Benign by design approach for more sustainable chemicals: prioritization of chemicals of environmental concern by QSAR modelling in QSARINS-Chem

Paola Gramatica, Alessandro Sangion, Ester Papa

QSAR Research Unit in Environmental Chemistry and Ecotoxicology

University of Insubria, Varese (ITALY)

paola.gramatica@uninsubria.it

http://www.qsar.it

Principle 4: Design Safer (Benign) Chemicals

Wherever practicable, synthetic methodologies should be designed to use and generate substances that possess little or no toxicity to human health and the environment

Principle 10: Design for Degradation

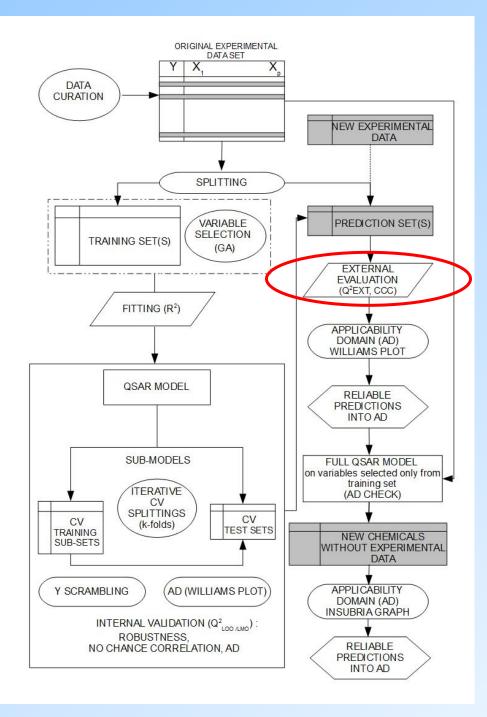
Chemical products should be designed so that at the end of their function they do not persist in the environment and break down into innocuous degradation products.

BENIGN by Structural DESIGN using QSAR

QSAR for synthesis of sustainable chemicals

The HAZARD is an inherent property of a chemical

A chemical has the potentiality to be dangerous included in its MOLECULAR STRUCTURE


EXPLOIT AVAILABLE KNOWLEDGE!

A recognized harmful behaviour of a chemical must be taken into consideration to avoid similar concerns for new chemicals.

From QSAR-based screening: Priority Lists of the most hazardous chemicals can be proposed

AVOID SYNTHESIS of REGRETTABLE CHEMICALS!

Free licence request in http://www.qsar.it

- P. Gramatica et al.
- J. Computational Chemistry
 (Software News and Updates)
- *34*, 2121-2132, **2013**. *35*, 1036-1044, **2014**.

MODELING in QSARINS: not «PUSH a BUTTON»

- Molecular structures are drawn and minimized by the semi-empirical method AM1 (HYPERCHEM software, hin files), and converted into SMILES or MOL files (Open Babel)
- www.acdiabs.com
- Mono-, bi-, three-dimensional descriptors are calculated using PaDEL (free on line)

CAS	AMW	Sv	Ss	Mv	Me	Ms
000050-29-3	12.66	21.69	45.81	0.77	1.03	2.41
000050-30-6	12.73	11.22	33.89	0.75	1.06	3.08
000050-31-7	15.03	11.92	37.67	0.79	1.09	3.14
000050-32-8	7.89	23.59	37.33	0.74	0.98	1.87
000051-28-5	10.83	11.14	49	0.66	1.1	3.77
000051-44-5	12.73	11.22	33.89	0.75	1.06	3.08
000055-38-9	8.98	19.38	35.81	0.63	1.01	2.24
000055-63-0	10.77	11.67	60.83	0.56	1.14	4.06
000056-23-5	30.76	5	17.69	1	1.21	3.54
000056-38-2	9.1	19.71	49.31	0.62	1.03	2.74
000057-15-8	11.83	9.6	24.83	0.64	1.05	3.1
000057-74-9	17.07	19.79	46.81	0.82	1.07	2.6
000058-89-9	16.16	13.79	32.67	0.77	1.07	2.72
000058-90-2	17.84	11.11	32.78	0.85	1.1	2.98
000059-50-7	8.91	10.6	23.11	0.66	1.01	2.57
000060-29-7	4.94	7.5	10.5	0.5	0.98	2.1
000060-51-5	9.55	14.17	31.97	0.59	1.02	2.66

- Multiple linear regression (MLR) performed by Ordinary Least Squares (OLS) method
- > Variable selection by Genetic Algorithm (GA)
- > Validation by many statistical parameters.
- Yarious plots, also for Applicability Domain.

