Detection and Characterization of Organic Stressors in Wastewater by HPLC SEC with DOC Detection

https://www.umweltbundesamt.de/themen/abfallarzneien-alte-farben-was-darf-nicht-in-die

<u>BEATE STAHL¹</u>, SYDNEY JANNETTA², NICOLLETTE LAROCO², DONDRA BILLER², AMANDA SCOTT², KATRIN SCHUHEN¹

¹ Institute for Environmental Sciences, University of Koblenz – Landau/Germany
 ² GE's Analytical Instruments, Boulder/United States

WATER RECLAMATION PLANT

- 85% of San Diego's water is imported
- Demand is rising but rainfall is not
- → Water reuse necessary

MOTIVATION

U N I V E R S I T Ä T KOBLENZ · LANDAU

- > More than 70,000 substances contaminate water
- Vide variety (relatively harmless or harmful for humans / wildlife)
- Effect: acute / long-term
- interaction of chemicals: some constituents only demonstrate toxicity in mixtures
- Danger to human and environmental health.
 - Necessity to control water quality
 - Limit the amount of contaminants
 - Need for easy and cost-effective way to look at size fractions of all organics

en/abfall-arzneien-alte-farben-was-

darf-nicht-in-die

TOTAL ORGANIC CARBON AND ITS MEASUREMENT

Process analytics of the waste water treatment plant

DOC dissolved organic carbon < 0.45 µm

- Oxidation of organic molecules forming CO₂ (UV persulfate)
- Detection of CO₂ via membrane conductivity.

ICCE 2017, Oslo, June 18-21 B. Stahl

COMPARISON OF TOC AND DOC

Sample	TOC Average	%RSD	DOC Average	%RSD
Tertiary Effluent	9.95 ± 0.06 ppm	0.6 %	9.6 ± 0.04 ppb	0.4 %
Ozone Effluent	10.1 ± 0 ppm	0.0 %	9.2 ± 0.04 ppb	0.4 %
BAC Effluente	5.4 ± 0.01 ppm	0.2 %	5.3 ± 0.01 ppb	0.1 %
RO Permeate	79.9 ± 0.6 ppb	0.7 %	_	_

COMPARISON OF TOC AND DOC

Sample	TOC Average	%RSD	DOC Average	%RSD
Tertiary — Effluent	 ⇒ 9.95 ± 0.06 ppm 	0.6 %	9.6 ± 0.04 ppb	0.4 %
Ozone Effluent	10.1 ± 0 ppm	0.0 %	9.2 ± 0.04 ppb	0.4 %
BAC Effluente	5.4 ± 0.01 ppm 1	/ 0.2 %	5.3 ± 0.01 ppb	0.1 %
RO Permeate	79.9 ± 0.6 ppb	0.7 %	_	_

SIZE EXCLUSION CHROMATOGRAPHY (SEC)

- Quality and quantity of organic matter
- Separation of molecules by size / hydrodynamic volume

EXPERIMENTAL SETUP - HPLC SEC UV

Chromatographystationary phase:Tosoh Bioscience 44782Temp.: 24°C20 x 350 mm, 30μm,Flow:1 mL/minmobile phase:0.004M phosphate buffer with 0.025M sodium sulfate

COMPARING UV-254 AND DOC

Chromatographystationary phase:Tosoh Bioscience 44782Temp.: 24° C20 x 350 mm, 30µm,Flow:1 mL/minmobile phase:0.004M phosphate buffer with 0.025M sodium sulfate

COMPARING UV-254 AND DOC FOR TERTIARY EFFLUENT

COMPARING TERTIARY AND OZONE EFFLUENT

COMPARING TERTIARY AND OZONE EFFLUENT

COMPARING OZONE AND BAC EFFLUENT

COMPARING BAC AND RO PERMEAT

- Analysis of TOC, DOC, and TOC-SEC provides information on water characteristics.
- TOC and TOC-SEC can be used to control the efficiency of various water treatment processes
- Combined analysis like UV and TOC –SEC provides a more comprehensive view into the removal of the various size fractions of organic carbon.
- →The SEC-UV-TOC information can be used to optimize the performance of the cleaning process.

https://www.pexels.com/photo/man-pouring-water-bottle-onhis-mouth-160060/

Our latest publication in the field:

- Scott, A., Schuhen, K., Water Quality Control in Various Water Treatment Processes Using TOC-SEC A Potential Analysis, in WaterSolutions 2017, 3, S. 3-12.
- Schuhen, K., Stahl B., Scott, A., submitted for GIT lab journal
- Come and visit our Posters: You find them located No. 30 and No. 32

THANK YOU VERY MUCH! Contact: stahl.beate@gmail.com