Investigating Variability in HBCDD Diastereomer Profile in the Environment

Li LI^{1,2}, Frank WANIA² 1. Peking University, P.R. China 2. University of Toronto Scarborough, Canada

Email to Li Li: environ.li@mail.utoronto.ca

Hexabromocyclododecane (HBCDD)

- Brominated flame retardant applied in polystyrene foams
 - Expanded polystyrene (EPS): insulation boards, packaging materials
 - Extruded polystyrene (XPS): insulation boards
- Included into the Stockholm Convention in 2013 for elimination
- Diastereomers

Variability in HBCDD Diastereomer Profile

• Why can we observed diverse HBCDD diastereomer profile?

Modeling Strategy

• A continuum from chemical production to concentration in environmental media

 Trace how diastereomer profile changes throughout the lifecycle of HBCDD-containing products

CiP-CAFE Model

• CiP-CAFE: Chemical in Product – Comprehensive Anthropospheric Fate Estimation (Li and Wania, 2016; Li et al., 2017)

BETR-Global Model

• BETR-Global: Berkeley-Trent Global (MacLeod et al., 2005, 2011)

MacLeod et al. (2005) Environ. Sci. Technol., 39, 6749-6756 MacLeod et al. (2011) Environ. Pollut., 159, 1442-1445

Key Input Data

Regional annual production/consumption of HBCDD diastereomers

Key Input Data

Isomerization factor (IF) during thermal processing

• Relative change of the abundance of a diastereomer

Abundance of a diastereomer after isomerization

IF = Abundance of a diastereomer before isomerization

Variability in Input Data

- Define 8 separate simulation scenarios
- Upper bound of the emission estimate: maximum of the 8 results Lower bound of the emission estimate: minimum of the 8 results

Parameters with remarkable variability	Boundary 1	Boundary 2	# of cases
(A) Isomerization factor	a-dominant	γ-dominant	2
(B) Emission factors of production & formulation	Literature reported value \times 1	Literature reported value \times 10	2
(C) Emission factors in non-open use of insulation boards	Literature reported value \times 1	Literature reported value $\times 0.5$	2
Total			8

Model Performance

Fed with the CiP-CAFE-derived emission estimate
BETR-Global succeeds in reproducing most Σ₃HBCDD concentrations observed in GAPS

Global Emissions of HBCDD Diastereomers

• On the global scale, α-HBCDD and γ-HBCDD are almost similarly abundant

Different Diastereomers, Different Dominant Sources

Year

Enrichment of Diastereomers in the Arctic

Absolute Arctic Contamination Potential

 Percentage of enrichment of HBCDD diastereomers in Arctic (BETR-Global cells #1 – 48) surface media after a decade of emissions

 $eACP_{10} = \frac{Amount present in Arctic surface media}{Cumulative global emissions over the decade}$

Enrichment of Diastereomers in the Arctic

0,18% Absolute Arctic Contamination Potential "Classic" eACP Geographic distribution of Percentage of enrichment of HBCDD emissions is identical as that of 0,15% the global population density diastereomers in Arctic (BETR-Global Constant emission rate Considering the loss due to cells #1 – 48) surface media after a 0,12% isomerization decade of emissions eACP₁₀ 0,09% Amount present in Arctic surface media $eACP_{10}=$ Cumulative global emissions over the decade 0,06% echnical HBCDD 0,03%

0,00%

2000

2005

2010

2025

2030

2020

201

Year

Enrichment of Diastereomers in the Arctic

Absolute Arctic Contamination Potential

 Percentage of enrichment of HBCDD diastereomers in Arctic (BETR-Global cells #1 – 48) surface media after a decade of emissions

eACP₁₀= Amount present in Arctic surface media Cumulative global emissions over the decade

Concern: a-HBCDD is More "Risky" in the Environ.

Example: In vitro biotransformation assay (Zegers et al., 2005)

- Laboratory rats and harbor seal: microsomal preparations of liver
- a-HBCDD is hardly metabolized by cytochrome P450 enzymes
 - "a-HBCDD was not significantly biotransformed after 90 min of incubation".
- β and γ -HBCDD are quickly metabolized by cytochrome P450 enzymes
 - 69±16% of β -HBCDD and 60±10% of γ -HBCDD disappeared within 90 min.

Due to isomerization:

 The HBCDD mixture in the emission flow or in the environment, may be of more environmental concern than the mixture being produced.

Implications

- It is not appropriate to treat interconvertible mixtures as a unit in environmental fate studies.
- Environmental risk assessment of HBCDD is recommended to be conducted on a diastereomer-specific basis.

Thanks for Your Attention Questions

Acknowledgement

Scholarships from the China Scholarship Council & the Shanghai Tongji Gao Tingyao Environmental Science and Technology Development Foundation

Related work

15:30 Abbasi et al. Global Inventory of PBDEs; from Production, Use and Waste to Environment Helga Engs hus, Auditorium 3