

Bottom RedOx Model (BROM)

Benthic–pelagic biogeochemical model BROM combines a relatively simple ecosystem model with a detailed biogeochemical model in the water column, benthic boundary layer, and sediments, with a focus on oxygen and redox state.

BROM should be of interest for the study a range of environmental applications in addition to hypoxia, such as benthic nutrient recycling, redox biogeochemistry, eutrophication, industrial pollution from trace elements, organic loading, and ocean acidification.

Yakushev, E. V., Protsenko, E. A., Bruggeman, J., Wallhead, P., Pakhomova, S. V., Yakubov, S. Kh., Bellerby, R. G. J., and Couture, R.-M. 2017: Bottom RedOx Model (BROM v.1.1): a coupled benthic–pelagic model for simulation of water and sediment biogeochemistry, Geosci. Model Dev., 10, 453-482.

NIV4-

BROM consists of a transport module (**BROM-transport**) and biogeochemical module (FABM compartible **BROM-biogeochemistry**), allowing independent coupling to hydrophysical models in 1-D, 2-D, or 3-D.

Model variables are passive nonconservative tracers Model can be forced from:

- the sediment,
- the atmosphere,
- some depth in the water column (injection)

https://github.com/BottomRedoxModel/brom-git

NIV

Being a component of the Framework for the Aquatic Biogeochemical Models (FABM), BROM is divided into several modules (i.e. BROM-bio, BROM-nut, BROM-carb, BROM-S, Brom- Mn, BROM_Fe, BROM-bact etc.) that can be independently combined with a wide range of the existing and planning modules

Bruggeman, J. and Bolding, K.: A general framework for aquatic biogeochemical models, Environ. Model. Softw., doi:10.1016/j.envsoft.2014.04.002, 2014.

NIV4-

BROM Biogechemistry

BROM considers interconnected transformations of species of N, P, Si, C, O, S, Mn, and Fe. OM dynamics include parameterizations of OM production (via photosynthesis and chemosynthesis) and OM decay via oxic mineralization, denitrification, metal reduction, sulfate reduction, and methanogenesis.

Model domain

Water column		
	Eddy diffusivity (input data)	
	Molecular diffusivity	1D vertical transport model or 2D vertical transport model
BBL logarithmic	Eddy diffusivity (decrease)	
layer	Molecular diffusivity	
DBL	Molecular diffusivity	
Sediment	Molecular diffusivity	
	Bioturbation	
	1	

NIV

16TH INTERNATIONAL CONFERENCE ON CHEMISTRY AND THE ENVIRONMENT

Modeling influence of a fish farm at water column and sediment biogeochemistry with a 2-Dimensional Benthic-Pelagic model

Evgeniy Yakushev, Elizaveta Protsenko and Philip Wallhead

Oslo, June 19-21, 2017

Objectives:

Develop and configure a model to simulate the effects of fish farm organic loadings in a 10 m – 100 m horizontal scale

Optimize model using experimental results and archive data.

Quantify the effects of organic loading from fish farming on water column and sediment biogeochemistry.

Model domain

Water column		
	Eddy diffusivity (input data)	
	Molecular diffusivity	1D vertical transport model or 2D vertical transport model
BBL logarithmic	Eddy diffusivity (decrease)	
layer	Molecular diffusivity	
DBL	Molecular diffusivity	
Sediment	Molecular diffusivity	
	Bioturbation	
	1	

NIV

Periodic lateral boundary conditions water column injection relaxation database or Horizontal model advection and data turbulencs SWI vertical turbulence, bioturbation sinking and burying

2-Dimensional Benthic Pelagic Model 2DBP

and molecular diffusion

NNA

BROM-transport -> 2DBP

The vertical 2-Dimensional Benthic-Pelagic model 2DBP aims to study small scale horizontal effects in the water column and the sediments biogeochemistry (Fig.). This model domain covers water column and upper cms of the sediments with the changeable vertical resolution. The processes of horizontal advection, horizontal turbulence, vertical turbulence, sinking of particles and burying are parameterized. The model can be relaxated to the data from a data base or another model. In this work the 2DBP was forced

by results of calculations of the seasonal variability of temperature, salinity,

vertical turbulence, irradiance and advection components calculated with ROMS. We parameterized horizontally uniform rate of current along the transect, and the left boundary of the model domain was linked to the right boundary.