Chemicals of Environmental Concern (CEC)

- > Persistent Organic Pollutants: from 12 «legacy» POPs
- > Persistent Bioaccumulative Toxics (PBTs)

CADASTER EU-Project

Emerging pollutants: Flame Retardants (FRs),
Perfluorinated (PFC), Personal Care Products (PCPs)

PCPs and Pharmaceuticals, together named PPCPs

Screening of POPs and PBTs

COMBINED APPROACH: Multivariate Analysis by PCA + QSAR

Two PCA were made on:

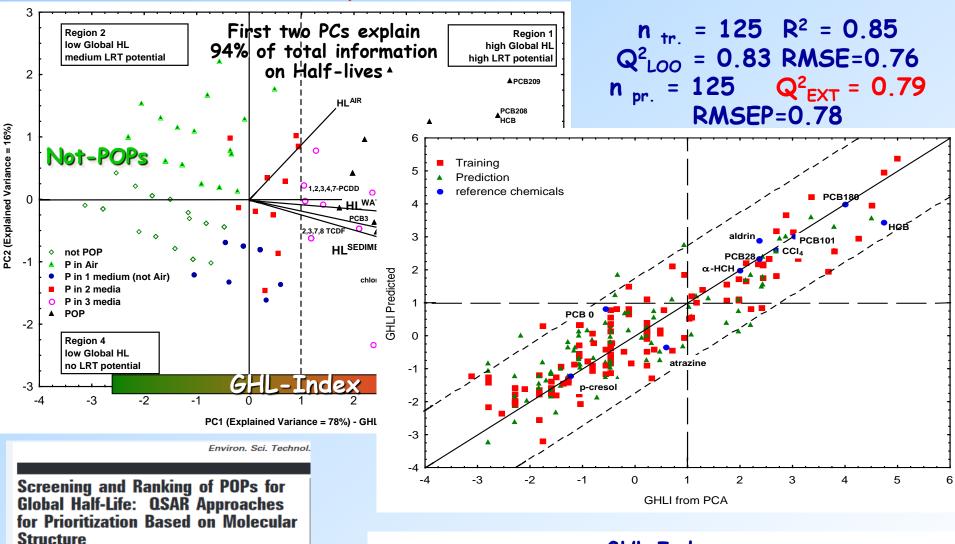
- 1. Half-lives in different environmental media for POPs
- 2. PBT properties

PC1: New Macro-Variables

GLOBAL Half-Life Index - GHLI
 2. PBT Index

QSAR Models
MLR-OLS in QSARINS

Predictive Tools for <u>Screening and Prioritization</u> of potentially high concern chemicals, based on their <u>cumulative properties</u>

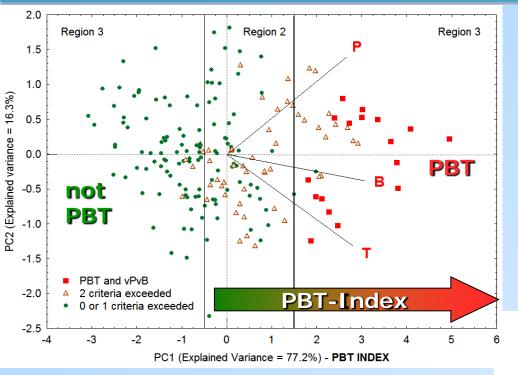

P. Gramatica

Chemometric Methods and Theoretical Molecular Descriptors in Predictive QSAR Modeling of the Environmental Behaviour of Organic Pollutants,

Ch. 12 in Recent Advances in QSAR Studies, Springer-Verlag, 2009

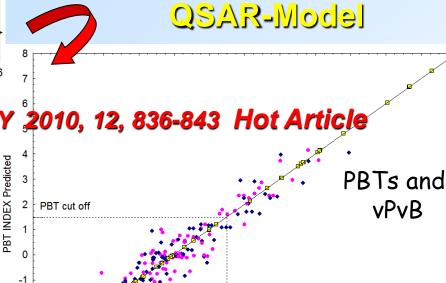
Screening of POPs: Global Half Life Index - GHLI

