessons learned from the Chernobyl accident

ICCE 2017

Prof. Valery Kashparov

Ukrainian Institute of Agricultural Radiology, National University of Life and Environmental Sciences of Ukraine

CERAD CoE Environmental Radioactivity, Norwegian University of Life Sciences

E-mail: vak@uiar.kiev.ua

June 20, Oslo

Environmental Contamination After the Chernobyl Accident

April 26, 1986 at 01:23 two explosions destroyed unit 4 of the Chernobyl nuclear power plant (ChNPP).

FF

The Chernobyl accident released a mixture of radionuclides into the air over a period of about 10 days:

	Radionu clide	T _{1/2}	Release of radionuclides from the reactor during the accident						
			Activity, Bq	Weight, kg	Part of the content in the reactor,%				
	¹³¹ I	8.04 d	1,7*10 ¹⁸	0.04	50÷60				
	¹³⁷ Cs	30.2 y	8,6*10 ¹⁶	27	33±10				
	⁹⁰ Sr	29.1 y	4*10 ¹⁵	0.8	1.8				
1	²³⁸ Pu	87.7 y	1.8*10 ¹³	0.03	1.4				
1.000	²³⁹⁺²⁴⁰ Pu	24100 & 6563 y	3.4 *10 ¹³	8.1	1.4				
	²⁴¹ Am	433 y	2.2*1012	0.02	1.4				

t	tho	us	an	ds	kn	n²											
100 -			_														
10		ł	ł		ł												
1 -		ł	ł	ł	ł	ł	ł	t	T	T							
0.1					_		_										
	Russia	Belarus	Ukraine	Sweden	Finland	Austria	Norway	Italy	Greece	Romania	Switzerland	Slovenia	Poland	Germany	The Great Britain	Czechia	

of hectares								
Area ¹³⁷ Cs density of contamination, kBq/n								
37-185 185-555 >555								
Agricultural land	1034.9	98.9	27.1					
Forest	1087.0	106.0	40.8					

²³⁹⁺²⁴⁰Pu contamination of Ukraine

(Atlas, 2008 & UIAR)

Only after 24000 years the ²³⁹Pu activity will decrease twice

The terrestrial contamination density of ^{238–240}Pu in the ChEZ in 2016 and 2516 years

Опланикіл

Crean

3.7 kBg/m2

37 kBq/m2 370 kBa/m2

10 km zone

30 km zone

> 370

37-370

3.7-37.

< 3.7

Chernobyl, Ukraine, 26 April 1986

Table 1: Deposits, projected external doses for the 1st year and affected populations

Deposits of caesium (137 + 134) (Source MEXT)	> 300,000 Bq/m²	> 600,000 Bq/m²	> 1 million Bq/m²	> 3 millions Bq/m²	6 - 30 millions Bq/m²	
External dose 1 st year (16.6 mSv by MBq/m²)	> 5 mSv	> 10 mSv	> 16 mSv	> 50 mSv	100 - 500 mSv	
			69,400			
(excluded the no-entry zone)	292,000	43 000				
,		43,000	21,100	3,100	2,200	

Fukushima 1, Japan, 11 March 2011

IRSN, 2011

Radiation protection of humans and the environment

Levels of radioactive contamination and radionuclides composition

 Physicochemical forms of radionuclides in radioactive fallout (HP) and the environment (soil)

The time dynamics of ¹³⁷Cs and ⁹⁰Sr relative intensity of fallout (different forms) in Chernobyl in April -May 1986 (*Bobovnikova*, 1991).

