

DE LA RECHERCHE À L'INDUSTRIE

ICCE June 2017

CHARACTERIZATION OF CLOUD WATER DISSOLVED ORGANIC MATTER USING FT-ICR-MS.

Angelica Bianco¹; Edith Nichol²; Mickaël Vaïtilingom^{1,3}, Laurent Deguillaume¹, Nadine Chaumerliac¹, <u>Maxime Bridoux</u>⁴

¹ Laboratoire de Météorologie Physique (LaMP), Université Clermont Auvergne, France
 ² Laboratoire de Chimie Moléculaire, Ecole Polytechnique, Université Paris Saclay
 ³ now at Université des Antilles, Department of Physics, 97110 Pointe-à-Pitre, France
 ⁴ CEA, DAM, DIF, F-91297 Arpajon, France

www.cea.fr

DE LA RECHERCHE À L'INDUSTRIE

INTRODUCTION AND CONTEXT OF THE STUDY Gas, particles and cloud: global overview of the interactions

ICCE 2017

METHODS Sampling and sample analysis

Reasearch **Goals**:

puy de Dôme station

- Characterization of water dissolved organic matter at the molecular level (Spatio / temporal variability) / influence of air masses, ...
 - **Reactivity** of organic compounds in cloud water

Study the synergetic/ antagonistic effects of photochemistry/biodegradation

4/14

DE LA RECHERCHE À L'INDUSTRI

METHODS

High Resolution mass spectral data processing

Van Krevelen diagram (commonly used to describe the chemical properties of aerosols)

Ces

RESULTS

FT-ICR MS spectra of cloud water collected on 010616

• ESI FT/ICR MS spectrum (SPE background subtracted) from 01/06/2017

DE LA RECHERCHE À L'INDUSTRI

RESULTS Molecular Class distribution

Four subgroups of molecular formulas determined based on their elemental composition

- High abundance of nitrogen containing compounds (over $\frac{1}{2}$ the compositional space)
 - Considerable contribution of sulfur containing organic compounds (in line with other studies of water soluble atmospheric aerosols)

RESULTS Kendrick Mass Defect,(-CH₂)

Van Krevelen diagrams

• Van krevelen diagram by class for 01/06/2016

 Consistent with those of biogenic SOA samples

o/c

- Few condensed aromatic compounds (biomass combustion emissions, pyrolysis of wood lignin) / methoxyphenols have been reported in aqauous SOA (Sun et al. 2010)
- Average O/C for CHO is 0.34±0.20, lower than ambient rainwater (0.7±0.5 Altieri et al. 2009) and clouds collected in Colorado (0.5±0.3), more similar to ambient AWSOC (0.4±0.2 Mazzoleni et al. 2012)
- But... maybe SPE bias against low MW, high O/C compounds

- High density in the « protein » like familly
- Most O/C < 0.5 similar to WSOC and fog AOM (Wozniak et al., 2008; Mazzoleni et al., 2010; Schmidt-Kopplin et al., 2010)
- Sources of reduced <u>CHNO</u>: mainly wood combustion emission or aqueous phase reactions like the one shown for glyoxal or methyl glyoxal with NH₄NO₃ (Galloway et al., 2009, Sareen et al., 2010)

- High number of highly unsaturated CHOS compounds
- Most formulas are

 compatible >> with
 organosulfates (O
 content, low DBE values,...)
 probably originating from
 secondary reactions (with
 Sulfuric acid)
- The reduced S-containing compounds may be from primary emissions (diesel?)

- Similar pool of condensed, aromatic N and S containing compounds
- Formulas are compatible with nitrooxy organosulfates

 $\boldsymbol{\diamond}$ Presence of fonctionalized water-soluble condensed aromatic compounds

Van Krevelen diagrams

• Van krevelen diagram by class for 01/06/2016

CHO

- Consistent with those of biogenic SOA samples
- Few condensed aromatic compounds (biomass combustion emissions, pyrolysis of wood lignin) / methoxyphenols have been reported in aqauous SOA (Sun et al. 2010)
- Average O/C for CHO is 0.34±0.20, lower than ambient rainwater (0.7±0.5 Altieri et al. 2009) and clouds collected in Colorado (0.5±0.3), more similar to ambient AWSOC (0.4±0.2 Mazzoleni et al. 2012)
- But... maybe SPE bias against low MW, high O/C compounds

- High density in the « protein » like familly
- Condensed aromatics
- Most O/C < 0.5 similar to WSOC and fog AOM (Wozniak et al., 2008; Mazzoleni et al., 2010; Schmidt-Kopplin et al., 2010)
- Sources of reduced <u>CHNO</u>: mainly wood combustion emission or aqueous phase reactions like the one shown for glyoxal or methyl glyoxal with NH₄NO₃ (Galloway et al., 2009, Sareen et al., 2010)

- High number of highly unsaturated CHOS compounds
- Most formulas are

 compatible >> with
 organosulfates (O
 content, low DBE values,...)
 probably originating from
 secondary reactions (with
 Sulfuric acid)
- The reduced S-containing compounds may be from primary emissions (diesel?)