P. Gramatica, E. Papa, Environ. Sci & Technol. 41, 28, 2007.



PAOLA GRAMATICA* AND ESTER PAPA

QSAR MODEL


GHL Index Y= -3.12 +0.33 X0v+5.1 Mv-0.32 MAXDP-0.61 nHDon-0.5 CICO-0.61 O-060

Screening of PBTs: QSAR model of PBT Index

Global Index of Persistence Bioaccumulation and Toxicity

PBT INDEX

Unknown Behaviour

E.Papa, P. Gramatica, GREEN CHEMISTRY 2010, 12, 836-843 Hot Article

PBT Index =-1.25 + 0.63nX +0.21nBM - 0.39 nHDon - 0.12 MAXDP

ntr=94; R2 = 0.88; Q2 = 0.86; RMSE_T=0.53; npred=93; Q2ext = 0.87; RMSE_P=0.55

PBT HAZARD inherent in the structure

PBT Assessment and Prioritization by Consensus Modeling

Environment International 77 (2015) 25–34

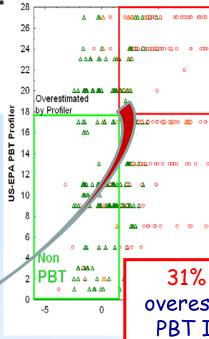
Contents lists availa

2015, *77*, 25-34

Environment International

journal homepage: www.elsevier.com/locate/envint

Agreement graph


PBT assessment and prioritization by PBT Index and consensus modeling: Comparison of screening results from structural models

Paola Gramatica *, Stefano Cassani, Alessandro Sangion

4412 chemicals screened by Insubria PBT Index and US-EPA PBT Profiler ->

Consensus Approach (>80% agreement)

1313 chemicals identified as PBTs by Consensus:
PRIORITY LIST of SVHC

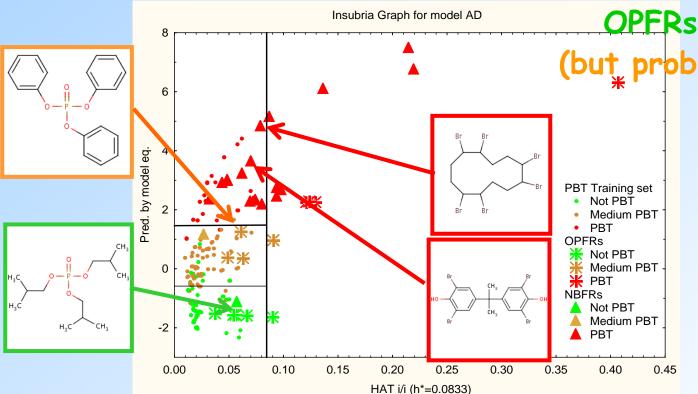
31% of chemicals overestimated by the PBT Index → More Precautionary

Screening of New Brominated Flame Retardants (NBFRs) and OrganoPhosphorous FR (OPFRs) by PBT Index

Journal of Hazardous Materials 306 (2016) 237-246

FI SEVIER

Contents lists available at ScienceDirect


Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Are some "safer alternatives" hazardous as PBTs? The case study of new flame retardants * 2016. 306, 237

Paola Gramatica*,1, Stefano Cassani, Alessandro Sangion

PBT Index highlights,
from the design, that:
Some «safer alternatives»
are not so safe:
NBRFs are mainly PBTs
OPFRs are safer
(but probably not all...)

Applicability
Domain (AD)
of
QSARINS
PBT Index
model

PBT behaviour of Pharmaceuticals and PCPs (PPCPs)

Comparison and consensus of two different modeling approaches for the PBT assessment

Insubria PBT Index

- Cumulative index for P, B and T, inherent to chemical structure (QSARINS)

