

Effect of effluent dissolved organic matter on trace metals sorption by mineral particles in aquatic systems under strong urban pressure

Gilles Varrault, Caroline Soares-Pereira, Adèle Bressy

Leesu: Water Environment and Urban Systems research group (Paris-Est University, UPEC, ENPC, AgroParisTech) varrault@u-pec.fr

- Organic matter from WWTPs
- Present in anthropized aquatic environment
 - 10 to 60% of the DOM in the Seine River is from the WWTP depending on the flow (low-flow period)

- Organic matter from WWTPs
- Present in anthropized aquatic environment
 - 10 to 60% of the DOM in the Seine River is from the WWTP depending on the flow (low-flow period)
- Physico-chemical properties different from natural DOM
 - More hydrophilic
 - 20 to 40% of hydrophilic DOM before Paris
 - 50 to 55% of hydrophilic DOM after Paris

- Organic matter from WWTPs
- Present in anthropized aquatic environment
 - 10 to 60% of the DOM in the Seine River is from the WWTP depending on the flow (low-flow period)
- Physico-chemical properties different from natural DOM
 - More hydrophilic
 - 20 to 40% of hydrophilic DOM before Paris
 - 50 to 55% of hydrophilic DOM after Paris
 - More nitrogen and sulfur groups
 - Lower molecular weight

- Strong influence on the speciation of the trace metals
 - 80 to 90% of lead and mercury are binded to EfDOM after Paris conurbation in the Seine River
 - Decrease of the free copper (-70%) after Paris conurbation

- Strong influence on the speciation of the trace metals
- Strong influence on the **biodisponibility** of the trace metals
 - Copper EC₅₀ on daphnia magnae with different DOM

⇒ Decrease of the copper biodisponibility and toxicity with EfDOM

Deesu

Influence of DOM on the trace metals fate in aquatic systems

Sorption/desorption onto suspended solids

Studies focused on natural DOM and natural particles

Objectives

- 1. To characterize EfDOM sorption onto mineral particles
 - Natural DOM: Suwanee River Fulvic Acid (SRFA)
 - EfDOM: from WWTPs

Objectives

- 1. To characterize EfDOM sorption onto mineral particles
 - Natural DOM: Suwanee River Fulvic Acid (SRFA)
 - EfDOM: from WWTPs

- 2. To characterize metals sorption onto mineral particles with or without DOM
 - Natural DOM: Suwanee River Fulvic Acid (SRFA)
 - EfDOM: from WWTPs

Under stirring during 72 hours at 19°C

- DOM (10mgC/L)
 - Without DOM
 - SRFA
 - EfDOM from WWTP

- Montmorillonite
- Goethite

- DOM (10n C/L)
 - Without
 - SRFA
 - EfDOM from WWTP

DOC analysis

1. To characterize DOM sorption onto mineral particles

- Montmorillonite
- Goethite

Under stirring during 72 hours at 19°C

- DOM (10mgC/L)
 - Without DOM
 - SRFA
 - EfDOM from WWTP
- 7 metals (Cd, Co, Cu, Ni, Pb, V and Zn)
 - 1 metalloid (As)

- Montmorillonite
- Goethite

ICP-AES analysis

- DOM (10mgC/L)
 - Without DOM
 - SRFA
 - EfDOM from WWTP

Dissolved metals

- Montmorillonite
- Goethite

- Without DOM
- SRFA
- EfDOM from WWTP

Adsorbant (0-500mg/L)

- Montmorillonite
- Goethite

ICP-AES analysis

Inert metals

2. To characterize metals sorption onto mineral particles with or without DOM

Laboratoire eau environnement systemes urbains

Influence of DOM on Cu and Zn sorption on montmorillonite

Sorption with or without DOM

Copper and zinc

- > Less sorption with DOM
 - Retention in dissolved fraction → complexes DOM-Cu or DOM-Zn
 - 2. Competition DOM vs. Cu and Zn for surface sites

