

Wide Range of End-User Products

What is the Fuss All About?

- Waste Streams of Concern
- Firewater runoff containing fluoroche
 - Current operations
 - Legacy incident and training sites airports and airbases
 - Accidental discharge
 - Old foam stocks
- Landfill leachates
 - Textiles and fabrics

- Biosolids contaminated with short and long chains including PFOA
 - Then used for agricultural soil improvement and in domestic compost products
- Effluent failure to capture short chains
- Manufacturing

What is the Fuss All About?

- PFOS-base products (C₈F₁₇SO₃H)
 - Now legacy in most countries but may occur in waste streams or washouts

- Fluorotelomer products (C_nF_(2n+1)CH₂CH₂-)
 - Widely used in may consumer products
 - Even chain-length (n=4,6,8.....)
 - Degrade to PFCAs as end-point

What is the Fuss All About?

- Indirect Human Exposure
 - Drinking water
 - Food, agriculture, fisheries
- Direct Human Exposure
 - Domestic products
 - Impregnated clothing
 - Respirable air
- Long-term Environmental Contamination
 - Extreme environmental persistence
 - Long-range transport
- Scientific Uncertainty
 - Unknown toxicity and bio-accumulation profiles for end-point degradation products
 - All extremely environmentally persistent
 - Long human half lives
 - Probable links versus proven cause-and-effect
- Legal and Financial Liability
 - Reputational and brand image damage

PFCAs in Articles of Commerce

Food contact paper

Cookware

Figure 5-12. Ranges, arithmetic means, and medians for PFCAs in non-stick cookware (N = 13)

Figure 5-6. Ranges, arithmetic means, and medians for PFCAs in treated home textile products and upholstery (N = 14).

Figure 5-10. Ranges, arithmetic means, and medians for PFCAs in the membranes for apparel (N = 9). Note that the means are invisible because they are superimposed by the medians.

Home textiles

Apparel

Non-industrial products – uncontrolled use

Direct human exposure by aerosol – liver toxicity

Domestic products – in the home

Treated Home Textiles

Non-stick cookware

data from Guo et al (2009) USEPA

Food contact paper

Pre-Treated Carpet

© Klein& Holmes ICCE2017

Human Exposure to PFAS

Based on C6 chemistry.....? Really?

data from Joensson et al SWEREA (2015)

Main PFASs detected in textile samples

≻PFBA

- 47% of samples
- 0.02-28 μg/m² (median 0.17 μg/m²)

>PFHxA

- 76% of samples
- 0.03-6.4 μg/m² (median 0.21 μg/m²)

>PFOA

- 96% of samples
- 0.01-5.1 µg/m² (median 0.25 µg/m²)

>PFBS

- 18% of samples
- 0.02-42 μg/m² (median 0.69 μg/m²)

>L-PFOS

- 18% of samples
- 0.02-3.2 μg/m² (median 0.09 μg/m²)

>6:2 FTOH*

- 88% of samples
- 0.43-360 μg/m² (median 24 μg/m²)

▶8:2 FTOH*

- 92% of samples
- 1.5-380 μg/m² (median 17 μg/m²)

>10:2 FTOH*

- 90% of samples
- 0.06-130 μg/m² (median 4.1 μg/m²)

>8:2 FTAC*

- 46% of samples
- 0.29-280 μg/m² (median 2.6 μg/m²)

Ionic PFASs and neutral PFASs are detected in textiles of outdoor clothing at quantifiable concentrations. Neutral PFASs are present at higher concentrations then ionic PFASs.

Extractable PFCs in DWR Jackets

Based on C6 chemistry.....? Really?

Tuesday, 09 May 2017 © Klein& Holmes ICCE2017

Risk Considerations

© RAK 2017

8:2 Fluorotelomer derivatives -> PFOA

Precursor chain-length distribution

Firefighting Foam Fluorosurfactants chain-length distribution

Orphan or Legacy Foam Stocks - Total Organic Fluorine (TOF)

Perfluoroalkyl substances (PFAS) total detected

The discovery of "Dark Matter"

standard analysis before TOPA

 $C_n F_{2n+1} COOH$ $C_n F_{2n+1} SO_3 H$

Perfluorocarboxylic acids (PFCAs)

Tuesday, 09 May 2017 © Klein& Holmes ICCE2017

Perfluoroalkyl substances (PFAS)

Scientific Uncertainty

Cause-and-Effect or Probable Link?

Scientific Uncertainty

Different Approaches can lead to Radically Different "Safe Levels"

PFO

2000-6000
ng/ml PFOS
In plasma
or
5 ng/ml in
plasma?

Ra

PFOS

nty

ches

ent

PFOA

Scientific Uncertainty

Precautionary Principle addresses the Scientific Uncertainty

Scientific Uncertainty

More Likely Than Not triggers Precautionary Principle

Holistic Risk Assessment

Lack of Data == MAXIMUM RISK!

Holistic Risk Assessment

Lack of Data == MAXIMUM RISK!

A High Index of Suspicion

Scientific Uncertainty

Absence of Evidence IS NOT Evidence of Absence!

Thank You for Your Attention!

- Contact details:
- Nigel Holmes
- Department of Environment & Heritage Protection
- Queensland Government
- nigel.holmes@ehp.qld.gov.au

- Dr. Roger A. Klein
- Cambridge UK