US-EPA PBT Profiler

- Separate predictions for P, B and T

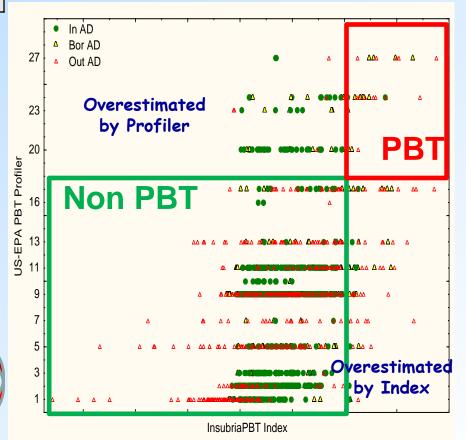
> 500 Personal Care Products

> 1200 Pharmaceuticals

Screening of PPCPs for PBT Behaviour

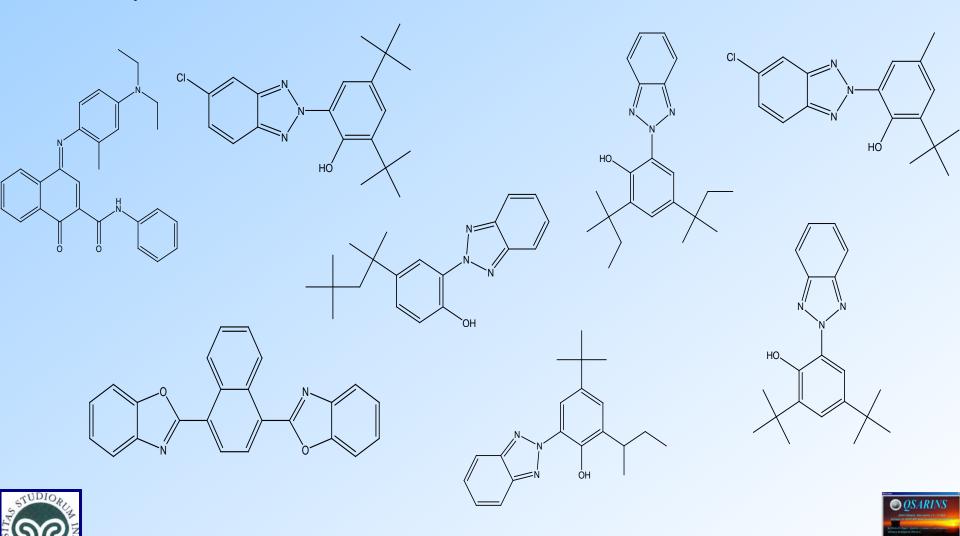
	all	%
Agreement	1570	87
Overestimated by Profiler	7 5	4
Overestimated by Index	156	9

Consensus approach


	Interp	Extrap	All
non-PBTs in agreement	1095	432	1527
PBTs in agreement	28	15	43

Priority List: 8 PCPs and 35 pharmaceuticals

Insubria PBT Index more precautionary


Agreement graph

chemicals labelled according to the AD

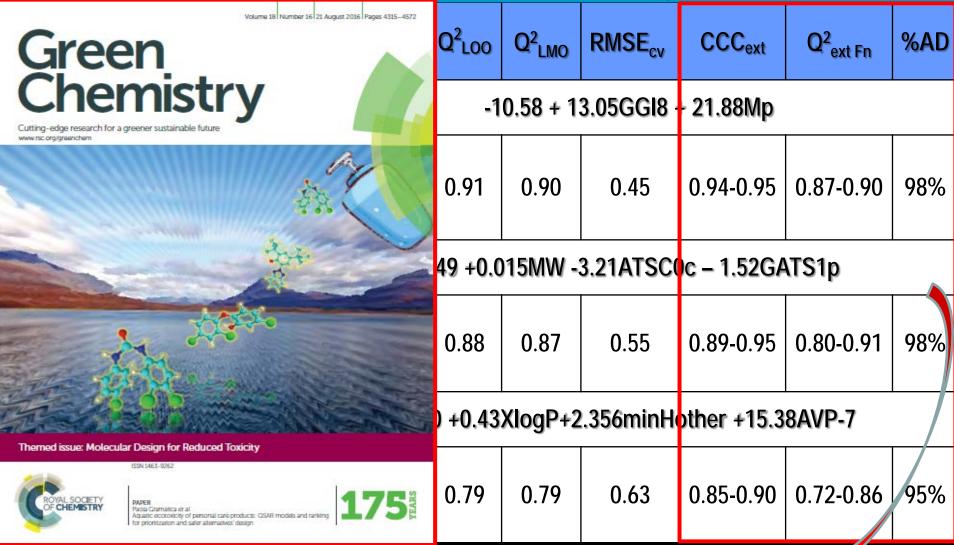
Priority List of PCPs potentially PBTs

8 PCPs were predicted as potential PBT by consensus: they are mainly benzotriazoles, used as UV-filters in Sun- Screeners.

Aquatic toxicity of PCPs and Pharmaceuticals (PPCPs)

The aquatic toxicity of environmental chemicals is studied by toxicity tests on three different trophic levels: algae, daphnids and fish.

Very limited experimental data availability for PPCPs, mainly of homogeneous data, usefull for QSAR modeling.


Data Curation for homogeneous datasets:

- same species,
- time,
- end point
- etc.