Exchangeable fraction of ⁹⁰Sr activity in soils and theoretical dependence (solid line)

Measurement of radionuclides activity (Pavlotskaya, 1997)

Boiling in concentrated hydrochloric (HCl) and nitric (HNO₃) acid

Activity concentration of radionuclides in initial composite soil sample, extractions and in residue after extractions in 2015

Radion		Activity concentrat	ion, kBq/kg	
ucildes	Initial composite soil representative sample (A _{total})	Acetate extractions by 2M NH ₄ Ac (A _{soil})	Acid extraction (6M HNO ₃ heated to 98 °C) (A UO2+ fixed of soil)	Residue after extractions (A _{stable - U-Zr-O})
⁹⁰ Sr	118±14	31±6	38±8	38±8 (32%)
¹³⁷ Cs	264±26	38±8	-	19±2 (7%)
¹⁵⁴ Eu	0.76±0.15	0.13±0.03	0.37±0.07	0.22±0.03 (29%)
²⁴¹ Am	5.9±1.2	1.2±0.2	4.0±0.8	1.9±0.2 (32%)

Fuel hot particles from soil of the ChNPP exclusion zone:

(NMBU and IRSN photos)

The fuel component of Chernobyl fallout

- The near zone of the accident (up to 30-100 km) was contaminated mainly with a fuel component of radioactive fallout, i.e. with fine-dispersed particles of the nuclear fuel.
- Certain radionuclides such as ⁹⁵Zr, ⁹⁵Nb, ⁹⁹Mo, ^{141,144}Ce, ^{154,155}Eu, ^{237,239}Np, ²³⁸⁻²⁴²Pu, ^{241,243}Am, ^{242,244}Cm were released from the accidental unit in the fuel particles matrix (FP) only. More than 90% of ^{89,90}Sr and ^{103,106}Ru activity also was released in the FP form

The fuel component of Chernobyl fallout

Radionuclide	Radionuclide	Radionuclide relation	ive release, %
	activity* (Bq)	previous estimate**	present estimate
⁸⁵ Kr	$(2.8-3.3) \cdot 10^{16}$	~100	~100
⁹⁰ Sr	(2.0- 2.3)·10 ¹⁷	4.0±2.0	1.8±0.6
⁹⁵ Zr	(4.8- 5.8)·10¹⁸	3.2±1.6	1.4±0.5
¹⁰⁶ Ru	(8.6-22)·10 ¹⁷	2.9±1.5	1.4±0.5
¹²⁵ Sb	(1.5-2.6)·10 ¹⁶	-	1.4±0.5
¹²⁹ I	$8.0 \cdot 10^{10}$	20±10	50÷60
¹³¹ I	$(2.5-3.1-3.2) \cdot 10^{18}$	20±10	50÷60
¹³³ Xe	$(6.5-7.4) \cdot 10^{18}$	~100	~100
¹³⁴ Cs	(1.5- 1.7-1.9) ·10 ¹⁷	10±5	33±10
¹³⁷ Cs	(2.6-3.0)·10 ¹⁷	13±7	33±10
¹⁴⁴ Ce	(3.2- 3.9-4.1)·10 ¹⁸	2.8±1.4	1.4±0.5
¹⁵⁴ Eu	(8.5-14)·10 ¹⁵	3.0±1.5	1.4±0.5
²³⁸ Pu	(8.2- 13)· 10 ¹⁴	3.0±1.5	1.4±0.5
²³⁹ Pu	(8.5- 9.2-9.5)·10 ¹⁴	3.0±1.5	1.4±0.5
²⁴⁰ Pu	$(1.2-1.5-1.8)\cdot 10^{15}$	3.0±1.5	1.4±0.5
²⁴¹ Pu	$(1.7-1.8-2.1) \cdot 10^{17}$	3.0±1.5	1.4±0.5
²⁴¹ Am	(1.4- 1.6)· 10 ¹⁴	3.0±1.5	1.4±0.5

Radionuclides activities in the ChNPP unit 4 (on 06.05.86) and their relative release outside the ChNPP industrial site during the accident

The radionuclides ratios in the soil samples

3 groups of FP according to their dissolution rates under natural conditions (photo by IRSN, France and NMBU,

- chemically extra-stable particles (U-Zr-O). These particles were formed at the first moment of the accident on 04/26/86 and were deposited within the narrow western trace;
- non-oxidized chemically stable fuel particles (UO₂) of the first release (04/26/86), formed as a result of the mechanical destruction of nuclear fuel. These particles also were deposited along the narrow western trace of fallout;
- chemically low stable particles (UO_{2+x}), formed as a result of oxidization of the nuclear fuel in the period 04/26/86-05/05/86. These particles were predominantly deposited in the northern and southern traces of fuel fallout.