2-Dimensional Benthic Pelagic Model 2DBP

vertical turbulence, bioturbation

and molecular diffusion

SWI

sinking and burying

ROMS	Forcing for hydrophysics
Observarions in VIII.2016	Low boundary
DB Copernucus	Relaxation to climatic data
1.55 kgC/m2/(15 days), (Corner et al., 2006)	POM injection (5 mmolN/sec for 22m cage diameter)
25 m	Horizontal resolution
3-50 m	Vertical resolution(water)
3-21 cm	Vertical resolution(BBL)
0.25-2 cm	Vertical resolution(BBL)

Model parameters

k z[k] dz[k] hz[k]1 0.0000 _o_ 3.0000 1 === 3.0000 === 2 3.0000 _o_ 5.0000 2 === 7.0000 === 3 10.0000 _o_ 6.0000 3 === 5.0000 === 4 15.0000 _o_ 7.5000 4 === 10.0000 === 5 25.0000 _o_ 17.5000 5 === 25.0000 === 6 50.0000 _o_ 25.0000 6 === 25.0000 === Water 7 75.0000 _o_ 25.0000 7 === 25.0000 === 8 100.0000 _o_ 37.5000 column 8 === 50.0000 === 9 150.0000 _o_ 50.0000 9 === 50.0000 === 10 200.0000 _o_ 50.0000 10 === 50.0000 === 11 250.0000 _o_ 50.0000 11 === 49.7500 === 12 299.7500 _o_ 24.5000 12 === 12.3929 === 13 312.1429 _o_ 0.2857 13 === 0.2143 === 14 312.3571 _o_ 0.1429 14 === 0.1059 === BBL 15 312.4630 _o_ 0.0689 15 === 0.0357 === 16 312.4988 _o_ 0.0025 16 === 0.0025 === 17 312.5013 _o_ 0.0025 17 === 0.0037 === 18 312.5050 _o_ 0.0050 18 === 0.0075 === 19 312.5125 _o_ 0.0100 19 === 0.0150 === Sediment · 20 312.5275 _o_ 0.0200 20 === 0.0200 === 21 312.5475 _o_ 0.0200 21 === 0.0200 === NIV 22 312.5675 _o_ 0.0200 22 === 0.0200 === 23 312.5875 _o_ 0.0200

23 === 0.0000 ===

2-Dimensional Benthic Pelagic Model 2DBP

Forcing for hydrophysics	ROMS
Low boundary	Observarions in VIII.2016
Relaxation to climatic data	DB Copernucus
POM injection	1.55 kgC/m2/(15 days), (Corner et al., 2006), i.e. 5 mmolN/sec for 22m cage diameter
Horizontal resolution (31 columns)	25 m
Vertical resolution(water)	3-50 m
Vertical resolution(BBL)	3-21 cm
Vertical resolution(BBL)	0.25-2 cm
	1

Model parameters

Haradangerfjord 25-27.08.2016: OBSERVATIONS

Water column

NIVE Vertical distributions of the physical and chemical parameters at a station at 500 m from the farm and at $\frac{1}{20}$ m from the farm.

Water column

NIVA Vertical distributions of the physical and chemical parameters at a station at 500 m from the farm and at +20 m from the farm.

Water column

Vertical distributions of the physical and chemical parameters at a station at 500 m from the farm and at +20 m from the farm.

Sediments

Sediments

OBSERVATIONS

2-Dimensional Benthic Pelagic Model 2DBP

- 1. Baseline seasonality («Spin-up period»)
- 2. Validation against the observarions data.
- 3. Numerical experiments

NIV4-

1. Spin-up

RESULTS

2000

2500

3000

1000

3500

NIV

Baseline seasonality reached after ~20yr «Spin-up period»

2-Dimensional Benthic Pelagic Model 2DBP

2. Validation

02

150 200 250 300

02

0 -

50

100 -

150 -

200

200 -

300

400 -

500

600

700

50

50 100

RESULTS

25

3. Experiments:

RESULTS

Natural variability

3. Experiments:

RESULTS

Natural variability

3. Experiments:

RESULTS

Natural variability

Distributions along the transect. Day=140

NIV÷

3. Experiments: 1 X farm

RESULTS

3. Experiments: 1 X farm

RESULTS

NI

distance, m

2 X

3 X

1 X

1 X

- Model satisfactory reproduces the mechanism of changes in pelagic and benthic biogeochemistry due to an injection of OM from a fishfarm.
- Model allows to analyse consequences of the OM injection changes, i.e. to predict:
 - o volume of water affected;
 - o area of the bottom affected;
 - extreme concentrations of substances in relation to the allowed permitable level.
- Model can be an effective instrument of estimating of the carrying capacity of the water bodies.

AKNOWLEDGEMENTS. We thank Elizabeth Alve team from UiO for help with the benthic samples, Shamil Yakubov (SIO RAS) and Svetlana Pakhomova (NILU) for help with coding, and many other colleagues from NIVA and Akvaplan-NIVA for discussions.

The work was supported by Norwegian Research Council project no. 535640 ('Combined effects of multiple organic stressors from jellyfish blooms and aquaculture operations on seafloor ecosystems', **JELLYFARM**) with additional development funds from EC Horizon 2020 under grant agreement no 654462 ('STrategies for Environmental Monitoring of Marine Carbon Capture and Storage', **STEMM-CCS**), FME SUCCESS, NRC projects no. 236658 ('New knowledge on sea deposits', NYKOS), and no 254777 (Environmental impacts of leakage from sub-seabed CO2 storage', Trykk CO2)

Thank you!

Yours modellers-on-board.