QSAR models for Eco-toxicity of PCPs

Externally Predictive Models •
High AD to more than
500 PCPs

16

OSARINS

QSAR models for Eco-toxicity of Pharm.

 R^2 Q^2_{LMO} Q^2_{LOO} **RMSE**_{cv} **CCC**_{ext} Models' summary

pEC50 P. subcapitata

Eq.

0.78

0.75

0.74

0.72

0.73

0.72

0.93 -3.72minHother -4.61VCH-6 +0.48piPC6 -0.09 VE3_Dt

0.67

0.65 + 0.32 CrippenLogP -0.08 minHBint2-0.06 SpMAD_Dzs -

0.75 AATSC4i + 0.13 C2SP3

0.41

0.83 -

0.88

0.84 -

0.86

0.87-

xHBint2 -1.15HybRatio

0.68 -

0.81

0.70 -

0.79

0.70 -

- Stat. Par.

45

U A

D

A

C

pEC50 D. magna

approaches and prediction of ecotoxicity

Alessandro Sangion, Paola Gramatica *

Eq. Stat. Par. Environment International xxx (2016) xxx-xxx

125

Contents lists available at ScienceDirect

Environment International

journal homepage: www.elsevier.com/locate/envint Hazard of pharmaceuticals for aquatic environment: Prioritization by structural

TSC0 68

0.82 -0.71-0.86 0.83

.39nHBAcc+1.11SpMin7_Bhp

80%

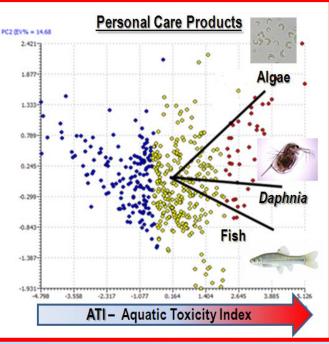
96%

%AD

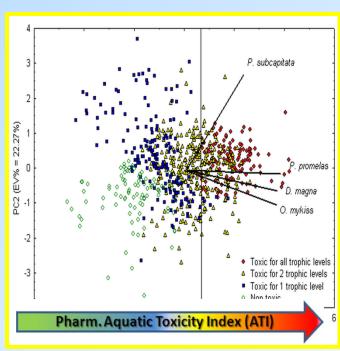
74%

87%

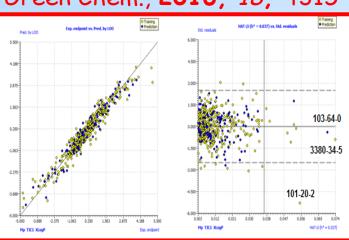
2016*, 95,* 131-143


0.89 0.86 AD to 1200 Pharm

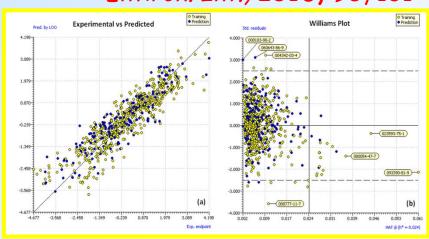
79


QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy

Aquatic toxicity trend of PCPs and Pharm.


Combining toxicities on different organisms: overall aquatic toxicity

Aquatic Toxicity Index by PCA: ATI



Green Chem., 2016, 18, 4315

Plots for QSARs and AD

All the Insubria MLR QSAR models are available and applicable in QSARINS- Chem

http://www.qsar.it

Poster 94 in Environmental Modelling Session

Predictive QSAR models and chemometrics are useful for screening/prioritisation of large sets of chemicals, and for the design of alternative/sustainable chemicals

P. Gramatica. Prioritization of Chemicals Based on Chemoinformatic Analysis, 2016
Handbook of Computational Chemistry Vol 5,

Ed. J. Leszczynski, Springer

Prof. Paola Gramatica - QSAR Research Unit - DiSTA - University of Insubria - Varese (Italy)

Acknowledgements These studies have been financially supported by:

- · FP7th-EU Project CADASTER
- · Italian MIUR-PRINO7
- · Insubria University fellowships

Thanks for your attention!!

http://www.qsar.it

Thanks to my collaborators:

Ester Papa,
Simona Kovarich,
Huanxiang Liu, Barun
Bhhatarai, Jiazhong Li,
Mara Luini, Nicola Chirico,
Stefano Cassani, Partha Pratim
Roy, Alessandro Sangion