Research methods

- The fractions of radiostrontium were determined both in the solution (A_{sol}) and the residue (A_{res})
- The fractions of ⁸⁵Sr and ⁹⁰Sr leached from soil were calculated as follows:

 $\Delta^{85}Sr = \{A_{sol}(^{85}Sr)/[A_{sol}(^{85}Sr)+A_{res}(^{85}Sr)]\}*100\%$ $\Delta^{90}Sr = \{A_{sol}(^{90}Sr)/[A_{sol}(^{90}Sr)+A_{res}(^{90}Sr)]\}*100\%$

• These fractions were used to calculate the portion of non-dissolved particles,

 $\Delta FP = [1 - \Delta^{90} Sr / \Delta^{85} Sr].$

Correlation between the fraction of the nondissolved fuel particles (Δ FP) and the soil acidity

FP from the Chernobyl reactor and associated weathering rates:

A - oxidised $FP(UO_2 \text{ cores with oxidised } U_3O_8 \text{ and } U_2O_5 \text{ layers})$ released during the reactor fire obtained from 2 D micro-XANES (Salbu, 2001);

B - weathering rate constants as functions of pH for FP released during the explosion (West) and during the fire (South and North)

Part of UO₂ FP in 30-km Chernobyl zone

Direction from ChNPP, degrees

Part of UO₂ FP in 30-km Chernobyl zone

Trace of fallout	Date of FP release	Part of UO ₂ FP, %
western	26.04.86	60 +/-30
northern	26-30.04.86	19 +/-10
eastern	30.04.86	23 +/-10
southern	30.04-02.05.86	21 +/-17

Fraction of the chemically highly stable particles (ZrU_vO_x)

It was found that 10-20% of radionuclides activity is associated with the fuel particles of the very high chemical stability, which cannot be dissolved even by boiling in concentrated nitric acid (after HNO₃).

Time-dependent of Tf

After deposition, weathering of particles and radionuclide remobilization can be proved by the observed increase of ⁹⁰Sr exchangeable fraction contents in soil and by the contamination of vegetation

The dynamics of upper 10-cm soil layer contamination with exchange/mobile ⁹⁰Sr: 1- after nuclear weapon tests and after the Chelyabinsk accident; 2- after the Chernobyl accident at the Southern (2a) and Western (2b) traces (soil pH=5.5)

Time-dependent of ⁹⁰Sr transfer factor (TF) from soil (pH=6) to natural grass at the Western trace of **Chernobyl fallout** (UO₂ particles).

21

Dynamic of ⁹⁰Sr average Tf (CR) in grain and theoretical dependence (solid line) for pH=7)

We have received validation of models of dissolution of particles for a long period of time.

The experimental distribution of radionuclides in soddy-podzolic sandy soil profile (area of sampling is 39.3cm² (site1, 1995)).

Depth of	Activit	y of layers	of soil,	Port	ion of	⁹⁰ Sr
layer,		Bq		radiost	rontium	activity in
cm				transfe	er to the	fuel
				solution	2M NH ₄ Ac,	particles,
					%	%
	¹³⁷ Cs	¹⁵⁴ Eu	⁹⁰ Sr	$\Delta^{ extsf{85}} extsf{Sr}$	Δ^{90} Sr	∆FP
0-2	31000±300	311±11	12000±375	95±5	18.8±1.4	80±5
2-4	9700±160	123±7	3500±240	81±6	53±5	34±13
4-6	2280±30	10±4	3200±140	81±5	79±5	
6-10	810±20	6±3	4700±170	89±6	85±4	
10-15	159±9	-	4400±150	84±6	87±4	
15-20	9±1		3700±120	86±6	84±4	
20-25	8.4±0.5		4800±160	80±6	79±4	
25-30	3.2±0.4		610 ±30			
30-35	2.2±0.2		22 ±1			
35-40	3.0±0.3		5.0±0.7			