Influence of DOM on Cu and Zn sorption on montmorillonite

Sorption with SRFA or EfDOM

Copper

➤ No influence of the type of DOM

Zinc

➤ Influence of the type of DOM => less sorption with EfDOM

Fate of Cu and Zn

- Between 65 and 80% in the dissolved fraction
- What speciation? Free or complexed?

laboratoire eau envi

Influence of DOM on Cu and Zn sorption on montmorillonite

Speciation of Cu and Zn: comparison SRFA and EfDOM

- Cu speciation is similar with SRFA and EfDOM
- Zn inert fraction is higher with EfDOM

With EfDOM, retention of complexes DOM-Zn in dissolved fraction

Influence of DOM on metals sorption on goethite

Sorption without DOM or with SRFA

- > (+) Cd and Zn

Influence of DOM on metals sorption on goethite

Sorption with SRFA or EfDOM

ICCE 2017

Less adsorption with EfDOM

Influence of DOM on metals sorption on goethite

Cu Increase of labile fraction with EfDOM

Cd, Ni and Zn

Less sorption due to the retention in dissolved fraction by complexation

Conclusion and outlook

- EfDOM strongly influence the dissolved/particulate partition of metals
 - DOM and in particular EfDOM maintain metals in dissolved fraction by:
 - Complexation and/or
 - Competition for surface sites
- EfDOM strongly influence the speciation of metals in dissolved fraction
 - Increase of zinc labile fraction with EfDOM and montmorillonite by complexation
 - Strong increase of copper labile fraction with goethite
- Complete sorption isotherms => to model the constants describing dissolved/particulate partition of metals
 - Explain the mechanisms responsible of the speciation

Thank you for your attention

Effect of effluent dissolved organic matter on trace metals sorption by mineral particles in aquatic systems under strong urban pressure

Gilles Varrault, Caroline Soares-Pereira, Adèle Bressy

Water Environment and Urban Systems research group (Paris-Est Créteil University, École des Ponts, AgroParisTech)

Corresponding author: varrault@u-pec.fr

Laboratoire eau environnement system

Influence of DOM on the trace metals fate in aquatic systems

Sorption/desorption onto suspended solids

1. Competition between DOM and metals at the particules surface

(Moon *et al.*, 2003)

Influence of DOM on the trace metals fate in aquatic systems

Sorption/desorption onto suspended solids

Dissolved fraction Particulate fraction DOM Trace metals **Particules**

1. Competition between DOM and metals at the particules surface

(Moon *et al.*, 2003)

2. Increase of the fixation ability

(Saada *et al.*, 2003)

laboratoire eau environnement sys

Influence of DOM on the trace metals fate in aquatic systems

Sorption/desorption onto suspended solids

Dissolved fraction Particulate fraction DOM Trace metals **Particules**

1. Competition between DOM and metals at the particules surface

(Moon *et al.*, 2003)

2. Increase of the fixation ability

(Saada *et al.*, 2003)

3. Retention in dissolved fraction

Influence of DOM on the trace metals fate in aquatic systems

Sorption/desorption onto suspended solids

Dissolved fraction Particulate fraction DOM Trace metals **Particules**

1. Competition between DOM and metals at the particules surface

(Moon *et al.*, 2003)

2. Increase of the fixation ability

(Saada *et al.*, 2003)

- 3. Retention in dissolved fraction
- 4. Adsorption of metals on DOM

(Wu et al., 2011)

Influence of DOM on the trace metals fate in aquatic systems

Sorption/desorption onto suspended solids

Dissolved fraction

Particulate fraction

Particulate fraction

Particulate fraction

Particulate fraction

Particulate fraction

Particulate fraction

1. Competition between DOM and metals at the particules surface

(Moon *et al.*, 2003)

2. Increase of the fixation ability

(Saada *et al.*, 2003)

- 3. Retention in dissolved fraction
- 4. Adsorption of metals on DOM

(Wu et al., 2011)

5. Pores obstruction

(Newcombe *et al.*, 2002 ; Li *et al.*, 2003)

