

Norwegian University of Life Sciences

CENTRE FOR ENVIRONMENTAL RADIOACTIVITY

Genotoxic and epigenetic effects of different low dose rates of gamma radiation in three mouse strains

Ann-Karin Olsen

PhD, Research Professor
Department of Molecular Biology
Norwegian Institute of Public Health

Outline

- 1. Background
- 2. Aims
- 3. Study design
- 4. Results
- 5. Conclusion

Concern

- Humans risk assessment uncertainties
- Contribute to knowledge based decisions

ICCE 200617

ICCE 200617

Shape of dose response curve

<u>Dose Rate Effectiveness Factor (DREF)</u> = Ratio of cancer risk at high compared to low dose or low dose rate.

The Figaro facility

- Gamma radiation source (⁶⁰Co)
- 12 Ci (2012)
- Climate-controlled experimental hall (temperature, light and humidity)
- GMO approved
- Ca. 6 m x 4 m x 20 m
- Dose rate range: 2.9 Gy/h –
 400 μGy/h

ICCE 200617

	1. Project – 2013		
Exposure	Gamma radiation		
Dose rate	1.4 mGy/h		
Duration	45 days		
Total dose	1.5 Gy		
Mouse strain/model	C57BL/6 background Ogg1+/- and Ogg1-/-		
Main findings	LDR is genotoxic (chromosomal damage, increased DNA damage) Graupner et al. 2016 Scientific Reports		

	1. Project – 2013	2. Project – 2015
Exposure	Gamma radiation	Gamma radiation
Dose rate	1.4 mGy/h	2.1 mGy/h
Duration	45 days	32 and 63 days
Total dose	1.5 Gy	1.7 Gy and 3.1 Gy
Mouse strain/model	C57BL/6 background Ogg1 ^{+/-} and Ogg1 ^{-/-}	CBAB6 F1 background $Apc^{+/+}$ and $Apc^{Min/+}$
Main findings	LDR is genotoxic (chromosomal damage, increased DNA damage) Graupner et al. 2016 Scientific Reports	Chromosomal damage (independent of total dose) Graupner et al., in review

Low dose rate: <6 mGy/h (UNSCEAR, 2010)

	1. Project – 2013	2. Project - 2015	3. Project – 2016
Exposure	Gamma radiation	Gamma radiation	Gamma radiation
Dose rate	1.4 mGy/h	2.1 mGy/h	2.5, 10, 100 mGy/h
Duration	45 days	32 and 63 days	30 h, 14 days, 54 days
Total dose	1.5 Gy	1.7 Gy and 3.1 Gy	3 Gy
Mouse strain/model	C57BL/6 background <i>Ogg1</i> +/- and <i>Ogg1</i> -/-	CBAB6 F1 background $Apc^{+/+}$ and $Apc^{Min/+}$	C57BL/6N CBA/Ca CBA Spm/+ (acute myeloid leukemia)
Main findings	LDR is genotoxic (chromosomal damage, increased DNA damage) Graupner et al. 2016 Scientific Reports	Chromosomal damage (independent of total dose) Graupner et al., in review	ANALYSIS OFFICE

Low dose rate: <6 mGy/h (UNSCEAR, 2010)

Aims

Aims

- 1) Main aim: reduce uncertainties in risk assessment
 - Establish dose-rate-response relationships by employing several dose rates (low and high)
 - Assess the general applicability of results and verify previous findings by using three different mouse strains (two inbred and one mutant strain acquiring radiation relevant cancer)
 - Identify potential adaptation due to continuous radiation
 - 4) Determine if the radiation has inflicted epigenetic changes in the genome

C57BL/6N, CBA/Ca and CBA Spm/+ 8 weeks 3

Group I

100 mGy/h for 30 hours

Group II

10 mGy/h for 14 days

Group III + Group IV 2.5 mGy/h for 55 days

7 days w/out IR
Acute x-ray:
1.5 Gy/min (total dose 3 Gy)

a. Genotoxic endpoints

- Induction of micronuclei (flow cytometer)*
- ii. Induction of mutations using the *Pig-a* gene mutation assay (flow cytometer)
- iii. DNA damage analyses using the single cell gel electrophoreses (SCGE or Comet assay) with emphasis on oxidized DNA (inclusion of Fpg)

b. Epigenetic endpoints

- Global DNA methylation (HPLC-MS/MS)*
- ii. miRNA-analyses
- iii. Histone modifications

*herein presented preliminary results

Results

Micronucleus assessment

(state of the art method, flow cytometry based)

* p<0.001

mGy/h gamma radiation

mGy/h gamma radiation

Micronucleus assessment

(state of the art method, flow cytometry based)

* p<0.001

Chronic LDR gamma radiation (2.5-100 mGy/h, 3 Gy total dose) causes a dose response relationship in micronucleated reticulocytes.

mGy/h gamma radiation

Generality of response, 3 mouse strains

mGy/h gamma radiation

mGy/h gamma radiation

C57BL/6N

C57BL/6N, CBA/Ca and CBA Spm/+ 8 weeks \circlearrowleft

Group III + Group IV 2.5 mGy/h for 55 days

Micronucleus assay (flow cytometry)

Epigenetic changes: Global DNA methylation

Cytosin \rightarrow 5-methyl-cytosin \rightarrow 5-hydroxymethyl-cytosin

Global DNA methylation, ratio 5hmC/5mC

Cytosin \rightarrow 5-methyl-cytosin \rightarrow 5-hydroxymethyl-cytosin

5-hydroxymethyl-cytosin/ 5-methyl-cytosin

Conclusions

- Chronic LDR gamma radiation (2.5, 10, 100 mGy/h) causes a dose response relationship in micronucleated reticulocytes (total dose 3 Gy).
- ➤ The mouse strains showed different baseline levels but similar responses to chronic LDR gamma radiation.
- ➤ A chronic LDR gamma radiation did not seem to cause a adaptation when challenged with acute HDR X-rays in terms of micronuclei formation.

Acknowledgement

Norwegian Institute of Public Health

Dag M. Eide Christine Instanes Ann Karin Olsen

Norwegian University of Life Sciences

Dag A. Brede Yetneberk A. Kassaye Jorke Kamstra Ole Christian Lind

Brit Salbu

Deborah Oughton

Public Health England

Natalie Brown Rosemary Finnon Christophe Badie Simon Bouffler

Financial support

Micronucleus assay (flow cytometry)