Vertical migration of RNs in 1995 for different soil types: a- soddy-podzolic sandy soil and b- peaty soil

24

Task 2: Chernobyl FP behaviour in the radioactive waste trench in the ChEZ

Soil sampling in the trench of the temporary storages of radioactive waste was carried out in 2014-2016 at the depths up to 3 m. Taking into account the specific heterogeneity and spatial distribution of the radionuclides in the trench, the samples were collected in 5 points along the trench axis near the sampling points used in 2000-2001

Location of the sampling points in the trench #22

Chernobyl FP behaviour in the radioactive waste trench in the ChEZ

Part of the ¹⁵⁴Eu and ²⁴¹Am activity of the leached from fuel particles in 2001-2002 and 2015 (solid line - theoretical

•U-Zr-O

dependence

		i		10	0			-0,6	-1-ΔFP	(1-AF	P)*exp(-λt)
Radionucli	U-Zr-O	UO ₂		* 9	0			•0,4		\leq	
des	particles:	particles:	$1-\Delta FP_1$ -	des T22,	0				•10	+100	•t, years •10
	∆FP ₁ (t=29.4	ΔFP_2 (t=29.	ΔFP_2		0						
	year)	4 year)		m EH	0						
⁹⁰ Sr	0.32±0.08	0.28±0.07	0.40±0.10	Live r	0						
¹⁵⁴ Eu	0.29±0.07	0.25±0.08	0.46±0.11	Relati Shing	0	1					
²⁴¹ Am	0.32±0.07	0.23±0.07	0.45±0.10			/					
					0						
					0	10	20	30	40	50	60
									Vear	after deno	sition

The theoretical/modeling estimations of 2000-2001 of exchangeable fraction of radionuclides activity in soils coincide with the received experimental results in 2015-16.

Fuel Particle behaviour in the drained bottom sediments of ChNPP cooling pond

Decrease of water level in the ChNPP cooling pond started from Sep 2014. Now the water level has decreased by 4 m.

Sequential extraction of radionuclides from samples of the bottom sediments of CP ChNPP

Stag e Nº	Reagent and conditions of leaching	Radionuclide species	
I	Distilled water; 24 hours at room temperature and periodic shaking	water soluble	
II	1 M CH_3COONH_4 (NH ₄ Ac); pH 7; 24 hours at room temperature	exchangeable	
	1 M HCl; 24 hours at room temperature 0.2 M (NH) C O \pm 0.1 M H C O (Tamm	mobile Round with amorphous	
ĪV	solution); pH 3,2; 2 hours at room temperature	oxides and hydroxides of Fe and Al in the form of organic- mineral complexes	
V	8 M HNO ₃ ; 24 hours at room temperature	Sparingly soluble and associated with fuel particles (U_xO_y)	
VI	Residue after stage 5 was washed at 550 °C during 6 hours, treated by the acid mix of 8 M $HNO_3 + 10$ M HCl for 2 hours at 95° C.	Bound with organic components of the bottom sediments and fuel particles. (UO_2)	
VII	Residue after stage 6 was leached by the acid mix: 8 M $HNO_3 + 4$ M HF (hydrofluoric acid) for 2 hours at 95° C.	Strongly fixed in mineral components of the bottom sediments and in matrix of the constructive fuel particles $(U_xZ_vO_z)$	Activity, %
VIII		Insoluble rests.	4

Ш

Ш

IV

V

VI

VII

VIII

Stage of leaching

Chernobyl Fuel Particle behaviour in the drained bottom sediments

Fig. 1. Predicted dynamics of pH and dissolution rate constants in newly exposed CP sediments. 1 – pH; 2 – rate constant exposed sediments of the main part of CP; 3 – rate constant in exposed sediments of CP part adjacent to the NPP.