- Similar pool of condensed, aromatic N and S containing compounds
- Formulas are compatible with nitrooxy organosulfates

Van Krevelen diagrams

• Van krevelen diagram by class for 01/06/2016

СНО

- Consistent with those of biogenic SOA samples
- Few condensed aromatic compounds (biomass combustion emissions, pyrolysis of wood lignin) / methoxyphenols have been reported in aqauous SOA (Sun et al. 2010)
- Average O/C for CHO is 0.34±0.20, lower than ambient rainwater (0.7±0.5 Altieri et al. 2009) and clouds collected in Colorado (0.5±0.3), more similar to ambient AWSOC (0.4±0.2 Mazzoleni et al. 2012)
- But... maybe SPE bias against low MW, high O/C compounds

CHON

- High density in the « protein » like familly
- Most O/C < 0.5 similar to WSOC and fog AOM (Wozniak et al., 2008; Mazzoleni et al., 2010; Schmidt-Kopplin et al., 2010)
- Sources of reduced <u>CHNO</u>: mainly wood combustion emission or aqueous phase reactions like the one shown for glyoxal or methyl glyoxal with NH₄NO₃ (Galloway et al., 2009, Sareen et al., 2010)

CHOS

- High number of highly unsaturated CHOS compounds
- Most formulas are

 compatible » with
 organosulfates (O
 content, low DBE values,...)
 probably originating from
 secondary reactions (with
 Sulfuric acid)
- The reduced S-containing compounds may be from primary emissions (diesel?)

- Similar pool of condensed, aromatic N and S containing compounds
- Formulas are compatible with nitrooxy organosulfates

Presence of fonctionalized water-soluble condensed aromatic compounds

Van Krevelen diagrams

• Van krevelen diagram by class for 01/06/2016

CHO

- Consistent with those of biogenic SOA samples
- Few condensed aromatic compounds (biomass combustion emissions, pyrolysis of wood lignin) / methoxyphenols have been reported in aqauous SOA (Sun et al. 2010)
- Average O/C for CHO is 0.34±0.20, lower than ambient rainwater (0.7±0.5 Altieri et al. 2009) and clouds collected in Colorado (0.5±0.3), more similar to ambient AWSOC (0.4±0.2 Mazzoleni et al. 2012)
- But... maybe SPE bias against low MW, high O/C compounds

- High density in the « protein » like familly
- Most O/C < 0.5 similar to WSOC and fog AOM (Wozniak et al., 2008; Mazzoleni et al., 2010; Schmidt-Kopplin et al., 2010)
- Sources of reduced <u>CHNO</u>: mainly wood combustion emission or aqueous phase reactions like the one shown for glyoxal or methyl glyoxal with NH₄NO₃ (Galloway et al., 2009, Sareen et al., 2010)

- High number of highly unsaturated CHOS compounds
- Most formulas are

 compatible > with
 organosulfates (O
 content, low DBE values,...)
 probably originating from
 secondary reactions (with
 Sulfuric acid)
- The reduced S-containing compounds may be from primary emissions (diesel?)

- Similar pool of condensed, aromatic N and S containing compounds
- Formulas are compatible with nitrooxy organosulfates

 $\boldsymbol{\diamond}$ Presence of fonctionalized water-soluble condensed aromatic compounds

DE LA RECHERCHE À L'INDUSTR

RESULTS

Van Krevelen diagrams

• Van krevelen diagram by class for 02/07/2016

CONCLUSIONS ET PERSPECTIVES

- Molecular composition determined by ultrahigh-resolution Fourier-transform ion cyclotron resonnance mass spectrometry provides unambiguous identification of the cloud water organic anion composition in the Puy de Dôme area
 - > 5000 monoisotopic molecular formulae found for sample 01/06/2016
 - ~ 3000 molecular formulae found for sample 02/07/2016
 - Complex organic compounds containing C, H, N, O, S with MW comprised between m/z 50 and 700 Da
 - significantly more N-containing and S-containing compounds for 01/06/2016
 - Van Krevelen diagrams reveal more unsaturated components from 01/06/2016 sample

THANK YOU FOR YOUR ATTENTION... QUESTIONS ?