Environmental stability of new PFAS through MS-fragmentation and quantum chemistry methods – on the way to degradable PFAS

Vladimir Nikiforov

NILU - Norsk institutt for luftforskning, Framsenteret, Hjalmar Johansens gate 14, Tromsø, Norway, <u>van@nilu.no</u>

WARNING: The study is purely theoretical, if not speculative

To be discussed:

- (ESI) MS-MS fragmentation as semiqunatitative measure of stabilty
- Correlation of fragmentation, quantum chemistry ΔG and apparent chemical stability
- Transformation vs degradation
- Stability of new PFAS
- Design of a degradable PFAS structure

PFOA: MS-MS fragment intensity vs collision energy

Structure optimized Gaussian-09 RB3LYP/6-31+G(d,p)

PFOA by LC-MS-MS:
Good fragmentation in MS
= UNSTABLE in MS

Lower energy, higher intensity = easier transformation

C₇F₁₅COO anion in (ESI) MS – same as in the environment

PFOA-alternatives: How stable/unstable are they (relative to PFOA)?

ADONA

There is something we can follow along with analysis:

- decomposition in the ESI-source
 - MS-MS fragmentation

Decarboxylation/Fragmentation of PFAS

Known facts from literarture and DFT results: Easily decarboxylating acids/anions

PFOA - decarboxylation in MS-MS 0.0308

O₂N

Pentafluorobenzoic acid in ESI, very slow in water NO₂
COOH
NO₂

Trinitrobenzoic acid - 0.0046 fast in water at 60° C

RB3LYP/6-31+G(d,p) $CF_3 -CO_2, \Delta G \text{ in hartree}$ $CF_2 -CC_0 - CCC_0$

DFT:

GenX - easy decarboxylation in MS-MS 0.0136 and even in ESI

CCl₃COOH - trichloroacteic acid salts upon heating, slow in the environment 0.0125

A correlation between DFT ΔG

and apparent stability

- 0.0289

Gaussian-09

Decarboxylation, Transformation, Degradation

- 1. Decarboxylation rate can be assessed through MS and DFT
- 2. Decarboxylation is just the first step
- 3. Decarboxylation is "not enough" $R_FCF_2COOH \rightarrow R_FCF_2H \rightarrow R_FCOOH$
- 4. Decarboxylation is not degradation
- 5. ADONA seems promising, as it degrades in MS "deeper"

Decarboxylation product of ADONA - $CF_3O(CF_2)_3OCHFCF_2$ — anion — unstable in silico — "decomposition" to $CF_3O(CF_2)_3O$ -anion + $CHFCF_2$

ADONA: $CF_3O(CF_2)_3OCHFCF_2COO^{\bigcirc} \xrightarrow{13 \text{ V}} CF_3O(CF_2)_3O^{\bigcirc} \xrightarrow{39 \text{ V}} CF_3O^{\bigcirc}$

ADONA

PFC

2-oxa-PFPeA

The rest of PF-chain must be degradable!

In addition, we need a degradable chain !!! PFECA - PerFluoroEther Carboxylic Acids A way to unchain PFC world?

$$F_{3}CO = \begin{bmatrix} F_{2} & F_{2} & F_{2} & COOH \\ F_{2} & F_{2} & CF_{3} & F_{2} & COOH \\ F_{3}CO = \begin{bmatrix} F_{2} & F_{2} & F_{2} & COOH \\ F_{3}CO & F_{2} & F_{2} & F_{2} & COOH \\ F_{3}CO = \begin{bmatrix} F_{2} & F_{2} & F_{2} & F_{2} & COOH \\ F_{3}CO & F_{2} & F_{3}CO & F_{2} & F_{3}CO & F_{2} & COOH \\ F_{3}CO & F_{2} & F_{3}CO & F_{3} & F_{3}CO & F_{3} & CF_{3} & C$$

Design of a fully degradable: imagination + in silico DFT trials

Decarboxylation: better than TCA Fragmentation: better than ADONA **Further degradation: complete**

Sorry, no room for more DFT

PFOA, stable: CF₃-CF₂-CF₂-CF₂-CF₂-COOH

ADONA, fragmentation: CF₃O-CF₂-CF₂-CF₂-O-CHF-CF₂-COOH

Gen-X, decarboxylation: CF₃-CF₂-CF₂-O-CF-COOH

PFE-CA, degradable chain: CF₃O-(CF₂O)_n-CF₂-O-CF₂-COOH $CO_2 + HF$

Designed ENVI-PFCA: CF₃O-(CF₂O)_n-CF₂-O-CF-CF-COOH

CF₃CF₃

	Coll. E, V	Half-life	Decarboxylation, E _h	Fragmentation ?	End-products
ADONA	13	?	0.0765	yes	PFAS
PFECA	n.a.	?	0.0644	no	HF, CO ₂
PFOA	11	> 10 y	0.0604	no	PFAS
GEN-X	5	?	0.0506	yes/no	PFAS
TCA	n.a.	100 d*	0.0413	yes	HCI, CO ₂
NV-PFCA	n.a.	30 d**	0.0365	yes	HF, CO ₂
PFPvA	n.a.	hours	0.0106	yes	<u>∱</u> FAS

Final remarks

- Decarboxylation was a model Step 1
- Environment-dependent Step 1 is required (bio or UV)
- Every mass-spectrometrist, being attentive, can help unchain the world

Thank you for your attention!

Final remarks

- Decarboxylation was a model Step 1
- Environment-dependent Step 1 is required (bio or UV)
- Every mass-spectrometrist, being attentive, can help unchain the world

Thank you for your attention,

IN ADVANCE !!!