Fig. 2. Prediction of ⁹⁰Sr fraction remaining in fuel particles as a function of time after a reduction of water level. 1 – exposed sediments of the main part of the pond; 2 – exposed sediments of the pond part adjacent to the NPP; 3 – flooded sediments.

It is shown that in newly exposed sediments fuel particles will be almost completely dissolved in 15–25 years

Classification of radiocaesium and radiostrontium TFs values for typical properties of contaminated soil in Ukraine.

TFs values
>1
0.1-1
<1

Type of soil (CIS countries	Peat- and Peaty-	Soddy-podzolic sandy	Grey forest	Chernozem
classification)	bog soils	soils	·	
FAO-UNESCO	Histosols	Podzoluvisol	Greyzem	Phaeozems
Soil groups (IAEA TRS 472)	Organic	Sand	Loam	Clay
pH	3.0–5.0	3.5–6.5	4.0-6.0	5.0-8.0
Organic matter, %	≥20	0.5-3.0	2.0-6.5	3.5-10.0
Clay, %	-	<18	18–35	≥35
Typical radiocaesium aggregated	transfer factor TF _a	$_{ag}$, ((Bq/kg)/(kBq/m ²))		
Mushrooms	10-30	5-20	2-8	1-2
Forest berries	10-20	2-20	1-6	<1
Meat (beef)	1-15	0.3-1	0.2-0.4	0.02-0.2
Cow's milk	0.3-10	0.1-0.3	0.04-0.1	0.01-0.05
Leafy and non-leafy vegetables	0.004-2	0.002-1	0.001-0.7	0.001-0.7
Potatoes	0.1-1	0.04-0.08	0.02-0.06	0.01-0.02
Grain	0.01-1	0.002-0.7	0.001-0.2	0.0002-0.1
Typical radiostrontium aggregate	d transfer factor T	F_{ag} , ((Bq/kg)/(kBq/m ²))		
Grain	0.01-0.4	0.01-7	0.02-0.7	0.005-0.7
Leafy and non-leafy vegetables	0.1-0.3	0.02-5	0.1-1	0.01-1
Cow's milk and beef	0.003-0.1	0.01-0.5	0.03-0.2	0.01-0.2

Values of the average annual effective dose to population (mSv) in the critical settlements of Zhytomyr and Rivne

Average specific activities of ¹³⁷Cs in milk and potato (Bq L⁻¹ and Bq kg⁻¹⁾, in the critical settlements of Zhytomyr and Rivne region

The critical settlements of Zhytomyr and Rivne region

Contamination of milk with ¹³⁷Cs 1991-2005

The dynamics of the milk contamination by ¹³⁷Cs which is produced in the private farms of the most critical settlements during the grazing period (arithmetic mean, standard deviation,

Settlement	Population	Children (% of population)	The number of cows
			in the village
Drozdyn'	2419	1077 (44%)	565
Stare Silo	3847	1627 (42%)	800
Vezhitsa	1131	460 (41%)	330

290

Chernobyl Pilot Sites: the Tool to Validate Radioecological Models

UIAR

RADIOECOLOGY, RADIOBIOLOGY AND ENVIRONMENT PROTECTION

Chernobyl pilot sites as the tools to validate the radioecological models

Description

Since 1999, an international team of French and Ukrainian institutes has studied the behavior of radionuclides at the experimental sites Chistogalovka (#1) and Red Forest (#2) in the Chernobyl exclusion zone (Fig.1; Kashparov et al., 2007, Bugai et al., 2005). The experimental site Chistogalovka was designed for the studies and modelling of the long-lived radionuclides transfer from various soils into various agricultural crops. At the site #2 the radionuclide migration (especially of 90Sr and 238-240Pu) from the near-surface radioactive waste burial (trench no.22) to the unsaturated zone and the aquifer has been studied. One of the specific issues was the environmental fate and dissolution mechanisms of the nuclear fuel particles, representing the radionuclide migration sourceterm at Chernobyl. Another important project is focused at the radiobiological effects to biota at the highly contaminated area of Red Forest.

Innovative Aspects and Main Advantages

In our researches we combine the advantages of the natural conditions and the unique well-equipped sites in the Chernobyl Exclusion zone. This provides the best facilities for the radioecological studies and validation of the mathematical models of (Fig.2):

a) The radionuclides transfer into various plant species for different soil types

b) The radionuclides migration in the unsaturated zone and aquifer from the sub-surface source (including plutonium isotopes)

c) The radiation effects to biota at the morphological and cytological levels in the wide range of the doses

d) The radionuclides resuspension at the various conditions (wildland fires, drained bottom sediments etc), and for elaboration of the approaches for remediation of the radioactive contaminated areas.

Stage of Development

Experimental site #1 was fully equipped for the radionuclide transfer studies. Four plots, each 4x4x0.5 m, represent four various soil types, namely Podzoluvisol, Greyzem, Phaeozem and Chernozem. Each plot is divided into 4 sub-plots.

The detail radioactivity distribution in soil, groundwater and wood species was determined for the site #2. The site was equipped with the field laboratory, automatic weather station, series of multilevel wells installed into the aquifer along the direction of groundwater flow, sensors of soil moisture, pore pressure and temperature, data loggers and other items necessary for monitoring the unsaturated zone profile at the waste burial and outside.

Area of Application

Assessment of the ionizing irradiation impacts to the human and Environment at the routine exploitation and accidents at the various nuclear installations.

References

 Kashparov V. et al., Radiochlorine concentration ratios for agricultural plants in various soil conditions, J. of Env. Radioactivity, 95/1, 2007, p.10-22.

 Bugai D. et al., Characterization of subsurface geometry and radioactivity distribution in the trench containing Chernobyl clean-up wastes, Env. Geology,47, 2005, 869-881.

 Yoschenko V. et al., Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part I. Fire experiments, J. of Env. Radioactivity, v.842, 2006, p.143–163.

Density of contamination with 239+240Pu, kBg/m²

0,4 1 4 10 20 40 100 400 1000

c) Effects to biota Fig. 2. Research directions

Contact details: Ukrainian Institute of Agricultural Radiology of National Agricultural University Mashinobudivnykiv Str.7, Chabany, Kyiv reg., 08162 Ukraine

www.uiar.org.ua Dr. Valery KASHPAROV

Dr. Valeny KASHPAROV phone (15304) 258 1246, fax (+35044) 528 0790, vak@ular.kiev.ua Dr. Vasyl VOSCHENKO phone (+3604) 528 2444, vazyl @ular.kiev.ua Dr. Svjateslav LEVCHUK phone (+3804) 528 2444, vazyl@ular.kiev.ua Dr. Dmitry BUGA, linitute of Geological Sciences, Gonchara Str. 55b, Kyv, 01054, Uranie phone (+38044) 488 3023, fax (+38044) 488 9334, disugav@initonline.com

Research Areas:

- Study of ⁹⁰Sr biogeochemical recycling in a contaminated forest stand;
- The long-lived radionuclides (³⁶Cl, ⁷⁹Se, ⁹⁹Tc, ¹²⁹I) behavior <u>in the environment</u> in vivo
- Release of radionuclides during forest fires
- Radionuclides and stable elements root uptake by agricultural species from various soil (including peaty) types
 - Radionuclides migration (including transuranium isotopes) in unsaturated zone and aquifer
- Irradiated nuclear fuel particles dissolution in natural conditions
- Radiobiological effects to biota
- Radioecological trainings and education

Дякую за увагу Thank you very much for your attention!

